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ABSTRACT: A combined approach that uses the vibrational
configuration interaction (VCI) and semiclassical instanton theory
was developed to study vibrational tunneling spectra of molecules
with multiple wells in full dimensionality. The method can be
applied to calculate low-lying vibrational states in the systems with
an arbitrary number of minima, which are not necessarily equal in
energy or shape. It was tested on a two-dimensional double-well
model system and on malonaldehyde, and the calculations
reproduced the exact quantum mechanical (QM) results with
high accuracy. The method was subsequently applied to calculate
the vibrational spectrum of the asymmetrically deuterated
malonaldehyde with nondegenerate vibrational frequencies in the
two wells. The spectrum is obtained at a cost of single-well VCI calculations used to calculate the local energies. The interactions
between states of different wells are computed semiclassically using the instanton theory at a comparatively negligible computational
cost. The method is particularly suited to systems in which the wells are separated by large potential barriers and tunneling splittings
are small, for example, in some water clusters, when the exact QM methods come at a prohibitive computational cost.

1. INTRODUCTION

Physical systems with multiple energetically stable minima are
ubiquitous in chemistry and physics.1 Bound states that are
localized in such wells, separated by potential barriers, interact
via quantum tunneling, which results in observable shifts of their
energies.2,3 For equivalent, symmetry-related wells, the states
that would be degenerate in the absence of tunneling produce a
splitting pattern of energy levels.
Molecules and molecular complexes with two or more

equivalent stable configurations are multidimensional systems
that display these effects in their vibrational spectrum. The
inversion of ammonia,4 proton tunneling in malonaldehyde,5

double proton transfer in porphycene,6 or bond rotation in the
vinyl radical7 are examples of symmetric double-well systems
that produce measurable tunneling splittings (TSs) of their
vibrational state energies. Water clusters are prototype multiwell
systems that exhibit nontrivial splitting patterns caused by
tunneling rearrangements between many stable configurations
of the cluster.8

The asymmetric systems, which have nonequivalent wells,
have been less studied. When the state energies of different wells
are in resonance, the tunneling dynamics will again cause the
delocalization of the wavefunction across the wells and the
energy shifts in the spectrum.3 Away from the resonance, the
states remain localized in one well. The asymmetry can be
induced in symmetric molecular systems by asymmetric isotopic

substitutions.9 The normal modes and vibrational frequencies in
equivalent symmetry-related potential wells then differ, and the
correspondence of the vibrational wavefunctions of different
wells is not preserved in general. As an example, the
malonaldehyde molecule deuterated at the D7/D9 position
(see Figure 4) thus has an asymmetric level structure with the
localized states and those that are delocalized across the two
minima.9 A mixing angle between the left−right ground
vibrational states of partially deuterated (PD) malonaldehyde
has been determined experimentally.10 Further examples of the
mixing have been studied in the HF−DF dimer11 and PD vinyl
radical,12 CHD−CH, using full-dimensional exact calculations.
The bifurcation splitting patterns in PD water trimers HDO-
(H2O)2 and D2O(H2O)2 have been determined in experi-
ments13 and by us using the instanton theory.14

The asymmetry in molecules can also be found in some
tautomers. In this case, the potential energy surface (PES) does
not possess a symmetry relating the wells and their shapes, and
the minimum energies are different. A possible candidate
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belonging to this class is 2-hydroxy-1-naphthaldehyde, shown in
Figure 1. The hydroxyl proton forms a hydrogen bond with the
oxygen atom of the carbonyl group and can tunnel to it to form a
tautomer, which is a local minimum.

Thiomalonaldeyde has two nearly degenerate minima in the
form of enol and enethiol tautomers, shown in Figure 2. Enethiol

is about 70 cm−1 more stable,15 with the barrier height to
interconversion slightly lower than in the malonaldehyde. This
implies that the TS is similar in magnitude to the energy
asymmetry of the wells and the states in different wells that lie
below the barrier are expected to interact. Interestingly, it has
been suggested15 that the replacement of hydrogen, shared by
the hydrogen bonds OH−S and SH−O, by deuterium reverses
the stability order of tautomers due to the zero-point energy
effect.
The asymmetry can also be caused by the environment.

Molecules in rare gas matrices can have energy asymmetry
between the wells comparable to their TS in isolation.
Delocalization of the tunneling hydrogen was observed16 in 9-
hydroxyphenalone embedded in a neon matrix. Molecules in
crystals in the vicinity of a suitable guest molecule can also have
comparable energies of the splitting and energy asymmetry of
the wells.17

Quantum tunneling has also been observed in macroscopic
systems. Tunneling of Bose−Einstein condensates,18 electron
spin tunneling in the nanomagnetic molecules,19 or tunneling of
the magnetic flux in superconducting circuits based on
Josephson junctions20 are some recent examples. In a collective
macroscopic variable, these processes can be described by a
double well with externally controllable parameters that can
induce asymmetry between the wells.
Calculation of the TS in moderately large molecules is

prohibitively costly. Exact variational methods for determining
the bound states of molecules scale exponentially with the basis
set size, while large basis sets are often required.21 Basis
functions need to span over two or more wells sufficiently
densely to obtain enough resolution to extract the splittings from
the difference of the energies in their spectrum. The asymmetry
of the wells also suggests that the symmetry cannot be used to
reduce the size of the problem. Full-dimensional studies of
malonaldehyde using multiconfigurational time-dependent
Hartree22,23 (MCTDH) and variational calculations on the
HF dimer21 or H2O dimer24 represent the state-of-the-art

calculations of the vibrational levels using formally exact
methods.
A direct calculation of the TS in larger systems can be

performed using a recently developed path integral molecular
dynamics method25 based on the potential sampling around the
minimum action paths (MAPs) connecting different wells. The
multiwell splitting patterns of the water trimer and hexamer26

were obtained in this way using a matrix model of Hamiltonian
in the basis of local vibrational states. The tunneling matrix
(TM) elements are extracted from the zero-temperature limit of
the partition function, which means that the method only works
for the vibrational ground state in symmetric well systems.
Alternatively, the TM elements can be estimated using

semiclassical methods. From that class, the instanton method,
which comes in several forms,27−30 has some particularly
appealing features. It can be applied in Cartesian coordi-
nates29,31 to any molecule without modification. Numerically, it
relies on the optimization of the MAP that connects the
symmetry-related minima32 and requires the potential and
Hessians of the potential along the MAP to evaluate the
splittings. It thus relies on a modest number of potential and
gradient evaluations33 in comparison with the exact quantum
mechanical (QM) methods. This allows one to perform
calculations in full dimensionality or in combination with on-
the-fly evaluation of the electronic potential. Additionally, its
accuracy is higher for large barriers and small splittings. Precisely
in this regime, the exact variational methods become inefficient
and resource-intensive.
The first derivation of the multidimensional instanton theory

was accomplished by means of Jacobi fields integration (JFI).30

The JFI method has been used to determine TSs for a range of
symmetric double-well systems, such as malonaldehyde,30,32,33

the vinyl radical,34 and the formic acid dimer.35 The instanton
method was later rederived in the ring polymer form (RPI),29

which could treat asymmetric potentials along MAPs and
multiple wells. The RPI was used to calculate and interpret
experimental ground-state splitting patterns of water clusters in
terms of their rearrangement dynamics8 for the dimer,29,36,37

trimer,29,38 hexamer,39 and octamer.40 We recently generalized
the JFI method31 to treat the multiwell systems and used it to
explain the ground-state splitting pattern of 320 states in the
water pentamer in terms of five dominant rearrangement
pathways.41 The extension of the method to low-lying
vibrational states42 is based on the work of Mil’nikov and
Nakamura43 and forms the groundwork of calculating the TM
elements between local vibrational states of different wells in the
present study below.
Weakly biased double-well systems have been considered in

previous studies by several authors. Analytical results in one
dimension have been obtained using the semiclassical Wentzel−
Kramers−Brillouin (WKB) and instanton methods. Garg has
demonstrated44 that the instanton method and the WKB
method with the Herring formula45 give equivalent results for
the TS in symmetric systems. Cesi et al.46 considered a one-
dimensional (1D) double-well with the shape asymmetry and no
energy asymmetry using instantons and obtained an expression
for the ground-state TS. An approximate solution for a 1D
double well with a weak bias was also obtained by Mugnai and
Ranfagni,47 using instantons based on the MAP that does not
fully connect the minima of the two wells. Leggett et al. obtained
a solution48 by adding a parabolic correction potential to remove
the asymmetry between the wells, the contribution of which was
then subsequently subtracted from the action integral. Dekker49

Figure 1. Tunneling tautomers of 2-hydroxy-1-naphthaldehyde.

Figure 2. Tunneling tautomers of thiomalonaldehyde.
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derived the ground-state TS from the quantization condition via
asymptotic matching of the semiclassical wavefunction in the
barrier to the parabolic cylinder wavefunctions of harmonic
oscillators in the two wells. Song50,51 extended Dekker’s
method49 (as Halataie and Leggett52 have performed
independently) to obtain the TS in vibrationally excited states
of asymmetric 1D potentials with an arbitrarily large shape and
energy asymmetry. Song also showed51 that the instanton
wavefunctions with the Herring formula in a 2 × 2 matrix model
give equivalent results to those obtained using Dekker’s
method.49

In multidimensional systems, tunneling can be assisted or
supressed by the excitation of transversal vibrational modes.43,53

In the presence of asymmetry, the excited states of one well can
be in a resonance with the states of another well with a different
set of local quantum numbers, which results in a delocalization
of the wavefunction across these wells.51 Benderskii et al.
devised a multidimensional perturbative instanton method54 in
which they treat the asymmetry of the potential in an analytic
two-dimensional (2D) model as a correction of first order in ℏ,
the same as that for energy. In this way, the MAP remains
symmetric, and the asymmetry is moved to the transport
equation along with energy. They also show that the equivalent
expressions for the TS are obtained using the instanton
quantization condition of Dekker49 and using the instanton or
WKB wavefunctions with the Herring formula45 in one
dimension. The method was applied to calculate TSs in excited
vibrational states of malonaldehyde55 with the asymmetric
isotopic substitutions using a fit of model potential parameters
to quantum-chemical data. The extensions of the RPI and JFI
methods to the ground-states of the asymmetric systems with a
weak bias have recently been derived and applied to PD
malonaldehyde9 and the water trimer,14 respectively.
The object of this paper is to propose a method for calculating

the vibrational tunneling spectrum of multiwell systems of mid-
sized molecules that are outside the reach of the exact quantum
methods. For this purpose, we extend the usual 2 × 2 matrix
model to the ∑mNm × ∑mNm model, which represents the
molecular Hamiltonian in the basis of all Nm local vibrational
states of each well m. We rederive a generalized Herring
formula45,54 in order to calculate the off-diagonal TM elements
that represent the interaction of local vibrational states of
different wells. The semiclassical wavefunctions at the dividing
plane, in the barrier that separates the wells, are obtained using
the recently generalized JFI method.31,43 The JFI wavefunctions
are thus used to calculate the couplings between states that have
different energies and normal-mode excitations for the first time.
The diagonal energies of the local vibrational states can be
calculated using any accurate quantum method with a basis set
that spans only one well. Vibrational configuration interac-
tion56−58 (VCI) is used in this work. The effect of rotations is
neglected.
The method, presented in Section 2, allows one to study the

vibrational structure in asymmetric systems with multiple wells,
separated by large potential barriers, in an approximate manner.
The accuracy of the method is tested on a 2D double-well model
in Section 3.1. In Section 3.2, it is applied to the (symmetric)
malonaldehyde molecule, which tests the accuracy of the matrix
model using a combination of VCI and JFI matrix elements on a
realistic PES, in vibrationally excited states, against the exact
MCTDH calculations. The vibrational tunneling spectrum of
PD malonaldehyde is calculated in Section 3.3, which features

the mixing of inequivalent well states due to tunneling. The
paper concludes in Section 4.

2. TUNNELING MATRIX
Without the loss of generality, we start by considering a system
with two minima separated by a large potential barrier. The
minima, denoted as “left” (L) and “right” (R), are not necessarily
symmetric either in shape or energy. For low-energy spectra, the
vibrational Hamiltonian can be represented in the basis of states
that are localized in the wells, {ϕi

(L),ϕj
(R)}, as

i

k
jjjjjj

y

{
zzzzzz

H h

h H

(L)

T (R) (1)

Square blocks H(L/R) are formed using basis functions of the
same minimum and are not necessarily of equal size. Their off-
diagonal elements describe the interaction between different
basis functions localized in the same minimum and can be made
small by a suitable choice of the basis. In the instanton theory of
TSs, the usual presumption is that the local vibrational
wavefunctions are harmonic oscillator states. In that case, the
off-diagonal terms describe anharmonic contributions that
originate from the difference between the actual potential and
the harmonic potential.
In our approach here, we replace the harmonic surface of each

well by an n-mode representation59,60 of the well potential and
calculate local eigenfunctions and eigenvalues using the
vibrational self-consistent field (VSCF) and VCI methods.56−58

The technical details of the calculations are described in Section
2 of the Supporting Information. Using the more accurate local
wavefunctions as a basis reduces the magnitude of the off-
diagonal matrix elements in H(L/R), which we then neglect. The
matrices H(L/R) become diagonal, and the diagonal matrix
elements are referred to as the local vibrational energies of the
left/right (L/R) well. For symmetric wells, the local energies are
doubly degenerate.
The block h in matrix (1) contains the TM elements that

describe the interaction of local wavefunctions of the left and
right minima. The exact quantal calculation of these elements
requires a large basis set that can accurately represent the form of
the wavefunction inside the barrier. Instead, we obtain them by
means of the Herring formula45 in combination with the
semiclassical wavefunctions from the instanton theory.42,43

Since the only effect of matrix (1) is to mix local wavefunctions
of different minima via tunneling, we refer to it as the TM.29

We now derive the Herring formula without the usual
assumptions of the two-state model and the L/R symmetry.
Rather, we consider the Schrödinger equation with Hamiltonian
(or tunneling) matrix (1), from which it follows that

ϕ ϕ ϕ

ϕ ϕ ϕ

̂ = +

̂ = +

H E h

H E h

i i i ik k

j j j kj k

(L) (L) (L) (R)

(R) (R) (R) (L)
(2)

where Ei
(L/R) are the local vibrational energies and the

summation over repeated index k is assumed. We proceed in
mass-scaled Cartesian coordinates and define a dividing plane
inside the barrier via the implicit equation f D(x) = 0, which
separates the left minimum from the right minimum. Equation 2
are multiplied by ϕj

(R) and ϕi
(L), respectively, subtracted, and

integrated over the left part of the domain (i.e., over the space on
the “left” side of the dividing plane). The local wavefunctions
ϕi
(L/R), either harmonic or VCI, have been obtained as
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eigenfunctions of a Hermitian matrix and are therefore taken to
be orthonormal. For a sufficiently high barrier, the wave-
functions ϕi

(L/R) can be considered small in the R/L domain,
respectively. We thus neglect the integrals involving the like
products ϕi

(R)ϕi
(R) in the L volume and extend the integrals

involving ϕi
(L)ϕj

(L) over the entire domain to produce δij. The
integrals involving the mixed products ϕi

(L)ϕj
(R) have also been

neglected. The error introduced by the neglect of these terms
outside the resonance, that is, for Ei

(L) ≠ Ej
(R), is analyzed in the

Appendix. The TM element is then expressed as

∫

∫

∫

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ δ

= ̂ − ̂

= ∇ − ∇

= ∂
∂

− ∂
∂

i
k
jjj

y
{
zzz

h H H

S S
f d

x

x

x x

( )d

1
2

( )d

1
2

( ( ))

ij i j j i

j i i j

j i i j

L

(L) (R) (R) (L)

L

(R) (L) (L) (R)

(R) (L) (L) (R)
D (3)

where we exploited the use of mass-scaled Cartesian coordinates
and, in the last step, used the divergence theorem to turn the
spatial integration into the integral over the dividing plane. S in
eq 3 denotes the coordinate that describes an orthogonal shift
from the dividing plane.
Local wavefunctions, which we designed to calculate the local

vibrational energies on the diagonal of matrix (1), are
constructed using the VSCF/VCI on an approximate PES (see
Section 2 in the Supporting Information), and their accuracy
drops inside the barrier that separates the wells. In order to
evaluate the surface integral in the Herring formula, eq 3, inside
the barrier, we employ the JFI wavefunctions instead, which we
recently derived in ref 42. These are based on the WKB method
in which the energy is treated as a term of order ℏ1 and is moved
to the transport equation, leaving the Hamilton−Jacobi
equation energy independent. It was shown that this approach
gives equivalent results to the standard WKB method in one
dimension.44 Moreover, the ground-state TS obtained from the
Herring formula using the ground-state JFI wavefunctions42 is
identical to the standard instanton result derived from the
steepest descent approximation of the partition function in the
path integral formulation.31

The characteristic of the Hamilton−Jacobi equation that
connects the minimum of a well to a point in the configuration
space obeys the equation42

τ
= ∇Vx

d
d

2

2 (4)

and represents a classical trajectory x(τ) on the inverted PES,
parameterized by the “imaginary” time τ. In order to represent
the quantities in the neighborhood of the characteristic, N local
coordinates (S, Δx) are defined,42,43 where S is the mass-scaled
arc length distance from the minimum along the characteristic
and Δx is the orthogonal shift from the nearest point on the
characteristic. The classical momentum is defined as

τ
= = −p

S
V V

d
d

2( )0
(L/R)

min
(L/R)

(5)

and S can be used, instead of τ, to reparameterize the
characteristic. Local wavefunctions in the harmonic vicinity of
the characteristic are obtained by integrating the Hamilton−
Jacobi and transport equations on the characteristic42 as

ϕ
π

ω
ν

=
− !!

× + Δ

×

ν

ν

ν − ∫ ′ ′

− ∫
−

′
′− Δ Δ

′

′

F

A

U x

det (2 )
(2 1)

( ) e

e

N

p S S

p S
S

A A
x A x

(L/R) 0
(L/R)

e
(L/R)

(L/R) (L/R)T ( )d

1
2

Tr( )

( )
d 1

2

S

S

4

0 0
(L/R)

0

(L/R)
0
(L/R)

0
(L/R)

T (L/R)

(6)

For vibrationally excited states, label ν in eq 6 represents the
number of quanta in the excited vibrational mode of frequency
ωe. Matrices A(L/R) are Gaussian widths of the wavefunction in
the directions orthogonal to the characteristic and are obtained
from

= −p
S

SA H A
d

d
( ) ( )0

(L/R) (L/R) (L/R) 2
(7)

H(S) in eq 7 is the Hessian of the potential at S, which is used to
approximate the potential up to quadratic terms in the
neighborhood of the characteristic. The initial condition for
eq 7 at the minimum is A0

(L/R) = (H0
(L/R))1/2, where H0

(L/R) is the
Hessian at the L/R minimum. For vibrationally excited states,
the prefactor in the parentheses in eq 6 contains terms F(S) and
U(S), which are defined via equations

ω

ω

=

= −

p
S

F F

p
S

U U A U

d
d
d

d

0
(L/R) (L/R)

e
(L/R) (L/R)

0
(L/R) (L/R)

e
(L/R) (L/R) (L/R) (L/R)

(8)

F(L/R) terms account for the change in the amplitude of the
excited-state wavefunction along the characteristic, while the
U(L/R) term describes the nodal plane. The initial condition for
F(L/R) is found bymatching the instanton wavefunction to that of
the harmonic oscillator at a small distance S = ε from the
minimum as F(L/R) (ε) = U0

(L/R),T(x(ε) − xmin
(L/R)). The U0

(L/R) is
the excited-state normal mode, that is, the eigenvector of H0
having frequency ωe, and serves as the initial condition for U in
eq 8.
The local instanton wavefunctions, eq 6, for the left and right

minima are next inserted into the Herring formula given in eq 3
without the previous assumption42 thatϕ(L) and ϕ(R), each, refer
to the excitation of the same normal mode and the same number
of quanta ν. For this purpose, a connection point x(Scp) is
chosen on the dividing surface f D(x) inside the barrier, and
characteristics are determined, which connect it to the minima
on both sides of the dividing surface. The shape of the
characteristic between two points in the configuration space is
determined by minimizing the Jacobi action.32 The surface
integral in eq 3 can then be computed analytically.42

This approach yields the best results if the connection point is
chosen so that both wavefunctions are near their maxima in the
dividing plane at the connection point. This can be obtained by
the minimization of the sum of action integrals

∫ ∫′ ′ + ′ ′p S S p S S( )d ( )d
S S

0 0
(L)

0 0
(R)cp

(L)
cp
(R)

. For minima of the same

energy, this procedure yields theMAP that connects the minima
and any point on that path is a suitable candidate for the
connection point. The dividing surface can then be chosen as the
plane orthogonal to the MAP at the connection point. If the
minima do not have the same energies but differ by the amount
d, this procedure is equivalent to determining the MAP on the
modified PES Ṽ(x) = V(x) − Θ(S − Scp)d, where Scp is the
position of the connection point on the characteristic and Θ is
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the Heaviside step function. In this case, the position of the
connection point has to be given a priori, and the resulting path
will depend on its position. The safest choice is to pick the
connection point in the middle of theMAP, which is expected to
be near the maximum of the potential energy barrier. For
minima at different energies, the resulting MAP is going to have
a tangent dicontinuity at the connection point as p0

(L) ≠ p0
(R) at

Scp. The tangent direction at the connection point is then
defined as the average tangent of its L and R limits at Scp. Again,
the dividing plane is taken to be orthogonal to the MAP, and the
surface integral in eq 3 is solved analytically. The TM element
then becomes

π

δ δ

ω ω
ν ν

= −
′ ′

′ ̅

+
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×
− !! ′ − !!

×

ν ν
ν ν

ν ν
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0
(L)

0
(R)
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1, 1,

e
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2
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0
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0
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with all quantities in the brackets evaluated at S = Scp. In eq 9, Stot

is the total length of theMAP, ̅ = +

⊥
A A A

2

(L) (R)

, and the symbol⊥

means that the tangent direction to the MAP was explicitly
projected out. The det′ in eq 9 denotes the product of all non-
zero eigenvalues. Matrices A0 have zero eigenvalues associated
with the overal translations and rotations, while A̅ has an
additional zero eigenvalue associated with the tangent to the
MAP. For energy-equivalent minima, the tangent vector is an
eigenvector of A̅with zero eigenvalue, and the explicit projection
to the orthogonal space is not needed. The TM element in eq 9
is valid for ν, ν′ = 0−1. For ν > 1 and multiple excitations in
different modes, the TM element can still be evaluated using the
Herring formula and wavefunctions of form (6) using analytical
integrals, but we have only implemented it numerically, without
trying to write down the explicit form. We also remark here that
the wavefunction in eq 6 for the multiply excited normal modes,
ν > 1, does not correspond to the harmonic oscillator
wavefunction near the minimum as the prefactor in eq 6 is not
a Hermite polynomial. We further note that the TM element,
(9), is not invariant with respect to the position of the
connection point Scp unless the two local states are in resonance,
as shown in the Appendix.

3. NUMERICAL TESTS
Numerical tests were carried out on a model 2D PES and on the
malonaldehyde molecule with some atoms substituted with
heavier isotopes. MAPs that connect the minima were
determined using the string method.32,33 The criterion for
convergence was chosen to be the largest component of the
gradient of Jacobi action perpendicular to the path and was set to
be 10−6 au. The number of beads used to discretize the string
was 301 for model potential, which is much larger than necessary
for convergence but was used to ensure that all results obtained
using different parameters of the potential are sufficiently
converged. For the potential with minima at different energies,
the dividing plane was set to pass through the central bead and

perpendicular to the MAP. In the case of malonaldehyde, the
number of beads was 201, and the minima were oriented toward
the first neighboring bead in each step of the optimization to
minimize the root-mean-square distance between their geo-
metries.32 After optimization, Hessians of the potential were
determined at each bead on the MAP. Translations and
rotations were explicitly projected out from Hessians.31

Geometries along the path inmass-scaled Cartesian coordinates,
potential, and Hessian matrix elements were parameterized by
the arc length S along the MAP and interpolated using natural
cubic splines. Matrices A(L/R) in eq 7 were propagated using the
previously described approach,42 with the initial “jump” at
ε = 0.1 au for model potential and ε = 0.25 au for
malonaldehyde. The fourth order Runge−Kutta method was
used for integration of eq 7. Matrices A(L/R) (S) were saved at
each bead, and their matrix elements were interpolated using
natural cubic splines, as implemented for the Hessians above.
The interpolant was then used to propagate F(L/R) and U(L/R) in
eq 8 from minima up to the dividing plane.
The particular implementation of the VSCF/VCI method

that is employed in our calculation here is described in Section 2
of the Supporting Information. We determined the 1-mode and
2-mode terms of the PES and neglected the terms beyond. In
each normal mode, the potential was evaluated at Gauss−
Hermite discrete variable representation (DVR) points, which
correspond to the zeroes of Hermite polynomials. We used eight
DVR points for the 2D model potential and 11 DVR points for
malonaldehyde. This approach utilizes the natural lengthscales
of the harmonic oscillators in each normal mode, which gives a
balanced description of the potential at different minima. The 1-
mode terms were then fitted to the eighth-order polynomials
using linear regression. For 2-mode terms, the potential was
computed on a rectangular grid of DVR points determined
above, and a fit was performed analogously. For each 1-mode
potential, a quick QM calculation was performed using sine
DVR basis with 100 basis functions. The difference in the lowest
two energies from that calculation was used as a frequency for
the harmonic oscillator basis set, which was used to solve the
VSCF equations. This approach provides a better basis for
determining the 1-mode potentials that quickly deviate from the
harmonic curve, reducing the number of basis functions needed
to describe the 1-mode functions in the VSCF. The basis sets of
7 and 16 harmonic oscillator functions in each normal mode in
the 2D model potential and malonaldehyde, respectively, were
needed to converge the energies (to less than 1 cm−1 for the
VSCF ground state). The existence of a plateau over which the
energies of interest do not change appreciably with the basis set
size, in comparison with the size of the TM elements, indicates
that the approximate separability is possible, which is a necessary
condition for the applicability of the proposed combined
approach. A larger basis should not be used as functions
corresponding to larger energies start to penetrate into
unphysical parts of the fitted potential, which can cause the
appearance of intruder states and worse energies. After VSCF
calculation, the computed 1-mode functions were used for
VCISD calculation, where the highest excitation in each mode
was limited to six in both the 2D model system and
malonaldehyde.

3.1. 2DModel Potential. The 2Dmodel potential with two
minima, which we use in our test calculations below, is defined
by the following equations
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where x are not mass-scaled. Minima are located at x(L/R).
Coefficients γ1 and γ2 are chosen so that in the vicinity of the left
minimum, the potential is approximately harmonic and equals
V≈V(L), while in the vicinity of the rightminimum, the potential
is approximately harmonic and shifted in energy by d, that is,
V ≈ V(R) + d. α1,L/R and α2,L/R are eigenvalues of the Hessian,
whileU0

(L/R) are normal modes. Parameter θ denotes the angle of
inclination of the normal mode to the x axis. The mass of the
system was taken to be m = 3.5 in both dimensions so that the

harmonic frequencies are given by ω α= m/1/2
(L/R)

1/2,L/R .

The above form of the potential can be used to independently
vary harmonic frequencies ω1/2

(R), by changing parameters α1/2,R,
or the shift d without affecting the other parameters of either the
left minimum or the right minimum. In this paper, the
parameters of the left minimum were α1,L = 1.6 and α2,L = 4.0.
The parameters of the right minimum were the same as the
parameters of the left, for the symmetric case with d = 0. To
obtain the asymmetric potentials below, one of the three
parameters was varied, with α1,R going from 1.6 to 36, parameter
α2,R going from 4 to 49 and d going from 0 to 1.1. Positions of the
minima were set with β = 2.0 and angle θ = π/12. This angle
corresponds to approximately equal contributions of F(L/R) and
U(L/R) in the TM elements.42 Figure 3 shows themodel potential
for a selection of parameters α1,R, α2,R, and d.
Frequency ω1 is the lower frequency, and the MAP enters the

minima along the corresponding normal mode. Consequently,
ω1 does not contribute toward the zero-point energy in the plane
orthogonal to the MAP. The effective barrier for the tunneling
motion from the ground state in the left minimum, corrected by
the zero-point motion contribution, can be defined as

λ ω ω= + − −V V
1
2

( )eff
(L)

max
(L)

1
(L)

2
(L)

(11)

Vmax in eq 11 is the maximum of the potential V(Smax) along the
MAP. λ(L) is the non-zero eigenvalue of the A⊥ = PAP matrix,
where P projects out the tangent direction to the MAP at
S = Smax. The effective barrier can be defined for other states
similarly. Figure 5 (in the second column panels) shows that for
the symmetric case,ω1

(R) =ω1
(L), the JFI theory provides accurate

TSs in the ground state, and in the second excited state, which
corresponds to the excitation of the transversal frequency ω2. In

the first excited state, the JFI theory slightly overestimates the
TS. In that state, the effective barrier is much smaller and equals
Veff = 0.545, in contrast with the barriers of 1.221 and 0.976 for
the ground and second excited states, respectively. This
overestimation is a known property of the instanton method.42

In the symmetric case, the only contribution to the splitting
comes from the off-diagonal matrix elements so that the
harmonic and VCI energies yield the same results. However, it
can be observed (from the first column panels in Figure 5) that
the harmonic vibrational energies overestimate the exact QM
energies by 3−5%.
As the frequency ω1

(R) is increased and the difference in the
local L/R energies begins to contribute to the overall splitting,
the TSs computed using harmonic energies quickly begin to
deviate from the QM values due to the neglect of
anharmonicities, which no longer cancel out. When the
difference in the lower frequency, ω1

(R) − ω1
(L), is only 0.02,

which corresponds to the asymmetry (Δω1/ω1
(L)) of 3%, the

Figure 3. PES of the 2D model given by eq 10. Top left panel
corresponds to the symmetric potential, top right toω1

(R) >ω1
(L), bottom

left to ω2
(R) > ω2

(L), and bottom right to d > 0, with other parameters set
equal to the symmetric case.

Figure 4. Annotated equilibrium geometry of malonaldehyde and
schematic representation of four lowest-frequency normal modes.
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error in the TS of the ground state is 24%, whereas it is 90% for
the transversal mode (ω2) excitation. A larger error in the
excited state reflects the fact that the local excited-state
wavefunction penetrates deeper into the barrier, where
anharmonicity is larger. However, the VCI energies correctly
account for the anharmonicity and provide an excellent

agreement, as can be observed in Figure 5, both in the absolute
energies (first column panels in Figure 5) and in the TSs (second
column panels).
With a further increase in the frequency ω1

(R), different local
vibrational states of the left and right minima enter into
resonance, and vibrational energies exhibit avoided crossings, as

Figure 5.Dependence of vibrational energies of the lowest six states in the double-well potential given by eq 10 onω1
(R). Circles represent QM values,

blue lines are obtained using the instanton method with harmonic energies, and red lines are obtained using a combined VCI/instanton approach.
Frames I−III in the top panel are shown magnified in the left column panels below, and the dependence of the associated TSs on ω1

(R) is shown in the
right column panels below.
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shown in frames IV−VI of the top panel in Figure 5. Harmonic
energies do not provide accurate positions of these avoided
crossings, as seen in Figure 5, due to errors in the local energies.
In the case of the avoided crossing between the higher-frequency
ω2

(L)-excited state of the left minimum and theω1
(R)-excited state

of the right minimum, as shown in frame IV of the top panel in
Figure 5, the error in the position of the avoided crossing (in
ω1

(R) − ω1
(L)) using harmonic energies is 16% (and falls outside

frame IV in Figure 5). VCI energies, as shown magnified in
Figure 6 together with the exact QM energies, provide a
significantly more accurate position with the error of only 0.4%.
The small discrepancy can be attributed to the fact that as
frequency ω1

(R) is increased, the local wavefunction in the right
minimum penetrates deeper into the barrier. In this region, the
approximate n-mode representation of the potential used in the
VCI calculations begins to deviate from the actual potential,
which introduces an error in the local energies.
The TS in the avoided crossing is reproduced with great

accuracy, shown as the minima in the lower panel in Figure 6,
with the error of 5%. Errors in the positions of other avoided
crossings (IV−VI in Figure 5), namely, between the ground
state of the right minimum and the ω1

(L)- and ω2
(L)-excited states

in the left minimum (frames V and VI in Figure 5, respectively)
become larger even using VCI energies. The local wavefunction
of the right minimum has a larger energy and penetrates deeper
into the region where the n-mode representation of the potential
becomes unreliable. Nevertheless, the TSs in the avoided
crossings are again reproduced accurately, which indicates that
the JFI method can indeed give reliable TM elements between
different vibrational states of L/R minima and, in combination
with the VCI energies, is a useful tool for computing vibrational
tunneling spectra. Similar results were observed with the
frequency ω2

(R) varied (shown in Figures S3 and S4 in the
Supporting Information).

Figure 7 shows the dependence of energy levels on the
variation in the depth d of the right minimum. Overall, the
introduction of the energy asymmetry between the wells results
in a similar energy level pattern to that observed above. A
notable difference is that in this case, the TSs obtained using
harmonic energies are much closer to the exact QM values. This
is an artefact of the construction of the PES, in which the
frequencies in the left and right minima are the same. As a result,
the shapes of the local potentials in both minima are similar, and
a large part of the error introduced by the anharmonic terms
cancels out. However, in realistic applications, it is unlikely that
systems with minima of different energies have the same L/R
frequencies. The error in the position of the avoided crossing IV
is also much smaller for the harmonic energies (≈2%), while it is
further reduced using VCI energies (0.7%), as shown in Figure 8.
The error in the TS in the avoided crossing is 12%, which is
comparable to the error in the case of the frequency variation, as
shown in Figure 6.

3.2. Malonaldehyde. We next employ our combined
approach to study the symmetric, homoisotopic malonaldehyde
on the PES developed by Wang et al.61 The molecule is shown
labeled in the top panel in Figure 4. It has two equivalent wells
with hydrogen 6 attached to either oxygen 1 or 5. We study
below the effect of adding additional states in the TM. For this
purpose, vibrational energies are computed either from a 2 × 2
matrix involving corresponding states in the two wells, an 8 × 8
matrix involving four local states at both sides of the barrier, or a
16 × 16 matrix model. Thereby, we again calculate the local
single-well states using the VSCF/VCI, while the TM matrix
elements are computed using the recently developed JFI
method.42

Malonaldehyde has been extensively studied in the past62 and
presents a benchmark system for the development of quantum
dynamical methods. Most recent calculations on the same PES

Figure 6. Dependence of vibrational energies and TSs in the 2D model potential given by eq 10 on the frequency ω1
(R) in the region of the avoided

crossing between the first (ω1
(R)-) excited state in the right minimum and the second (ω2

(L)-) excited state in the left minimum, shown in frame IV in the
top panel of Figure 5. Circles represent QM values, while red lines represent values obtained using a combined VCI/instanton approach.
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using exact quantum methods were obtained using MCTDH by
Hammer and Manthe23 and Schröder and Meyer22 and show a
good level of agreement with experimental results.63 We use the
results of ref 23 for comparison as they report TSs for a number
of vibrationally excited states having a large transition dipole
moment and are believed to be more accurate.22

Local harmonic and VSCF/VCI energies, calculated in a 2-
mode representation of the single-well potential, as described in
Section 2 of the Supporting Information, for the lowest 8
vibrational states, that we consider below, are shown in Table 1.
The ground state is labeled GS, while the excited states are
labeled by the frequencies νi of the excited normal modes,

Figure 7.Dependence of vibrational energies of the lowest six states in the double-well potential given by eq 10 on the energy shift d of the right well.
Circles represent QM values, blue lines are obtained using the instanton method with harmonic energies, and red lines are obtained using a combined
VCI/instanton approach. Frames I−III in the top panel are shownmagnified in the left column panels below, and the dependence of the associated TSs
on d is shown in the right column panels below.
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numbered in the order of increasing frequency in the subscript
and separated by a “+” sign for multiple excitations. A noticeable
shift can be observed between all harmonic and VCI energies in
Table 1 due to anharmonicity, but the order in energies remains

unchanged. The lowest four normal modes that can get excited
in the lowest eight local vibrational states and that play a role in
our calculations below are depicted in Figure 4. Higher
vibrational states become more densely spaced in energy and
start to mix vibrational modes at minima. Our approach relies on
being able to uniquely define the excited normal modes at
minima for each local vibrational state considered because the
instanton wavefunctions that are used to calculate the TM
elements that connect these states tend to harmonic oscillator
eigenstates at minima. Moreover, a higher density of states at
higher energies would require the inclusion of many additional
states in the TM, which are not known as precisely as for the low-
lying states and would thus degrade the accuracy. We limit
ourselves, therefore, to the lowest eight local states in the studies
of tunneling spectra of malonaldehyde below.
The TM elements in the hmatrix that connect the two sets of

local states in the L and R wells are calculated using the JFI
method and listed in Table 2. Both minima of malonaldehyde
belong to the Cs symmetry group, and its local vibrational states
can be classified according to the irreducible representation of

Figure 8.Dependence of vibrational energies and TSs in the 2Dmodel potential given by eq 10 on the energy shift d of the right well in the region of the
avoided crossing between the first (ω1

(R)-) excited state in the right minimum and the second (ω2
(L)-) excited state in the left minimum, shown in frame

IV in the top panel of Figure 7. Circles represent QM values, blue lines are obtained using the instanton method with harmonic energies, and red lines
represent values obtained using a combined VCI/instanton approach.

Table 1. Harmonic and VCI Energies in Inverse Centimeters
(cm−1) of the First Eight Local Vibrational States of
Malonaldehyde Labeled by the Excited Normal Mode
Frequenciesa

state harmonic VCI

GS 14,950.11 (0.00) 14,682.46 (0.00)
ν1 15,218.68 (268.57) 15,012.65 (330.19)
ν2 15,245.53 (295.42) 15,042.51 (360.05)
ν3 15,333.29 (383.17) 15,133.95 (451.49)
ν1 + ν1 15,487.25 (537.14) 15,262.05 (579.59)
ν4 15,472.20 (522.08) 15,281.89 (599.43)
ν2 + ν2 15,540.95 (590.83) 15,318.85 (636.40)
ν1 + ν2 15,514.10 (563.99) 15,336.16 (653.70)

aEnergies relative to the local ground state are given in parentheses.

Table 2. TM Elements Connecting the First Eight Local Vibrational States of Different Minima in Malonaldehyde in Inverse
Centimeters (cm−1)

GS(R) ν1
(R) ν2

(R) ν3
(R) (ν1 + ν1)

(R) ν4
(R) (ν2 + ν2)

(R) (ν1 + ν2)
(R)

GS(L) −12.30 0.00 −21.94 0.00 −4.98 −4.62 −25.53 0.00
ν1
(L) 0.00 −6.70 0.00 6.85 0.00 0.00 0.00 −11.95
ν2
(L) −21.94 0.00 −44.20 0.00 −8.87 −7.54 −55.97 0.00
ν3
(L) 0.00 6.86 0.00 8.53 0.00 0.00 0.00 12.22
(ν1 + ν1)

(L) −4.98 0.00 −8.88 0.00 −4.84 −1.87 −9.14 0.00
ν4
(L) −4.61 0.00 −7.53 0.00 −1.87 7.82 −8.14 0.00
(ν2 + ν2)

(L) −25.53 0.00 −55.97 0.00 −9.14 −8.15 −75.86 0.00
(ν1 + ν2)

(L) 0.00 −11.95 0.00 12.22 0.00 0.00 0.00 −21.31
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the excited normal mode νi at the minimum. The Cs symmetry is
preserved along the MAP so that the TM elements that connect
normal modes of different symmetries vanish exactly, as seen in
Table 2.
In a 2 × 2 matrix model, only the diagonal elements of the h

matrix are used, and the degenerate vibrational states of L/R
wells are split into doublets. Equivalent results are obtained
using the first-order perturbation theory for degenerate states,
yielding the TS ofΔi = 2hii. Energies of the GS and the first three
excited states obtained in this manner already show a good
agreement with the MCTDH results of ref 23, as can be seen in
Table 3 (from the second column and the last column). The

vibrational states are numbered in the order of increasing energy
in Table 3. The wavefunction content, obtained from the
eigenvectors of the TM, is listed in Table 4 and can be used to
identify states in Table 3 in terms of the excited normal modes.
The TSs for the GS and the singly excited modes ν1−4 in the

2 × 2 TM model are obtained as Δ(GS) = 24.60 cm−1,
Δ(ν1) = 13.40 cm−1, Δ(ν2) = 88.40 cm−1, Δ(ν3) = 17.06 cm−1,
and Δ(ν4) = 15.64 cm−1. The MCTDH results23 for the TSs in
the same states are Δ(GS) = 23.5 cm−1, Δ(ν1) = 6.7 cm−1,
Δ(ν2) = 69.9 cm−1, Δ(ν3) = 16.3 cm−1, and Δ(ν4) = 18.8 cm−1.
Differences in TSs, apart from the ν1- and ν2-excited modes, are
well within the estimated error of the MCTDH calculations,
which validates the accuracy of our approach. The ν2 mode
corresponds to the longitudinal mode as it lies parallel to the
MAP at minima. The excitation of this mode effectively lowers
the barrier of the tunneling motion, and the instanton theory is
known to overestimate TSs in the shallow tunneling regime.29,42

The wavefunction also penetrates deeper into the barrier where
the anharmonic effects are larger, and the VCI energies degrade
as a result. Thus, the accuracy in absolute energies in Table 3 is
also expected to be affected for these states. The large increase in
the TS for the excitation of the longitudinal mode is, however,
expected,42 as confirmed by our results. The TS for the ν1 mode
is overestimated by a factor of two. This is most likely due to the
anharmonicity along this normal mode, indicated by the large

difference between the harmonic (268.57 cm−1) and VCI
(330.19 cm−1) energies. Since the TS for the pair of states is
significantly suppressed compared to the GS, the frequency and
energy in its direction change substantially along the MAP.
Therefore, if the anharmonicity also changes significantly, it
could cause the observed discrepancy. As an aside, we also note
here that the other TSs computed using MCTDH in ref 23,
which do not result in the mixture of normal modes at minima,
are Δ(ν5) = 21.1 cm−1, Δ(ν7) = 33.3 cm−1, Δ(ν8) = 14.6 cm−1,
and Δ(ν11) = 19.5 cm−1 and are in good agreement with the
values we obtained using the JFI theory as Δ(ν5) = 24.4 cm−1,
Δ(ν7) = 39.5 cm−1,Δ(ν8) = 15.6 cm−1, andΔ(ν11) = 22.1 cm−1.
We next consider the TM using four local states in each well.

This takes into account interactions between the doublets

Table 3. Vibrational Energy Levels of Malonaldehyde in
Inverse Centimeters (cm−1) Obtained Using a Combined
VCI/Instanton Approacha

no. E(pairs) E(4) E(8) E(MCTDH)

1 14,670.15 14,668.69 14,667.08 14,671.3
2 14,694.76 14,693.54 14,692.76 14,694.8
3 14,998.31 14,999.77 14,987.74 14,941.5
4 15,005.95 15,005.60 15,005.09 15,008.2
5 15,019.35 15,018.91 15,018.54 15,014.9
6 15,086.70 15,087.92 15,077.14 15,005.4
7 15,125.42 15,125.86 15,125.14 15,108.3
8 15,142.47 15,142.82 15,142.04 15,124.6
9 15,243.00 15,249.04
10 15,257.21 15,263.41
11 15,266.89 15,266.12
12 15,274.07 15,273.84 15,249.6
13 15,289.71 15,291.11 15,268.4
14 15,314.85 15,316.14
15 15,357.47 15,358.55
16 15,394.71 15,407.27

aE(pairs), E(4), and E(8) are energies obtained from the 2 × 2, 8 × 8, and
16 × 16 matrix models, respectively, as explained in the text. E(MCTDH)

are MCTDH energies from ref 23.

Table 4. Dominant Configurations of Vibrational States of
Malonaldehyde, Obtained as the Eigenvectors of the TM in
the 2 × 2 (Pairs) and 16 × 16 (Eight-State) Models, as
Described in the Text
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considered above, whereby only the states of the same symmetry
interact. If the states of the same symmetry are well-separated
with respect to the size of their TM element, the shift in energy
can also be computed using the second-order perturbation
theory. When four local states are taken into account in the 8× 8
TM model, slight shifts are observed in the GS and ν2-doublets
in Figure 9 (left-side spectrum). The absolute energies change
by 1.22−1.46 cm−1, while the perturbation theory gives the shift
of 1.34 cm−1. However, the change in the TS is negligible.
In the 16 × 16 TM model, consisting of eight local states in

each well, a strong interaction with the doubly excited (ν2 + ν2)
mode causes a significant shift in the energies of the GS and the
ν2-excited doublets as well as their splittings. The TSs change
from 24.85 to 25.68 cm−1 and from 88.15 to 89.4 cm−1, which
can clearly be observed in Figure 9 (right-side spectrum). A
particularly strong mixing also occurs between the doubly
excited (ν2 + ν2) mode and the doubly excited (ν1 + ν1) mode,
for which the lower levels in the doublets are very close in energy
(14.21 cm−1), and they interact strongly (h = 9.14 cm−1 in Table
2). The mixing results in visible changes in the dominant
coefficients of TM eigenvectors in Table 4 and leads to
observable energy shifts. Furthermore, the singly excited ν4
mode interacts and mixes with the doubly excited (ν1 + ν1)
mode, which results in the change of its TS from 15.64 to
17.27 cm−1, which is in closer agreement with the MCTDH
value of 18.8 cm−1. Finally, we remark that the TS of the doubly
excited (ν1 + ν2) state amounts to 42.62 cm−1, which is in good
agreement with 49.5 cm−1 obtained by Schröder and Meyer.22

The above results clearly show that the interactions of
different vibrational states can have a non-negligible effect, both
on the absolute values of the vibrational energies and on the
values of the TSs. This effect is especially pronounced if two or
more states of the same symmetry are close in energy and if the
TM elements that connect them are large. This scenario is
expected to play a significant role in the higher vibrationally
excited states, where the density of states becomes larger and the
interactions increase due to the presence of multiple excitations.
3.3. PD Malonaldehyde. In the previous subsection, we

have learned what accuracy one might expect in the calculation

of the tunneling spectra of malonaldehyde through comparison
with the exact QM results. We now consider the PD
malonaldehyde, where hydrogen in position 7/9 is substituted
by deuterium (see Figure 4) and the system is no longer
symmetric. Since deuterium is not placed in equivalent positions
in the two minima, their local vibrational frequencies and
energies are no longer equal, even though the PES remains
unchanged. The particular choice of deuteration was chosen for
our study because the mixing angle in its GS was determined
experimentally by Baughcum et al.10 and the TS by Jahr et al.9

using the RPI method. Furthermore, the size of the relative
energy shifts between the left and right minima is comparable to
the size of the TM elements, which makes the system interesting
in that both the VCI energies and the instanton TMelements are
expected to make a significant contribution to the TSs in this
system.
In the PD malonaldehyde, the isotopic substitution causes a

significant lowering of the zero-point energy, given in Table 5,
from 14,682.45 to 13,978.19 cm−1 for the D7 minimum and to
14,013.04 cm−1 for the D9 minimum. Additionally, the
excitation energies for the first seven excited states decrease as
well, by up to 40 cm−1. As a result, the vibrational states are more
closely spaced, see Figure 10, and larger interstate L/R mixings
are expected.
The normal modes in PD malonaldehyde are qualitatively

similar to the homoisotopic malonaldehyde, depicted in Figure
4. The ordering of local single-well states, labeled by the excited
normal mode at the minimum, is also preserved upon
deuteration, with the exception of the |(ν1 + ν2)

(D9)⟩ and
|(ν2 + ν2)

(D9)|⟩ states, which exchange order. The TM elements,
shown in Table 6, are remarkably similar to the homoisotopic
malonaldehyde, which indicates that the wavefunctions in the
barrier region are not significantly affected by the asymmetry.
The error estimates due to the variation of the position of the
dividing plane are shown in parentheses in Table 6 and are
discussed in more detail in the Appendix.
We again consider pairwise interactions of the corresponding

states in a 2 × 2 TM model. This is possible since the normal
modes at both minima can approximately be mapped to one

Figure 9.Vibrational tunneling spectrum of the lowest 8 (left panel) and 16 (right panel) states of malonaldehyde. Green and blue lines represent VCI
energies of local wavefunctions in the D7 and D9 minima, respectively. Dashed red lines are obtained using a 2 × 2 TM model. Black lines in the left
panel represent energies from an 8 × 8 TM model, and in the right panel, they represent energies from a 16 × 16 model. See the text for details.
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another using a symmetry operation. The pairs of states are no
longer degenerate in this case, and the first-order perturbation
theory cannot be used to estimate the TSs. Instead, the TS,
obtained from the eigenvalues of the TM, is seen to be equal to
the local energy difference corrected by the second-order
perturbative terms

Δ = − +

≈ | − | +
| − |

E E h

E E
h

E E

( ) 4

2

i i i ii

i i
ii

i i

(D7) (D9) 2 2

(D7) (D9)
2

(D7) (D9)
(12)

where, in the last line of eq 12, we assumed that the TM element
|hii| ≪ |Ei

(D7) − Ei
(D9)|. This assumption is certainly violated if

there are other local states that are energetically close and
coupled by the TM elements that are comparable in size.
The TM element for the GS is determined to be 12.32 cm−1

using the JFI method, which is in excellent agreement with the
12.4 cm−1 obtained by Jahr et al.9 using the RPI. The mixing
angle for the GS was estimated experimentally by Baughcum et
al.10 to be ϕ = 41° from the dipole moment measurements. The
dipole moment of the D7/D9 isomer was modeled as a
superposition of the dipole moments of D7 and D9 minima.
These were, in turn, approximated by the dipole moments of
D6D7D8 and D6D8D9 isomers, taken as two separate species,
with the tunneling assumed to be suppressed. Reference 9
estimates the angle to be ϕ = 44° using local harmonic energies.
Using VCI energies, we estimate the mixing angle to be
ϕ = 35.3°, which indicates that the anharmonicity is indeed
responsible for a decrease in its value, as speculated by Jahr et al.9

We were also able to estimate the effect of the inclusion of other
local vibrational states on themixing angle from the components
of the TM eigenvectors in Table 8 as

ϕ = c
c

tan /2
(GS )

(GS )

(D9)

(D7) (13)

which gives ϕ = 36.8°. It thus appears that the inclusion of
additional interactions corrects the mixing angle toward the
experimental value, which was obtained indirectly, as stated
above, and may carry a considerable error.
Changes in the vibrational levels of the excited states in the

8 × 8 and the 16 × 16 matrix models, listed in Table 7, are
qualitatively similar to the homoisotopic malonaldehyde due to
the similarity in their TM elements. The vibrational tunneling
spectrum is shown graphically in Figure 10. One significant
difference here is that some doublet states change the order of
their components after the inclusion of additional vibrational
states in the model due to their proximity in energy after
deuteration, as seen in Figure 10. Another difference is the
absence of symmetry in the wavefunctions with respect to the
symmetry operation that connects the minima in the
homoisotopic case. As a result, the extensions of the 2 × 2

Table 5. Harmonic and VCI Energies in Inverse Centimeters
(cm−1) of the First Eight Local Vibrational States of PD
Malonaldehyde Labeled by the Excited Normal Mode
Frequenciesa

harmonic VCI

state D7 D9 D7 D9

GS 14,228.18
(0.00)

14,253.67
(25.49)

13,978.19
(0.00)

14,013.04
(34.85)

ν1 14,492.55
(264.37)

14,492.10
(263.92)

14,298.70
(320.51)

14,311.75
(333.56)

ν2 14,522.65
(294.47)

14,547.57
(319.39)

14,327.02
(348.83)

14,361.38
(383.19)

ν3 14,568.85
(340.67)

14,626.56
(398.38)

14,384.49
(406.30)

14,444.96
(466.76)

ν1 + ν1 14,756.92
(528.74)

14,546.67
(502.34)

14,950.11
(568.48)

14,543.15
(564.96)

ν4 14,744.31
(516.13)

14,769.16
(540.98)

14,562.35
(584.16)

14,595.52
(617.32)

ν2 + ν2 14,817.13
(588.95)

14,841.47
(613.29)

14,601.27
(623.08)

14,637.01
(658.82)

ν1 + ν2 14,787.02
(558.84)

14,786.00
(557.82)

14,614.31
(636.12)

14,624.21
(646.02)

aEnergies relative to the local ground state of the D7 minimum are
given in parentheses.

Figure 10.Vibrational tunneling spectrum of the lowest 8 (left panel) and 16 (right panel) states of PDmalonaldehyde. Green and blue lines represent
VCI energies of local wavefunctions in the D7 and D9 minima, respectively. Dashed red lines are obtained using a 2 × 2 TMmodel. Black lines in the
left panel represent energies from an 8 × 8 TM model, and in the right panel, they represent energies from a 16 × 16 model. See the text for details.
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model to higher-dimensionality matrix models will mix both the
lower and higher components of doublets, with all other doublet
states. Finally, due to the proximity of vibrational states, the
lower components of the (ν1 + ν1), ν4, and (ν2 + ν2) doublets are
significantly mixed, as can be seen in Table 8. This mixing
between the states changes their energies, but it is also expected
to affect the intensity of the transition to the 11th state as its ν4
component (see Table 8) has a higher transition dipolemoment,
being the singly excited state.

4. CONCLUSIONS
We applied a combination of VCI and the instanton theory to
calculate vibrational tunneling spectra of some exemplary
double-well systems in full dimensionality at a much reduced
computational cost in comparison with the exact QM methods.
The VCI method was used to compute the single-well
vibrational spectra, while the recently developed instanton
method was used to determine the wavefunctions inside the
barrier that separates the wells at a comparatively negligible
computational cost. The interaction between the states of
different wells was obtained from the Herring formula evaluated
at a dividing surface inside the barrier. The Herring formula was
rederived in an extended N × Nmatrix model (N > 2) , and the
size of the associated leading error term was analyzed.

Table 6. TM Elements Connecting the First Eight Local Vibrational States of Different Minima in PDMalonaldehyde in Inverse
Centimeters (cm−1)a

GS(D9) ν1
(D9) ν2

(D9) ν3
(D9) (ν1 + ν1)

(D9) ν4
(D9) (ν2 + ν2)

(D9) (ν1 + ν2)
(D9)

GS(D7) −12.32 (0.005) 0.00 (0.00) −21.95 (0.133) 0.00 (0.00) −5.04 (0.042) −4.63 (0.034) −25.54 (0.343) 0.00 (0.00)

ν1
(D7) 0.00 (0.00) −6.86 (0.001) 0.00 (0.00) 6.52 (0.014) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) −12.22 (0.077)
ν2
(D7) −21.89 (0.109) 0.00 (0.00) −44.12 (0.031) 0.00 (0.00) −8.95 (0.037) −7.52 (0.029) −55.89 (0.452) 0.00 (0.00)

ν3
(D7) 0.00 (0.00) 7.37 (0.007) 0.00 (0.00) 8.64 (0.007) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 13.14 (0.054)

(ν1 + ν1)
(D7) −5.16 (0.042) 0.00 (0.00) −9.19 (0.034) 0.00 (0.00) −4.58 (0.000) −1.94 (0.001) −9.45 (0.024) 0.00 (0.00)

ν4
(D7) −4.44 (0.029) 0.00 (0.00) −7.25 (0.021) 0.00 (0.00) −1.82 (0.001) 7.97 (0.004) −7.84 (0.010) 0.00 (0.00)

(ν2 + ν2)
(D7) −25.42 (0.304) 0.00 (0.00) −55.79 (0.349) 0.00 (0.00) −9.18 (0.015) −8.10 (0.001) −75.67 (0.090) 0.00 (0.00)

(ν1 + ν2)
(D7) 0.00 (0.00) −12.19 (0.072) 0.00 (0.133) 11.59 (0.037) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) −21.72 (0.006)

aValues in parentheses refer to the estimated error introduced by the neglect of the overlap between L/R local states, as explained in the Appendix.

Table 7. Vibrational Energy Levels of PD Malonaldehyde in
Inverse Centimeters (cm−1) Obtained Using a Combined
VCI/Instanton Approacha

no. E(pairs) E(4) E(8)

1 13,974.27 13,972.91 13,971.48
2 14,016.96 14,015.52 14,014.49
3 14,296.86 14,298.42 14,286.79
4 14,295.75 14,295.44 14,294.91
5 14,314.69 14,313.95 14,313.54
6 14,391.55 14,392.78 14,381.17
7 14,383.28 14,384.05 14,383.32
8 14,446.16 14,446.45 14,445.64
9 14,540.00 14,537.31
10 14,549.82 14,549.32
11 14,541.38 14,556.57
12 14,560.53 14,561.08
13 14,597.33 14,598.21
14 14,596.99 14,598.33
15 14,641.54 14,642.66
16 14,696.90 14,709.18

aE(pairs), E(4), and E(8) are energies obtained from the 2 × 2, 8 × 8, and
16 × 16 matrix models, respectively, as explained in the text.

Table 8. Dominant Configurations of Vibrational States of
PD Malonaldehyde, Obtained as the Eigenvectors of the TM
in the 2 × 2 (Pairs) and 16 × 16 (Eight-State) Models, as
Described in the Text
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The accuracy of our approach was first tested on a model 2D
system. It was shown that the JFI method can be used to
compute TM elements that connect states in inequivalent wells
and that have excitations in different normal modes. The energy
levels of an asymmetric system exhibit avoided crossings with
the variation of frequency or depth of one well relative to that of
the other. The VCI calculation of local energies proved to be
necessary in order to reproduce the exact QM results with high
accuracy. The method was then tested on malonadehyde in full
dimensionality, where good agreement was achieved with the
exactMCTDH results in the absolute energies and the splittings.
It was shown that the extension of the standard 2 × 2 model to
include more states can influence the vibrational energies. The
results are not affected dramatically in the case of malonalde-
hyde, but it was shown that the model is able to accommodate
the additional vibrational states in the systems where they lie
close in energy.
Finally, the method was used to calculate the vibrational

spectrum of the low-lying states in PD malonaldehyde, which is
near the computational limit of the presently available exact QM
methods. The ground-state mixing angle was compared to the
experimental value, and the influence of including additional
vibrational states was shown to affect the angle and the order of
some states in the spectrum.
The method is expected to perform well for mid-sized

molecules, where rotational motion, which is neglected in this
work, can be separated from the tunneling dynamics, and for
moderately anharmonic systems with high barriers and,
consequently, small TSs. It is exactly in these circumstances
that the exact QMmethods come at a prohibitive computational
cost. The developed combined approach can be used to
calculate the low-lying vibrational spectra in systems with an
arbitrary number of wells, which are not necessarily related by
symmetry. This makes the method particularly suitable to the
studies of clusters, for example, for the assignment of spectra in
water clusters, which feature multiple minima and high barriers
in their bifurcation dynamics (where hydrogen bonds are broken
and reformed). The computational cost of our approach is
concentrated in solving the single-well spectra separately. The
instanton theory can also be combined with other high-level
methods, instead of VCI, and the combined, dual-level,
approach can be used to calculate the tunneling spectra in
general multidimensional asymmetric well systems, beyond
molecular applications and chemistry.

■ APPENDIX

Dependence of TM Elements on the Position of the
Dividing Plane
TM elements between the states with, at most, one excitation
(ν, ν′ = 0−1) can be expressed as
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where the contribution ofU terms in eq 9 has been neglected. It
is known that unless these terms exclusively contribute to the
TM elements, they introduce the dependence of the TM
element hνν′ on the connection point.42 Therefore, we omit
them from the treatment here to separate the effect of U terms
from the effect of asymmetry in the dependence of the TM
element with the variation of the connection point Scp. The case
of multiple excitations, as well as that of the U terms, can be
derived in an analogous fashion.
Dependence on the position of the connection point can be

determined by differentiating the TM element in eq 14 with
respect to Scp. Small changes in the connection point correspond
to the addition of function f(S) of the following form
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to the potential in the action integral, where ε denotes the
change in the connection point. As discussed in Section 1 of the
Supporting Information, the addition of f in eq 15 does not
change the shape of the path for d≪ V(Scp). The differentiation
can thus be performed on the same path. Furthermore, if the
connection point is located deep inside the barrier, we can
approximate

≈ = ̅p p p0
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Following the differentiation, as described in ref 42, we obtain
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where E(L/R) are the energies of the local L/R wavefunctions and
A⊥ is the matrix A projected onto the space orthogonal to the
MAP. From eq 17, it is evident that the TM element will only be
invariant with respect to variation in Scp if the two local L/R
states are in resonance. Otherwise, the TM element depends on
the position of the connection point, and the dependence is
stronger for a larger mismatch in the local energies.
The dependence on the connection point can be traced to the

neglected integral in the derivation of the Herring formula in eq
3 involving the ϕν

(L)ϕν′
(R) term. Inclusion of this term transforms

the formula for the TM element into
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where the second integral is taken over the space on the “left”
side of the dividing plane. We then differentiate the extended
expression, eq 18, with respect to Scp and observe that the
derivative of the additional term in eq 18 is the integral over the
dividing plane. The derivative of the TM element becomes
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where use has been made of eq 17. We note now that the surface
integral in eq 19 differs from the “old version” of hνν′ only by the
momentum term p̅0. However, this factor is taken to be constant
on the dividing plane, and it can be taken out of the integral,
which leads to
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− −
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While it would seem obvious to use the instanton wavefunctions
in eq 6 and compute the additional term that arises in eq 18 in
order to eliminate the dependence on Scp, the semiclassical
approximation breaks down beyond the barrier region and
would lead to a divergence of the integral. We are thus left with
no option but to neglect the term and treat it as a source of error
in the TM element.
We tried to estimate the size of the error term, introduced

above, by calculating the overlap of the harmonic oscillator
wavefunctions centered at the two minima. The overlap is
obtained following the method of ref 64, where it was used to
calculate Frank−Condon factors between the shifted harmonic
oscillators. The calculation requires the knowledge of molecular
geometries and harmonic frequencies in the two minima and
does not add to the overall computational cost. The errors for
PD malonaldehyde were found to be small and are listed in the
parentheses in Table 6. We found that it was safe to neglect the
error terms unless the connection point is moved far from the
position of the barrier top or unless the energy difference
between the two states is large in relation to the barrier height.
However, we note that as the energy difference increases, the
contribution of the TM element to the energy level decreases, as
seen from the second-order perturbation treatment
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(21)

Since hij are expected to be small in the deep tunneling regime,
the contributions of the states that lie far from the resonance
quickly approach zero. Thus, even for larger energy differences,
the computed energy levels remain stable.
Dependence of the TM elements on the position of the

dividing plane was also tested by moving the dividing plane from

0.25Stot to 0.75Stot, where Stot is the MAP length. All the matrix
elements displayed monotonous dependence on Scp, with an
inflection point located near the position of the barrier top and a
region of relative stability around it. As the dividing plane is
moved away from the barrier top, some TM elements begin to
change significantly. These TM elements connect the states with
a significant disparity in their local energies. For example, the
TM elements between the (ν2 + ν2) state and the GS or the ν2-
excited state change from −11 to −55 cm−1 and from −36 to
−80 cm−1, respectively. However, a large energy difference
between the involved states also implies that the TM elements
do not profoundly affect the overall energy. The GS TS varies by
≈7 cm−1 in this region. If we limit ourselves to the region
between 0.4Stot and 0.6Stot, the variation of the GS TS is only 1.5
cm−1, which is within the error of the VCI method used to
compute the local energies. Similar errors are observed for the
other energy levels. The method thus gives the best results when
the dividing plane is placed in the vicinity of the barrier top.
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