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Flexibility of functional neuronal assemblies
supports human memory

Gray Umbach1, Ryan Tan2, Joshua Jacobs 3, Brad E. Pfeiffer 4 &
Bradley Lega 2

Episodic memories, or consciously accessible memories of unique events,
represent a key aspect of human cognition. Evidence from rodent models
suggests that the neural representation of these complex memories requires
cooperative firing of groups of neurons on short time scales, organized by
gamma oscillations. These co-firing groups, termed “neuronal assemblies,”
represent a fundamental neurophysiological unit supporting memory. Using
microelectrode data from neurosurgical patients, we identify neuronal
assemblies in the human MTL and show that they exhibit consistent organi-
zation in their firing pattern based on gamma phase information. We connect
these properties to memory performance across recording sessions. Finally,
we describe how human neuronal assemblies flexibly adjust over longer time
scales. Our findings provide key evidence linking assemblies to human epi-
sodic memory for the first time.

Cognitive behavior, including memory formation and retrieval,
requires cooperative but distributed neuronal firing1,2, of which the
self-organization of hippocampal neurons represents a key example.
Data fromanimalmodels of hippocampal-dependentmemory indicate
that organized firing occurs on time scales of roughly 25ms3, a scale
which has several theoretical advantages including facilitating spike-
timing-dependent plasticity4. Subsequent work further demonstrated
the importance of neuronal co-activity on these time scales5–7 by
identifying5–12 and even incepting9memories represented by groups of
co-firing neurons. Such data support the influential proposal that
coordination of firing over longer time scales requires, at its root, the
integration of multiple assemblies organized by gamma oscillations1.

Further, groups of neurons that co-fire on a ~25ms timescale
(“gamma assemblies”) may be specifically important for episodic
memory formation related to the representation of context in the
mesial temporal lobe (MTL). Recent reports have highlighted slow
changes in theneuralpopulations representing time and space (“drift”)
over time scales of minutes to days6,13,14 and the coexistence of static
and drifting spatial codes in the hippocampus8. These findings, along
with computational modeling, indicate that assembly drift may reflect
flexible memory updating and, indeed, that flexibility of assembly

formation is required for the accurate representation of temporal
information15. Yet, evidence supporting the existence of gamma scale
assemblies in humans remains limited. Previous work, including both
cortical and MTL recordings, has identified neuronal firing sequences
related to both item16,17 and contextual18 information on the order of
hundreds of milliseconds17, seconds18, and minutes16 but not on the
fundamental gamma timescale proposed as the basic representational
unit1,19. Co-firing patterns on the scale of milliseconds have been
reported in the Rolandic cortex, though these were not linked to
behavior20.

Despite the importance of assembly formation on gamma time
scales to episodic processes, there exists no data fromMTL recordings
to support their existence or mnemonic relevance in humans, includ-
ing the mechanisms underlying their organization and the temporal
dynamics of their activity. To address thesekey questions,weutilized a
dataset of single-unit recordings in human epilepsy patients per-
forming an episodic memory task18. We employ established methods
to identify gamma timescale assemblies during episodic memory
processing5–7,21. We then relate the spatiotemporal characteristics of
human gamma scale assemblies, including drift in assembly activation
strength, tomemory behavior. Our findings reveal several new insights
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into the characteristics of these fundamental electrophysiological
components of mnemonic processing.

Results
Identification of mnemonic assemblies
Our study included 26 participants undergoing extraoperative seizure
mapping coupled with microelectrode recordings from the MTL.
Participants completed a total of 38 recording sessions. For each ses-
sion, patients performed the free recall task, a common assay of epi-
sodic memory in which participants study wordlists of non-repeating
nouns (“encoding”) and are asked to recall (“retrieval”) as many words
as possible from the immediately previous list without cues18 (Fig. 1A).
Included participants recalled an average of 21.4 ± 9.1% (mean ±
standard deviation) of the studied words (Fig. 1H). During task per-
formance, we obtained microelectrode recordings from mesial tem-
poral regions, including the hippocampus, entorhinal cortex,
amygdala, and parahippocampal gyrus (Fig. 1B–D and Supplementary
Fig. 1A). Based on extensive findings in rodent models1,3,5–7, we focused
our initial analysis on co-firing neurons occurring on a timescale of
25ms, implementing previously published methods21 using decom-
position of neuron-by-25 ms time firing rate matrices. This method
identifies assemblies as combinations of neurons whose spiking
activity is sufficiently correlated within the specified timescale to
conclude that the neurons are functionally codependent. Unlike other
approaches that group cells on the basis of increased activity in
response to the same stimulus10,12, this framework selects for self-
organizing patterns that persist across different items and context1,3.
To achieve this, we first binned spiking data from all encoding events

into 25ms non-overlapping time bins, calculating a normalized firing
rate for each neuron in each bin. With a combination of principal and
independent component analysis, we identified patterns of neural
activity stemming from the co-linearity of cell firing. The ultimate
result is a vector of assembly “weights” for each gammaassembly, with
a single value for each recorded neuron (Fig. 1F). These weight values
communicate the degree to which each neuron contributes to the
assembly and are used to determine the expression of the assembly
within each 25ms time bin (Fig. 1E and Supplementary Fig. 2).

Usingdata fromall encoding events across the recording sessions,
we isolated a total of 45 gamma timescale assemblies in 15 of the
recording sessions from 13 unique subjects (Supplementary Table 1,
Fig. 1F, and Supplementary Fig. 1K). This significantly exceeded the
count expected by chance, as determined by comparing the actual
count to a null distribution generated by shuffling the spike trains
before re-isolating co-firing patterns (p < 0.001 and 3.81 standard
deviations above the distribution mean, Fig. 1G and Supplementary
Fig. 1H). We only considered the 15 sessions with assemblies in all
future analyses. We posit that we did not identify assemblies in the
discarded sessions due to low single unit yield (Methods, Supple-
mentary Fig. 1J). From the 15 sessions with identified assemblies, we
isolated a total of 203 neurons for which we calculated common spike
quality metrics which closely match those in previous studies of the
human MTL18,22 (Methods, Supplementary Fig. 1B–G). The number of
simultaneously recorded neurons in these sessions ranged from 5 to
34, with an average of 13.5 cells.We defined assembly activation events
(Methods) as 25ms time bins during which assembly expression
(Fig. 1E) exceeded the 95th percentile of values observed across the
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Fig. 1 | Significant neuronal assembly identificationduring anepisodicmemory
task. A Schematic of the free recall task. Each displayed word the participant
studies represents an “encoding event.” B Unit yield for each brain region included
in the study. C Example denoised high-frequency signals from which we isolated
unit activity (top rows) and local field potentials (bottom rows) for each brain
region. Coloring follows the convention shown in (B). Numbers next to the region
indicate the numberofunits isolated fromeach regionand includeneurons fromall
sessions (n = 307), not only those from which assemblies were identified (n = 203).
D Example units from each of the high-frequency signals displayed in (C).
E Expression strength of two example assemblies superimposed on the pertinent
spike rasters for three example encoding events. Expression strength curves and

spike rasters are colored to link them with the assemblies in (F). F Schematics of
four example neuronal assemblies. The first two correspond to the data shown in
(E). Each colored data point represents a neuron from that recording session. The
further the data point from the circle’s center, the greater the contribution of that
neuron to the assembly, with member neurons falling outside of the dashed-line
circle. The color of each data point represents the region of the neuron, as outlined
in (B). G Comparison of the number of assemblies identified against a null dis-
tribution obtainedby shuffling the spike trains (permutation test,n = 1000 shuffles,
p =0.0009). H Average and individual recall fraction of recording sessions with
identified assemblies (n = 15). ***p <0.001. Source data are provided as a source
data file.
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entire recording session. We observed more frequent assembly acti-
vation events following the presentation of recalled memory items (t-
test, t(44) = 2.1, p =0.022, permutation test, p = 0.091, Supplementary
Fig. 3A–C, and S3E, Supplementary Fig. 4B). The degree to which
assembly activity predicted successful memory encoding was strongly
modulated by assembly complexity5, a metric of how many neurons
substantially contribute to assembly expression compared to how
many neurons are available to contribute (see methods, Spearman
rank correlation, r = 0.61, p < 0.001, permutation test, p < 0.001, Sup-
plementary Figs. 3D, F, G, 4C). Neither assemblies (3 of 45, p = 0.39,
binomial test) nor their constituent neurons (4/84 assembly member
neurons versus 7/119 non-member neurons, χ2 = 0.13, p = 0.71, chi-
square test) were significantlymodulated by the semantic information
of the words presented (Methods).

We applied these samemethods to detect assembly activation on
other time scales as well, reflecting organization at other gamma and
theta frequencies. This analysis identified a maximum in the number
and significance of assemblies at 25ms, supporting the inferences
drawn from rodent models that motivated our analysis focusing on
this timescale3. We note that, as observed in rodent models3, sig-
nificant co-firing also occurs at other time scales (Supplementary
Fig. 5), a point we address below in our Discussion.

Assemblies are comprised of consistent neuronal firing
sequences
To characterize the order of firing for assembly neurons within acti-
vation events, we adapted existing methods to relate consistent firing
sequences within an assembly to memory behavior23. First, for each
assembly, we isolated all spiking activity of member neurons (n = 84),
defined as neurons that increased their firing rate above baseline and
significantlymore than non-member neurons (Supplementary Fig. 1L),
across all activation events. We then defined a metric, match index
(MI), that communicates how consistently the observed spiking data
matches a possible template sequence based on ordered pairs of
spikes (Methods). We tested the observed data against all possible
orderings of the assemblymember neurons and selected the sequence
that maximized MI as the expected firing order (Methods, Fig. 2A–C

and Supplementary Fig. 6F–H). For example, the bottom two rows of
Fig. 2 display data from assemblies with three member neurons.
There are six orderings of a set of three cells. Within each activation
event, we generate a list of ordered pairs from the assembly member
neurons that fire. A firing sequence of member neuron 3-1-2, gener-
ated the ordered pair set of 3-1, 3-2, 1-2. We then calculated the
fraction of observed ordered pairs that match each of the possible
member neuron orderings to select the expected sequence. We
observed that assembly member firing during activation events
demonstrated significantly higher MI than chance (t-test, t(44) = 7.4,
p < 0.001, permutation testing, p < 0.001, Fig. 2D–F and Supple-
mentary Fig. 6I), indicating the emergence of consistent temporally
ordered sequences in gamma scale assemblies. Further, the MI of
assemblies positively correlated with the recall fraction observed
during the corresponding session (Spearman rank correlation,
r = 0.30, p = 0.042, permutation testing, p = 0.0020, Fig. 2G, H),
supporting the mnemonic relevance of firing order consistency. This
effect remained after controlling for assembly firing rate preferences
for successful encoding (Methods, partial Spearman rank correla-
tion, r = 0.30, p = 0.047) and average assembly expression strength
across the session (Methods, partial Spearman rank correlation,
r = 0.32, p = 0.033), indicating that assembly firing order carries
mnemonic information above assembly firing rate. We observed no
correlation between assembly member neuron firing order and
baseline firing rate (Spearman rank correlation, r = −0.03, p = 1.0,
Supplementary Fig. 6J).

Assembly firing sequences are organized by underlying gamma
oscillations
Motivated by the theoretical1,3,19 and observed24,25 importance of
gamma oscillations in organizing assemblies and spatial information
respectively, we next evaluated the influence of gamma oscillations
(40Hz) on organizing the neuronal spiking into assemblies. During
assembly activation events, we observed a peak in gamma oscillatory
power at 40Hz, along with a concomitant increase in power at 100Hz,
possibly reflecting ripple-like or multi-unit activity26–28, supporting the
presence of gamma oscillations during these events (Supplementary
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Fig. 2 | Consistent firing sequences during assembly activation predicts suc-
cessful memory and may result from member neurons locking to different
phases of the underlying gamma oscillation. A Schematics of three example
assemblies with member neurons colored according to the expected firing order
within activation events. B Cumulative distribution functions of spike times within
activation events for each assembly member neuron, colored according to the key
displayed in (A). C Spike rasters of assembly member neurons within five example
activation events demonstrating the expected firing sequence.DComparison ofMI
for eachof the three assemblies from (A) to a null distribution obtainedby shuffling
spike times within activation events (n = 1000 shuffles, p =0.0009). E Distribution

of z-scores obtained by comparing the actual MI to the null distribution for each
assembly (one-sample t-test, t(n = 45) = 7.454, p = 1.24e-6). F Comparison of the
average MI across assemblies to that of each shuffle (permutation test,
n = 1000 shuffles, p =0.0009). G Positive Spearman correlation between MI and
overall recall fraction (spearman rank correlation, n = 45, r =0.305, p =0.0419).
H Comparison of the observed MI-recall fraction correlation to a null distribution
obtained by shuffling spike times before re-calculating (permutation test,
n = 1000 shuffles, p =0.0020). *p <0.05. **p <0.01. ***p <0.001. Source data are
provided as a source data file.
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Fig. 6A). To explore the possibility of this peak in the spectrum relating
to ripples, we followed established methods26 to identify ripple-like
activity. Across recording sessions, we noted an average ripple fre-
quency of 0.29 ±0.12 Hz, comparable to the previous reports26.
Assembly activationswere 3.8 timesmore likely to occurwithin ripples
than without, significantly higher than chance (p = 0.005, shuffle test,
Supplementary Fig. 7D).

The 40 Hz gamma power change reflected a significant
increase from baseline (p < 0.05 after Bonferroni correction across
time, Fig. 3F). We assessed the influence of this oscillation on
assemblies by measuring the phase locking of member neurons
relative to this oscillation. Further, 75% of assembly member
neurons (63 of 84, binomial test, p < 0.001) showed significant
gamma phase locking (Rayleigh test, p < 0.05, Fig. 3A, B). Assembly
member neurons were both more frequently (χ2(1) = 5.25,
p = 0.022, Supplementary Fig. 5B) and strongly (z(305) = 1.74,
p = 0.041, Supplementary Fig. 6C–E) phase-locked to 40 Hz than
non-member neurons. Member neurons within the same assembly
tended to lock to different phases of the underlying oscillation,
with neurons firing later in the observed sequences (as defined by
the firing order, see above) spiking later within the gamma cycle
compared to neurons firing earlier in the observed sequences
(Fig. 3C and Supplementary Fig. 6K). This is illustrated in Fig. 3E,
which shows that the median phase difference between all pairs of
gamma phased-locked member neurons was non-uniform with a
positive (non-zero) phase offset (median phase difference = 47°,
Rayleigh test, z(29) = 4.7, p = 0.0082, Fig. 3D, E).

Assembly activation events are phase-locked to theta
oscillations
We tested the theta phase at which assembly activation events
occurred across the time series. For each assembly identified above,
we measured the phase at which assembly activation events occurred
relative to oscillations centered at 3, 5.5, and 8Hz, predicated on the
broad range of theta frequencies at which memory-relevant activity
has been observed in humans. We used a Rayleigh test to identify
significantly non-uniform phase distributions (p <0.05, FDR-cor-
rected), which revealed that 30 of 45 assemblies were significantly
phase-locked (p <0.001, binomial test).We thenmeasured the average
phase at which assemblies were found, using the theta frequency at

which maximum phase locking was observed (via the Rayleigh test
described above). We found assembly activation events occurred at
the trough of the theta oscillations, at all frequencies (Supplementary
Fig. 7B). These observations suggest that the timing at which an
assembly activates may be governed by theta oscillations, while the
order of spiking within an assembly is modulated by low-frequency
gamma oscillations.

The flexible adjustment of neuron contribution to assemblies
supports memory formation
Recent theoreticalworkposits thatflexible assembly participationmay
be critical for episodic representation, especially “drift” of assembly
activation over scales ofminutes to hours15. This idea is also supported
by experiments demonstrating dynamically changing neuronal codes
for place13 and time14 in the hippocampus. Building on these ideas, we
defined a metric, drift fraction (DF), that encapsulates the degree to
which member neurons drift out of, and non-member neurons drift
into, our observed assemblies. We calculated DF by looking for sig-
nificant correlations between activation event number across the
recording session and the firing rate of each neuron within those
activation events (Methods). For example, if an assembly member
neuron demonstrated a significantly decreasing firing rate across
activation events (over the approximately 30-min recording session,
top two rows of Fig. 4A), it was said to be drifting out of the assembly.
The higher the DF, the greater the turnover in assembly member
neurons (Fig. 4A, H and Supplementary Fig. 8A). We observed an
overall DF of 21% across assemblies, higher than that observed in
shuffle-generated null distributions (p <0.001, Fig. 4B and Supple-
mentary Fig. 8B). Interestingly, rather than these assembly alterations
disrupting memory activity, assemblies with higher drift fraction cor-
related with greater memory recall performance (Spearman rank cor-
relation, r =0.47,p =0.0011, permutation test,p <0.001, Fig. 4C,D). To
ensure this result did not stem from non-stationarity in our recordings
(Methods), we compared the stability of assembly member and non-
member neurons based on both spike waveform (z(305) = −0.06,
p =0.95) and firing rate (z(305) = 1.69, p =0.091), observing no differ-
ence. Critically, the assembly drift fraction did not correlate with the
proportion of non-stationary neurons recorded in the corresponding
session (r = −0.06, p = 0.69, Supplementary Fig. 8C–F). Further, using
sessions with sampling from both the anterior and posterior

Fig. 3 | Consistent firing sequences during assembly activationmay result from
member neurons locking to different phases of the underlying gamma
oscillation. A LFP (top), gamma frequency band activity (band-passed signal at
30–50 Hz, for display only), and spike raster for two example assemblymember
neurons demonstrating significant phase locking to the underlying gamma
oscillation at 40 Hz. B Circular histograms demonstrating the probability den-
sity within each of the displayed phase bins for two examples of 40 Hz phase-
locked assembly member neurons. Colors indicate that the neurons were iso-
lated from the same recordings as the signal samples displayed in (A). The dar-
kenedline isatanangleequaltothemedianphaseacrossall spikesandthelength
isequaltothemeanresultantvector length.CThreeexamplesoftherelationship
between firing order and preferred phase of spiking along the underlying 40 Hz
oscillation. Phase histograms for each gamma phase-locked assembly member
neuron for each assembly are superimposed. The median phase andmean

resultant vector length are displayed for each neuron as in (B). Neurons firing
later in the observed sequences (o2, o3) fire at gamma phases increasingly
advanced from the phase of the primary neuron (o1) in the sequence.DMedian
pairwise phase offset from all neuron pairs of each assembly displayed in (C).
Eachmedian pairwise phase offset is colored according to the corresponding
assembly from (C). E Demonstration of the non-uniformity of pairwise phase
offsets across assemblies. Themedianpairwise phase offset andmean resultant
vector length are displayed as in (B). F Significant gamma power occurs at the
timeof activationof gammatimescale assemblies. Blackdots above agiven time
point reflects significant increases in 40 Hz power at that time after Bonferroni
correction across time with an alpha of 0.05. The central line represents the
mean z-scored power across assemblies and the surrounding shaded region
represents the95%confidence interval. *p < 0.05. **p < 0.01. ***p < 0.001.Source
data are provided as a source data file.
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hippocampus, we observed clear differences in drift fraction along the
hippocampal longitudinal axis, with greater turnover in the posterior
hippocampus (anterior DF = 26%, posterior DF = 38%, t(20) = −2.4,
p =0.012, permutation tests following the shuffle of activation bin
order, p < 0.001, permutation test following the shuffle of region label,
p =0.0070, Fig. 4E–H).

Discussion
Neuronal assemblies have been extensively studied in rodents3,5–12 as a
critical functional unit of brain activity1,2. We identify such assemblies
and correlate their activity with human episodic memory behavior,
connecting assemblies with key aspects of human cognition. While we
observe the preeminence of the 25ms timescale among those we
tested, as expected1,3, we also identified significant assembly activity
occurring at other time scales (Supplementary Fig. 5). Further work is
needed to elucidate how different gamma timescale assemblies
interact with each other with longer lasting neuronal co-activity, such
as that defined by the period of a theta oscillation, the preferred
information types of different assembly time scales (contrasting spa-
tial and episodic information, for example)1,19, and how gamma-
timescale co-firing contributes to the organization of firing sequences
observed in the humanMTL occurring on the timescale of seconds to
minutes16–18. We demonstrate that 25ms assemblies reflect consistent
sequences of single-neuron activity occurring within gamma oscilla-
tions (Fig. 2). The majority of assembly member neurons demonstrate
gamma phase locking at 40Hz, but to different phases (Fig. 3E), pos-
sibly giving rise to the observed firing sequences (Fig. 3C). In addition
to the LFP power peak at 40Hz during assembly activation, we iden-
tified a peak in the spectra around 100Hz, possibly reflecting coin-
cident high gamma or ripple activity seen during multi-unit
activity26–28. While it is possible this peak relates to ripple-like activity,
ripples in human data are considerably rare compared to rodent data
and further dedicated work is needed to elucidate the recording
devices (e.g., Behnke-Fried versus Utah array), frequency band, and
prefiltering best suited to discern potential ripple from epileptic
activity or physiologic high-frequency oscillations. Further, the free

recall paradigm imposes limited behavioral structure on item retrieval,
which reduces our ability to observe ripple events as compared to
spatial navigation paradigms. Regardless, interestingly, both the
reliability of these sequences across task performance and the acti-
vation rate of assemblies positively correlates with successful mem-
ory (Fig. 2G and Supplementary Fig. 3C, D). Adopting the analogy
employed by Buzsáki in describing the importance of gamma
assemblies, our findings suggest that if assemblies can be thought of
as the words the brain uses to build neural sentences that represent
complex thought1, then both the volume (activation) and spelling
(activation order) of each individual word matters. Order of firing
within an assembly (“letters in a word”) may be subserved by the
phase-locking of assembly neurons (Fig. 3C). Gamma phase-locking
is known to organize place cell trajectories during sharp-wave ripple
events29 and the weight vector generated with our PCA/ICA assembly
provides a hypothesis regarding the strength of the synaptic con-
nections between neurons in the network30. However, we note that
co-activity within gamma oscillations is not equivalent to strength-
ened physical connections by increased spine density thought to
underlie assemblies31, though the former may induce the latter via
spike-timing-dependent plasticity4. Testing this in humans may be
facilitated by ex vivo recordings of human tissue or pathological
analysis of surgically resected tissue recorded in vivo32. We also
observed complementary evidence that theta oscillations affect the
timing of assembly activation (Supplementary Fig. 7), as compared to
gamma oscillations that modulate the timing of spiking within an
assembly. Our findings, therefore, connect human neuronal assem-
blies with important theoretical and empirical observations drawn
from rodent models of episodic processing33. Examining these
properties using paradigms that require ordered representations
(such as serial recall) can further clarify the distinct roles of these
mechanisms, analogous to place cell activity in rodent models of
episodic memory.

Further characterization of the temporal dynamics of assembly
formation can build on our findings related to assembly drift.
We found evidence for both stable and drifting assemblies
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from an example session superimposed. The exact neuron location is for illus-
trationonly. Bothmember (M) andnon-member (NM)neurons aredisplayed for
an example assembly and neurons demonstrating drift across activation events
(+d) are noted. The drift fraction is displayed above the schematic. Bottom, the
firing rate of four example neurons from the recording session across all
assembly activation events, showing examples of neurons that decrease (red)
and increase (blue) their contribution and that remain stable (gray) across the
session. For display purposes only, the firing rate curve is smoothed with a 10 s
window and normalized and set the value at time zero to 0. The anatomical
regionandcategoryofneuronscorrespondingtothedisplayeddatawereshown
tothe leftof theplots.BComparisonof theobserveddrift fraction(DF)acrossall
assemblies to a null distribution obtained by shuffling the activation bin order

for each neuron before re-classifying neurons (permutation test,
n = 1000 shuffles, p = 0.0009). C Positive Spearman’s rank correlation between
the drift fraction and percentage of words recalled across the experiment
(n = 45, r = 0.470, p = 0.0011).D Comparison of the observed DF-memory cor-
relation to a null distribution obtained by shuffling activation bin order within
each cell (permutation test, n = 1000 shuffles, p = 0.0009). E Pairwise compar-
isonofDFbetweentheAHandPHwiththeoverallDFforeachregiondisplayedas
the bar height and each line representing a single assembly (paired t-test, t(n =
21) = −2.432, p = 0.0123). F Comparison of the effect size of the observed pair-
wiseDFdifferencealong thehippocampal longitudinal axis toanulldistribution
generated by shuffling anatomical labels (permutation test, n = 1000 shuffles,
p = 0.007). G The same as (F) but with the null distribution created by shuffling
activation bins (permutation test, n = 1000 shuffles, p = 0.0009).H An example
of asymmetric drift between the AH and PH, following the same convention as
outlined in (A). However, AH and PH DFs are displayed separately above the
schematic. Source data are provided as a source data file.
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(Supplementary Fig. 6B). However, participants with drifting assem-
blies demonstrated superior memory performance. While further
work is needed to elucidate the mechanism and meaning of drift in
memory, our finding is consistent with recent suggestions that
dynamic assemblies may facilitate memory by allowing for flexible
updating of experiential detail15. It is possible that the drift we
observed, particularly in the posterior hippocampus, reflects our
ability to update details of experiential context, increasing our ability
to orthogonalize events within a broader experience, facilitating
memory. The coexistence of both drifting and non-drifting assemblies
is supported by theoretical15 and empirical8 work.Memory testing over
long time scales (several days) could begin to probe how these classes
of assemblies cooperate during human memory behavior. Interest-
ingly, our finding that drift occurs more frequently in the posterior,
compared to the anterior, hippocampus (Fig. 4E) offers a potential
connection between theories of hippocampal longitudinal specializa-
tion related to “gist” versus “detailed” representations34 and a pro-
posed role for assembly drift to support memory updating15. It is
possible that the anterior hippocampus maintains foundational fea-
tures of an experience while the posterior hippocampus updates the
immediately relevant representation as new events occur. This finding
may have eventual implications for diseases that demonstrate selec-
tive abnormalities along the anterior-posterior hippocampal axis, such
as post-traumatic stress disorder34.

Given the experimental paradigm we used to identify assemblies
(“single shot” encoding of non-repeated items), a natural question to
ask is: what type of information do these assemblies represent1?
Assembly activity occurs flexibly across the recording session, so they
arenot directly analogous toputative “engrams”17, the activity ofwhich
can decode individual and specific memory items. Comparison of
assemblies defined on gamma time scales and these broader repre-
sentations may be facilitated by paradigms with a mix of repeated and
non-repeated memory items. The assemblies we report exhibit clear
associations with memory performance, and they demonstrate simi-
larities to place cell and time cell population activity in terms of
assembly drift. We did not see evidence of the assemblies responding
to semantic information; however, future efforts utilizing experi-
mental paradigms35 suited to parse between semantic and temporal
information could better elucidate this distinction. Therefore, it is
possible that these assemblies represent the mnemonically relevant
contextual features of the overall experimental experience, much like
place and time cell ensembles, though we cannot exclude their
representation of item-level information. While additional experi-
mentation will be required to differentiate item and context repre-
sentations at the assembly level, the fact that morphological
(Supplementary Fig. 3D), anatomical (Fig. 4E), sequential (Fig. 2G), and
temporal (Fig. 4C) features of the assemblies are all implicated in
memory performance suggests assembly identification on gamma
time scales represents an effective way to understand MTL activity
during mnemonic representations.

The identification of mnemonically relevant human MTL assem-
blies harbors implications for neuromodulation strategies. Hampson
et al36. describe the useofmulti-input,multi-output state spacemodels
to provide a template for artificial recreation of spiking activity using
intracranial electrodes. Ourfindings establishprinciples for identifying
possible targets for neuromodulation using these approaches, as well
the favorable time scales for co-firing and updating/modifying
assemblies over the timescale of minutes to hours. Further, the time-
scale for assembly organization suggests an effective strategy for
neuromodulation of memory may include the union of micro-
stimulation using assembly organizational templates with macro-
stimulation designed to alter hippocampal gamma activity37. However,
the importance of assembly identification may extend beyond mne-
monic processing, including strategies for the amelioration of psy-
chiatric illness38.

Methods
Subjects and electrophysiology
We enrolled 26 human epilepsy patients who completed a total of 38
recording sessions for the study. We have previously described this
population, and this work follows the same procedures18. All partici-
pants consented to a protocol approved by the institutional review
boards at Thomas Jefferson University Hospital (TJUH) and the Uni-
versity of Texas Southwestern Medical Center (UTSW). Of the 26
human participants enrolled, 13, completing a total of 15 recording
sessions, had an adequate single unit yield to identify assemblies and
formed the focus of the study. Participants were implanted with
Behnke-Fried electrodes allowing for identification of both local field
potential (LFP) activity and single units, as previously described18.
Neuroradiologists confirmed anatomical locations after co-
registration of the pre-operative MRI with the post-operative CT18.
We used BrainNet Viewer39 to visualize electrode localizations.

Data preprocessing40 and spike sorting41 followed the same pro-
cess as our previous report18. We only considered neurons with a
baseline firing rate of at least 0.5 Hz. This resulted in a total of 307
neurons (hippocampus = 270, entorhinal cortex = 22, amygdala = 7,
and parahippocampal gyrus = 8) (Fig. 1B), 203 of which came from
sessions in which we isolated assemblies. We invariably isolated
assemblies in recording sessions from which we isolated at least 13
units. For each neuron, we calculated spike quality metrics including a
percentage of action potentials violating a 3ms inter-spike interval
(ISI), a ratio of the spike peak voltage to signal noise, number of units
isolated per channel, isolation distances of units extracted from the
same channel, average firing rate and burst index across recording18

(Supplementary Fig. 1B–G). Note that while we cannot exclude the
presence of multi-units in our recordings, our spike sorting algorithm
endeavors to isolate single units41 and we calculated the isolation dis-
tancebetween all neurons isolated on the samechannel, finding values
consistent with previously reported high-quality datasets22.

For LFP analyses, we low-passed the signal at 300Hz. We subse-
quently applied a notch filter at 60Hz and downsampled by a factor of
30 (UTSW) or 32 (TJUH) to an approximate sampling rate of 1000Hz.
For gamma phase and power analyses, we used Morlet wavelet (with
six cycles) convolution at 40Hz as its oscillation period matched our
selected assembly timescale (25ms)3 and we observed a peak in
gamma power at this frequency coincident with assembly activity
(Supplementary Fig. 6A). To remove the influence of spiking activity,
we excised each spike event andbridged the twosegments of datawith
linear interpolation.

While patients with hippocampal sclerosis commonly do not
require intracranial monitoring, it is possible microscopic changes
consistent with mesial temporal sclerosis may be present in some of
our patients. Of note, patients’ antiepileptic drugs are adjusted on the
basis of clinical necessity throughout themonitoringperiod, rendering
this influence on function impossible to assess.We did not include any
sessions with observable seizure activity or aura. Further, the clinical
team flagged excessively noisy channels18. These channels were dis-
carded. Channels exhibiting inter-ictal activity at any point during
implantation were also flagged. Though we did not exclude these
channels from analysis, we ensured our ability to identify assemblies
following their exclusion (Supplementary Fig. 1H).

Task
The task design is the same as in the previous work18. In brief, parti-
cipants studied up to 25wordlists comprised of 12 (UTSW)or 15 (TJUH)
monosyllabicnounson a laptop computer at thebedside.Word stimuli
were not repeated. Eachword remainedon screen for 1.6 s, followedby
a jittered inter-stimulus period of 0.8–1.2 s. Patients then completed
two-step arithmetic problems of the formA+B +C = ?, where A, B, and
C were single-digit integers, for at least 20 s. Finally, they verbally
recalled as many words as possible from the immediately preceding
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wordlist without receiving any cues. They had 30 (UTSW) or 45 (TJUH)
seconds for recall.

Assembly identification
We isolated assemblies using a framework21 previously utilized in
rodent studies5–7. For each recording session, we calculated the firing
rate of each neuron within non-overlapping time bins spanning the
experiment. We tested various time scales corresponding to the peri-
ods of previously investigated gamma and theta frequency bands. We
selected 25ms as it is both the theoretical1 and demonstrated3 (Sup-
plementary Fig. 5) optimal timescale of assembly organization. We
then normalized (z-scored) the binned firing rates for each neuron to
avoid biasing the result towards neurons with higher baseline firing
rates. After normalizing, we constructed a neuron-by-time bin matrix.
To isolate assemblies, we used all time bins falling within all encoding
events across the recording session.

Next, we performed principal component analysis (PCA) on the
normalizedfiring ratematrix, generating an eigenvalue associatedwith
each identified principal component. According to the
Marchenko–Pastur law, eigenvalues outside of the bounds:

1�
ffiffiffi
n
b

r� �2

, 1 +

ffiffiffi
n
b

r� �2" #
ð1Þ

where n = the number of neurons and b = the number of time bins,
stem from a correlation between the variables (neurons) within the
matrix exceeding that expected if the variables were independent.
Therefore, any isolated pattern whose associated eigenvalue exceeds
this upper bound is the result of significant neuronal co-firing. While it
is possible to define cell assemblies on the basis of PCA patterns,
previous work has demonstrated that stopping there leads to the
mixing of the true cell assemblies21. Therefore, following the afore-
mentioned PCA analysis, we performed an independent component
analysis. Todo so, wefirst projected thefiring ratematrixonto the PCA
patterns with eigenvalues exceeding the upper limit delineated by the
Marchenko–Pastur law:

Rp =P
T
coR ð2Þ

where Rp is the firing rate matrix projected onto the significant prin-
cipal components, PT

co is the transpose of the matrix with the coeffi-
cients for each neuron across all significant principal components, and
R is the original normalized firing ratematrix. This, in effect, forces the
ICA to return only as many assemblies as there were eigenvalues
exceeding the upper bound expected for independently firing neu-
rons. We utilized the MATLAB implementation of the fastICA
algorithm41 to solve for the unmixingmatrix,U, using Rp. We then used
the unmixing matrix to rotate the PCA-derived assemblies, given by
Pco:

W =PcoU ð3Þ

whereW is a neuron-by-assembly matrix with each column containing
the weight vector for the index assembly. The weight vector
communicates the degree to which each neuron contributes to each
assembly, with arbitrary scale and direction. We then transformed
each weight vector into a unit vector, setting the sign such that the
greatest assembly weight was positive as previously described5.

While each neuron contributes to each assembly to some degree,
we defined “assembly member neurons” as those with weight vector
values exceeding themeanby at least one standard deviation.We then
independently confirmed that this definition isolated neurons that
were both significantlymore active thanbaseline andmore active than
non-member neurons during activation events (Supplementary

Fig. 1L).We required an assembly have at least twomember neurons to
avoid assemblies dominated by a single recorded neuron.

We additionally calculated the complexity, referred to as sparsity
in the previous work5:

1�
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n
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n
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ð4Þ

where wi is the weight vector value of the ith neuron, and n is the
length of the weight vector (equal to the number of recorded neurons
in a given session). High complexity communicates that the assembly
has a high proportion of recorded neurons contributing to the
assembly.

Assembly activation
We calculated the “expression strength,” the degree to which an
assembly is active, with the following equation:

E bð Þ=R bð ÞTOiR bð Þ ð5Þ

where E(b) is the expression of assembly i in the time bin of interest, b,
R(b) is the firing rate matrix column corresponding to time bin b, and
Oi is the outer product of the weight vector of assembly i. For each
assembly, we calculated the expression strength within all time bins
across the recording. We defined assembly “activation events” as time
bins during which the expression strength exceeded the 95th per-
centile of all observed expression strengths for that assembly. Note
that activation does not refer to memory retrieval.

Assembly identification controls
The PCA/ICA assembly identification framework depends on the
assumption that amatrix storing the firing rates across time of a group
of independently firing neurons will not have an eigenvalue exceeding
the Marchenko–Pastur limits42. However, matrices storing values of a
parameter whose distribution is heavily skewed may result in eigen-
values that spuriously exceed these limits43,44. This is a theoretical risk
in firing rate data as they are classically Poisson distributed. However,
the risk of tempered by the size of the matrix used for PCA43. Further,
eigenvalues beyond the expected bounds in these cases result from
one or more instances of extreme values within the matrix. To reduce
the risk of extreme values, we limited our analysis to neurons with a
baseline firing rate of at least 0.5 Hz.

However, to confirm that the identified assemblies could not be
explained by statistical error, we implemented a shuffle control. For
this, we randomly shuffled the spike trains of all neurons before re-
isolating assemblies. We then compared the actual number of assem-
blies to this null distribution, noting that the observed count exceeded
the shuffle counts in every case (Fig. 1G).

We calculated a spatial distribution score to capture the degree to
which assemblies clustered spatially (Supplementary Fig. 1I). To do so,
for each assembly, we noted the channel, region, and hemisphere of
each assembly member neuron. We then took all pairs of assembly
member neurons. If the neuron pair shared the same channel, it
received a score of 1. If it shared the same location (for example, both
in the entorhinal cortex), it received a score of 2. If it shared the same
hemisphere, it received a score of 3. If the neurons were from different
hemispheres, it received a score of 4. We summed across all neuron
pairs to obtain a single distribution score for each assembly, with lower
scores representing more localized assemblies. We then randomly
selected neurons from the same recording session, irrespective of
assembly membership, to generate a null distribution of distribution
scores. If an assembly had four neurons, we randomly selected four
neurons for each iteration. We then compared the actual distribution
score to the null distribution, generating a z-score for each assembly.
We tested across assemblies against zero with a two-sided t-test to
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assess if observed assemblies were more localized or distributed than
expected by chance.

We additionally tested for spatial clustering separately for the
hemisphere, region, and channel. We did so by counting the instances
in which member neuron pairs had the same hemisphere, region, and
channel. We then counted the number of times each neuron pair from
all included recording sessions overlapped by hemisphere, region, and
channel. We then performed a chi-square test for each variable sepa-
rately to see if assembly membership modulated spatial overlap.
Results are found in the figure legend of Supplementary Fig. 1.

We assayed the degree to which assemblies and their constituent
neurons were modulated by semantic information by first performing
latent semantic analyses on all words included across sessions of the
experiment, following our previously established methods18. We cal-
culated the cosine similarity between eachword and a reference word,
“world”, to assign each stimulus a numerical score that represents its
meaning. We then evenly split the words into ten groups based on this
numerical score, with each word possessing more semantic similarity
within groups than across groups. To determine if an assembly
responded to semantic information, we performed a one-way ANOVA
with assembly expression strength during encoding events (the time
during which the word stimuli were displayed) as the dependent
variable and semantic group as the independent variable. To assay
each assembly member neuron’s responsiveness to semantic infor-
mation, we likewise performed a one-way ANOVA with neuron firing
rate as the dependent variable.

Intra-assembly neuronal sequences
To identify firing sequences within assembly activation events, we
adapted apairmatching frameworkpreviously employed in the rodent
place cell sequence replay literature23.We only used assemblymember
neurons for this analysis. In contrast to place cell replay where the
expected firing sequence is known (the sequence observed during
behavior), we did not have an expected firing sequence before
searching for sequence development. Therefore, for each assembly,
we generated a list of all possible orderings of neuron firing. For
example, if an assembly had only two member neurons, the sequence
set was simply [1-2, 2-1]. We then used each possible sequence as a
template, measuring how well the observed firing sequences matched
each template.

We looked within all activation events to compile a list of all
observed ordered pairs of assembly neuron firing. For example, an
assembly with three neurons which all fired in an activation event in
the observed order 2-1-3 generated the ordered pair set of [2-1, 2-3, 1-
3]. We calculated the fraction of ordered pairs that matched each
template sequence (defined as “matching index”, MI), selecting the
template sequence with the expected sequence for that assembly.
Rare instances of simultaneous assembly member spiking were not
considered.

Due to this procedure, theminimumMI for an identified expected
sequence was 0.5. Therefore, we performed permutation testing to
define the statistical significance of an observed MI. We did this by
repeating the aforementioned procedure 1000 times after shuffling
the spike times within activation events each time. We then compared
the actual MI to the null distribution of MI values to generate a z-score
as follows:

zMI = � norminv
sum MIs >MIr

� �
+ 1

length MIs
� �

+ 1

 !
ð6Þ

where MIs is the distribution of shuffled MI values and MIr is the MI
value obtained from unshuffled data. We used the equation within the
parenthesis to generate p values from shuffled data throughout the
manuscript. We compared the distribution of z-scores, one for each
assembly, to zero with a one-sided t-test (Fig. 2E). We also compared

the average MI across assemblies to the distribution of those seen in
this null distribution (Fig. 2F).

We calculated the Spearman rank correlation between assembly
MI values and the recall fraction from the corresponding session, the
ratio of words recalled to words studied across experimentation. We
compared the observed correlation coefficient to the distribution of
coefficients obtained following the shuffling of the spike times within
activation events, as described above. As a further control, we calcu-
lated a partial Spearman rank correlation between assembly MI values
and the recall fraction, using each assembly’s rate-coded subsequent
memory effect (see below) and session-wide average expression
strength, markers of assembly activity during successful encoding
events and across the session, respectively, as the controlling variable.

Assembly activation-triggered gamma power
We extracted the power at each of 75 linearly spaced frequencies
ranging from 2 to 150Hz for the 500ms (−250 to +250ms) sur-
rounding each activation event, utilizing Morlet wavelets. After
extracting raw power, we log-transformed and z-scored the values to
allow for averaging across channels. For each assembly, we extracted z-
scored power for each channel, recording at least one assembly neu-
ron. We then averaged across channels and activation events to yield a
single z-scored power time series for each assembly. We then per-
formed a t-test across assemblies, comparing the averaged z-scored
power across assemblies to zero (session-wide baseline power) for all
time-frequency points. This procedure at 40Hz generated the plot
seen in Fig. 3, where we Bonferroni-corrected across time to identify
significant deviations from baseline. To identify which frequencies
weremaximally coincident with assembly activity, we transformed the
p value at each time-frequency point obtained by the t-test and nor-
malized the power values observed in the 100ms surrounding
assembly activation (−50 to +50ms) by the average power values
observed at each frequency in the 400ms surrounding this epoch
(−250 to +250ms). This procedure identified two peaks in baseline-
normalized assembly activation-triggered power: 40 and 100Hz
(Supplementary Fig. 6A). We selected the former for further analysis
due to its theoretical role in organizing 25ms assemblies1,3.

Gamma phase-locking neurons
As we identified co-firing activity on the timescale of 25ms, the period
of a 40Hz gamma oscillation, and noted a peak in the assembly
activation-triggered power at 40Hz (Supplementary Fig. 6A), we used
Morlet wavelets at 40Hz to extract gamma phase and power. Pre-
processing of the LFP is described above. We extracted the gamma
phase at each spike time for each assembly member neuron. Then, for
eachneuron,we tested the phase distributions for non-uniformitywith
a Rayleigh test.We called amember neuron gammaphase-locked if the
p value from the Rayleigh test was below 0.05. We tested for an above
chance proportion of gamma phase-locked neurons with a one-sided
binomial test with a chance rate of 0.05.

Next, for each assembly, we identified all member neurons that
demonstrated gamma phase locking. Then, for each neuron, we cal-
culated themedian phase of all spike phases observed duringmemory
behavior. We then calculated the median pairwise phase difference
between all member neurons for each assembly. We calculated the
pairwise phase difference in such a way that positive differences
communicated that neurons later in the expected firing sequencefired
at a later phase. We tested the distribution of median pairwise phase
differences for non-uniformity with a Rayleigh test (Fig. 3E).

We compared both the proportion and strength of gamma phase
locking between assemblymember and non-member populations. We
compared the proportion of gamma phase locking neurons between
groups with a chi-square test. We compared the strength of phase
locking by assessing for a difference in the Rayleigh Z distributions of
the two groups with a rank-sum test. Additionally, we controlled for
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differences in firing rate between the two groups by first testing for a
difference in baseline firing rate between them with a rank-sum test.
Next, we randomly downsampled the phases contributing to the
Rayleigh test for each neuron, such that all assembly members and
non-members had numbers of contributing spikes. We then took the
median of all obtained Rayleigh Z values for both groups and com-
pared them. We repeated this process 200 times and assessed for a
deviation in groupwise differencewith a one-sample t-test against zero
(Supplementary Fig. 6D).

Theta phase-locking assemblies
Just as we tested for gamma phase locking of neurons, we tested for
theta phase locking of the assembly activations. For each channel in
each recording session, we extracted the theta phase at 3, 5.5, and 8Hz
during each assembly activation. We calculated phase locking using
the Rayleigh test at each phase and channel, and then FDR-corrected
across phase and channel (Q = 0.05). If a given assembly had at least
one channel at one frequency that survived correction, we said that
assembly demonstrated significant phase locking. We used a binomial
test to determine if the proportion of assemblies that demonstrated
phase locking significantly exceeded the chance.

Next, we compiled the mean phases of all assemblies demon-
strating significant phase locking at 3, 5.5, and 8Hz (23, 26, and 25,
respectively). We then tested for non-uniformity of the distribution of
mean phases with a Rayleigh test. These results are displayed in Sup-
plementary Fig. 7.

Ripple analysis
We followed established methods for the identification of ripple
acitivity26. In short, we band passed the raw EEG from 80–120Hz and
then used a Hilbert transform to extract power within that band. We
identified segments of the signal where (1) the ripple band power
exceeded 2 standard deviations above the mean across the recording,
(2) power exceeded this threshold for at least 25ms, and (3) the
maximal power exceeded3 standarddeviations above themeanacross
the recording. We assigned each ripple a start and an end time. To
minimize the risk of misinterpreting pathologic activity as ripple
activity, we first applied an automated artifact rejection algorithm
previously used in the context of ripple identification in humans26. We
first z-transformed the EEG time series and the first derivative of the
EEG signal.Wemarked all times atwhich the z-score of the signal or the
first derivative exceeds 5.We removed 100msbefore and after all such
time points.

Following the identification of ripples, we calculated two metrics
to determine the significance of their association with assembly acti-
vations. We calculated the % of assembly activations occurring during
ripple activity (coincidence) and the ratio of the rate of assembly
activations occurring within compared to outside of ripples (relative
risk, RR). To assay significance, we randomly circularly shuffled the
ripple times across the experiment and recalculated these metrics
200 times.

Rate-coded subsequent memory effect
We calculated the activation rate during each encoding event by
counting the number of activation events and dividing by the dura-
tion of the encoding event, 1.6 s. We then assessed for a subsequent
memory effect (SME) for each assembly by comparing the activation
rates during successful encoding events (SE) to those observed
during unsuccessful encoding events (UE) with a one-sided rank-sum
test. This generated a z-score communicating the degree to which
assemblies increased their firing rate during SE compared to UE
events. We tested for an effect at the assembly level with a one-sided
t-test against zero. We additionally performed a Spearman rank
correlation between the SME z-scores and the complexity scores for
each assembly.

We controlled the observed SME effect and SME-complexity
correlation by re-calculating SME z-scores 1000 times and shuffling the
event labels each time. The shuffle procedure preserved the number of
SE and UE events within the experiment but randomly reassigned the
encoding events to each group.

Assembly drift
Wedefined ametric, drift fraction (DF), to capture the degree towhich
the neurons contributing to assembly activation changed across
recordings. For each assembly, we extracted the z-scored firing rates
for all recorded neurons during each assembly activation event. We
performed Spearman rank correlations between the z-scored firing
rate and activation bin number for each neuron. Members with sig-
nificant correlations (p < 0.05) and negative correlation coefficients
were said to be “drifting out” of the assembly. Non-member neurons
with significant positive correlations (p <0.05, r > 0) were said to be
drifting into the assembly. We defined the DF as the number of neu-
rons drifting in and out of the assembly divided by the total number of
neurons recorded.

We calculated the overall drift fraction by summing the numera-
tors and denominators from all individual assembly DF calculations.
We compared this value to a shuffle-generated null distribution to
ameliorate the concern of bias in our correlation procedure. We gen-
erated this distribution by randomly shuffling the activation bin order
before re-calculating the z-scored firing rate-activation bin correlation
for each neuron (Fig. 4B). We next calculated the Spearman rank cor-
relation between assembly DF and recall fraction. We compared the
actual value to the distribution of correlation coefficients obtained by
randomly shuffling the activation bins before repeating the procedure.

We investigated the possible influence of recording drift on our
assembly identification and drift analysis. For this, we performed an
augmented Dickey–Fuller test on spike waveform18 and firing rate data
for each assembly member and non-member neuron. For the spike
waveform analysis, we first averaged the first 5 percent of all spikes
observed during the experiment. We then calculated the Euclidian
distance between this average waveform to all spikes observed
throughout the remainder of the experiment. We used the vector of
distance values for the augmented Dickey–Fuller test. For the firing
rate analysis, we binned the spiking activity across the experiment into
100 equal duration time bins, calculating the firing rate for each bin.
We then used this vector of firing rate values for the statistical pro-
cedure. We used bothmetrics to compare the stationarity of assembly
member and non-member neurons with a rank-sum test. Further, we
correlated the fraction of units in a session potentially non-stationary
by firing rate criteria with the observed drift fractions of assemblies
isolated from the corresponding sessions.

Longitudinal differences in assembly drift
Following previous observation that the posterior hippocampus (PH)
is more detail-oriented than the anterior hippocampus34 (AH) and that
drift may reflect memory updating15, we compared the DF observed
within the AH and PH. We did this by identifying all assemblies with
sampling from both the AH and PH (n = 21 of 45). We then calculated
the DF for the AH and PH separately. Next, we performed a paired one-
sided t-test (Fig. 4E). We controlled this result by generating two
shuffled-derived null distributions. For the first (Fig. 4F), with each
session, we randomly shuffled the anatomical labels of neurons before
re-calculating the AH and PH drift fractions. For the second (Fig. 4G),
we randomly shuffled the activation event order for each assembly
before re-calculating AH and PH drift fractions.

Statistical testing
Unless otherwise specified, we used the Anderson–Darling test to
assess for normality before using parametric tests. Otherwise, we used
nonparametric statistics. We used an alpha of 0.05 unless otherwise
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noted. All other relevant statistical information can be found located
under the appropriate heading.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper.

Code availability
The EEG Toolbox, a suite of MATLAB functions, is available at https://
memory.psych.upenn.edu/Software. The custom code used for this
paper is available upon request to the corresponding author (B.L).
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