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ABSTRACT

Combinatorial gene regulation largely contributes
to phenotypic versatility in higher eukaryotes.
Genome-wide chromatin immuno-precipitation
(ChIP) combined with expression profiling can
dissect regulatory circuits around transcriptional
regulators. Here, we integrate tiling array measure-
ments of DNA-binding sites for c-Myc, sp1, TFIID
and modified histones with a tissue expression atlas
to establish the functional correspondence between
physical binding, promoter activity and transcrip-
tional regulation. For this we develop SLM, a
methodology to map c-Myc and sp1-binding sites
and then classify sites as sp1-only, c-Myc-only or
dual. Dual sites show several distinct features
compared to the single regulator sites: specifically,
they exhibit overall higher degree of conservation
between human and rodents, stronger correlation
with TFIID-bound promoters, and preference for
permissive chromatin state. By applying regression
models to an expression atlas we identified
a functionally distinct signature for strong dual
c-Myc/sp1 sites. Namely, the correlation with
c-Myc expression in promoters harboring dual-sites
is increased for stronger sp1 sites by strong sp1
binding and the effect is largest in proliferating
tissues. Our approach shows how integrated
functional analyses can uncover tissue-specific
and combinatorial regulatory dependencies in
mammals.

INTRODUCTION

Understanding how combinatorial regulatory networks
contribute to phenotypic diversity in higher organisms is
a major challenge of current functional genomics (1,2).
To tackle this complex problem a powerful experimental

strategy relies on genome-wide chromatin immuno-
precipitation (ChIP) experiments which can localize
binding sites of transcriptional regulators in a whole
genome (ChIP-chip) and hence map protein–DNA inter-
action networks (3). Furthermore, such experiments can
be combined with genomic sequence or expression
profiling to assess the link between physical protein–
DNA association and functional gene regulation. A key
for the success of these methods are bioinformatics
algorithms that range from signal analysis to robust
integration of complementary data types on a compre-
hensive scale (4).

Yeast has been the most extensively studied organism
and the only one for which large-scale datasets (4100
DNA-binding proteins) have been produced for the same
condition (rich medium) (5–7). In mammalian cells,
several specific transcription factors were studied
(6,8–13) and datasets for several transcription factors
measured in the same conditions are beginning to reveal
multi-factorial aspects of gene regulation in mammals,
notably around the HNF family of transcription activa-
tors in pancreas and liver (14). ChIP was also used to
characterize binding of general transcription regulators,
as the Taf1 subunit of the initiation complex TFIID (15),
the polymerase II enzyme (16) or modified histone
patterns (17).

Investigating the functional link between gene expres-
sion and transcription factor binding at promoters,
computational approaches for explaining co-regulated
gene clusters could identify overrepresented sequence
motifs in the gene promoters (18–20). Examples of
combinatorial regulation through pairs of sequence
elements emphasized the importance of element order
(21). Other classes of approaches used linear regression
to model continuous expression levels in function of
sequence elements or ChIP-binding strength (22–25). This
approach was extended to multiple and interacting
sequence motifs and applied to yeast-cell-cycle data,
however at the cost of increased number of parameters
(26). An interesting algorithm to tighten co-regulated
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modules imposed correlations in binding-site patterns
(from ChIP) and expression profiles (27). Along this line,
integration of large-scale ChIP and expression in yeast
reconstructed the active parts of gene regulatory networks
by imposing condition specific activity criteria on the
static network inferred via ChIP (28). In mammals,
integration of ChIP sites with other data types is expected
to increase rapidly (8,13,14,29).

As a highly versatile transcriptional regulator, c-Myc is
a proto-oncogene upregulated in many human malignan-
cies (30–32). It encodes a basic helix-loop-helix leucine
zipper transcription factor with a role in growth regulation
and differentiation (33,34). Bound to its partner Max, the
heterodimer induces expression of its targets by direct
DNA binding to E-box motifs. Since this is a relatively
uninformative criteria for comprehensive target identifi-
cation, a number of studies have attempted to better
characterize target genes, using classical ChIP (35),
microarray experiments (36) and more recently ChIP
combined with promoter (8) or genomic arrays (10).
While it has so far not been possible to refine the target
specificity beyond E-box preference, these studies have
shown that c-Myc plays a nearly ubiquitous role at core
promoters, possibly through interaction with the core
transcription machinery (8,37). Likewise the sp1 zinc
finger protein (specificity protein 1) is thought to play
a critical role in cancer progression by regulating growth
factors (38). It is known as a proximal promoter factor
that frequently binds multiple GC-boxes upstream of
transcription start sites (39), and acts as a transcription
co-activator by direct binding to subunits of the basal
transcription machinery.

In order to systematically investigate how bound c-Myc
and sp1 influence expression of their target genes, we
study how the expression of genes that harbor c-Myc or
sp1 sites responds across a large collection of tissues (40).
Using regression models, we find that genes with both
c-Myc-and sp1-binding sites have a distinct expression
signature when compared to genes with either site alone.
Specifically, we find a group of proliferation associated
genes whose correlation with c-Myc mRNA level is
increased by the co-localization of c-Myc and sp1 binding
at promoters.

MATERIALS AND METHODS

Datasets

Genomic data. Genomic sequence, annotations, chromo-
somal coordinates of TSSs, genes structure and alignments
between human, mouse and rat are publicly available from
the UCSC Genome Table browser (41). Based on these
coordinates, we define ‘genes’ as the genomic regions from
�1.5 kb upstream of the transcription start site (TSS)
to þ1 kb downstream of the polyadenylation site (PAS),
accounting for roughly 30% of the chromosomes length.
Additionally we define distal promoters stretching
from �10 kb and �1.5 kb of the TSS (Figure 1A).
The intragenic mapping follows the annotation, except
for the 50 regions defined as �1.5 kb to þ0.5 kb of TSS,
and 30UTR, �1 kb to þ1 kb of polyadenylation site (PAS).

CHiP-chip data. The raw ChIP-chip data is publicly
available (10). Recently, c-Myc and sp1 proteins were
cross-linked to DNA and purified using specific anti-
bodies. Fragments were amplified with random primers
and hybridized on tiling arrays covering the non-repetitive
genomic sequences of human chromosomes 21 and 22 at
35 bp resolution (43). The data provides three biological
replicas and two technical replicas for each condition.
To quantify the enrichment we used the six enriched
samples and the six total chromatin samples.
Coordinates of TFIID binding were taken from (15)

(http://licr-renlab.ucsd.edu/download.html) and con-
verted to the UCSC human genome build hg17. c-Myc
or sp1 sites falling in windows of �2 kb around TFIID
sites were classified as close to a TFIID site.
Histone modification islands were taken from (17) and

converted to the human genome build hg17. c-Myc or sp1
sites, or TFIID anchor points localized in the regions
reported as di-methylated, tri-methylated or acetylated
were classified accordingly.

Expression microarray data. The publicly available tissue
microarray data consists of 79 conditions in duplicate at
(www.gnf.org) (40). We used condition normalized
MAS5.0 scores as provided on the website. To map the
TSSs to probeset identifiers, we used the tables provided
in the UCSC browser.

Analysis

We use sequential steps: (1) a background subtraction for
Affymetrix tiling arrays; (2) a binding site detection
algorithm for ChIP experiments called sliding linear
modeling (SLM) followed by a false discovery proportion
(FDP) assessment; (3) a classification of sites according
to their location with respect to genome annotations,
and functional signatures in other comprehensive ChIP
experiments; (4) a regression analysis to investigate the
relationship between the mapped promoter classes and
gene expression as measured on arrays.

Processing of raw tiling arrays data. The analysis is suited
for ChIP experiments on high resolution tiling arrays,
e.g. 35 bp resolution oligonucleotide arrays (10). Previous
analysis methods focused both on chromatin (44,45) and
RNA hybridizations (46,47). We implement a background
correction for tiling arrays similar to the GCRMA algo-
rithm for expression arrays (48). Background correction is
done for each array separately. The intensities are
assumed to follow the model Ij¼SjþNSjþO, where Ij
is the measured intensity of the perfect match (PM) probe
j, Sj and NSj represent the specific and non-specific
binding and O is a probe-independent basal fluorescence
level. j runs over all n probes on each array. We use the
estimator Ô¼min(Ij)� 1 as the minimum PM intensity
measured on the array. The non-specific part is modeled as
in (48,49) using a linear model: logðIj � ÔÞ ¼

P
il ailPjil

where ail are position (i2 {1, . . . , 25}) and letter
(l2 {A,C,G,T}) dependent affinities and Pjil is an indicator
variable taking value 1 if the probe j has base l at position
i and 0 otherwise. In practice, we reduce the number of
parameters by expressing the position dependence using
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third degree polynomials: logðIj � ÔÞ ¼
P

kl cklQjkl with
k2 {0,1,2,3} as in (49). Here Qjkl ¼

P
i qikPjil where qik are

orthogonal Legendre polynomials on the interval [1,25].
Due to the constraints

P
l Pjil ¼ 1, this leaves 13 indepen-

dent regression parameters ckl. Since binding of a specific
transcription factor is a rare event at the scale of the
genome, we fit all probes on the array to the background
model. This can be modified by the user in our software if
necessary. The fraction of the variance in intensity
captured by the model varies from 40 to 60% in the set
of 12 arrays. This is comparable or larger than reported
in (50). Maximum likelihood estimates of the ĉkl
(Figure S1A) are computed under the assumption that
log(NSj)�N(bj,�

2), where bj ¼
P

kl cklQjkl. We then
define b̂j ¼

P
kl ĉklQjkl and �̂2 ¼

P
j ðIj � Ô� b̂jÞ

2=n.
The estimated log of the specific signal is denoted ŝ.
As in previous work (51) we impose a lower bound on ŝ by
requiring that ŝ� log(m) to control the extension of the
dynamical range at the lower limit. We used an ad hoc
choice of m¼ 10. When Ij� Ô�m, we set ŝj ¼ log(m).
When Ij� Ô4m, we set ŝj ¼E [log(Sj)], where E [ ],
represents expectation with respect to a truncated
version of the estimated normal density for log(NSj).
Specifically

ŝj ¼

R bmax
j

�1
e�ðbj�b̂jÞ

2=ð2�̂2Þ logðIj � Ô� ebjÞdbR bmax
j

�1
e�ðbj�b̂jÞ

2=ð2�̂2Þdb

with the upper integration boundary
bmax
j ¼ logðIj � Ô�mÞ. This estimator behaves as a
softer maximum likelihood estimate (Figure S1B).

In practice we evaluate the integral numerically using
the Gnu Scientific Library (GSL). We then apply quantile
normalization (52) in which we pool experiments and
controls. Comparison with other background corrections
and normalization is provided in Figure S2.

Estimation of local enrichment and sliding linear model
(SLM). The closely spaced 25-mers justify an extension
of RMA estimators for expression arrays (53). Only the
perfect match (PM) probes are used (54,55). To estimate
the position-dependent enrichment in the immunoprecipi-
tated samples, SLM applies local multilinear regression
to the normalized logarithmic signals. For simplicity,
we describe the procedure for a single window centered on
probe 0 located at the genomic position p0. The normal-
ized signals of probe k at position pk in the experiment
e is described as the superposition of a probe effect
ak common to all samples, and b represents the enrich-
ment of experiments (E) over controls (C) at position p0:

Lk, e ¼ �k þ ��e2E þ �ke

de2E is an indicator function taking value 1 if e is an
experiment and 0 otherwise, and Zke are independent
Gaussian noise terms with constant variance �2

� . b is
estimated locally using a Gaussian kernel centered on the
position p0. The kernel wk¼ exp(�(pk� p0)

2/2�2) decays
with the inter-probe genomic distance |pk� p0| with
�¼ 200 bp. The latter scale was chosen since it is much
smaller than the width of an expected site but is large
enough for local smoothing. On average, the signals from

D
en

si
ty

A B C

Upstream

Distance of the site from the TSS (bp)

B
A

5 UTR

Figure 1. Localization of binding sites with respect to annotated genes. Annotation is from UCSC build hg17 (on chromosome 21 and 22 these sum
to 1255 TSSs, including alternative TSSs for some genes). (A) More than 70% of the 633 (360 for c-Myc, 221 for sp1) fall close to genes (black),
defined here as spanning from �1.5 kb upstream of the TSS to 1 kb downstream of the PAS (this represents �30% of total genomic sequence). Very
few sites are found in distal promoters (�10 kb to �1.5 kb, gray). The remaining 20–25% of sites (white) are thus far from genes. (B) Refined
mapping for the sites near genes (black fraction in Figure 2A) shows a strong preference for the 50 regions. Sites are classified as either 50 regions
(from �1.5 kb to þ0.5 kb of the TSS; green), exons (light green), intron (pink) or 30UTR (�1 kb to þ1 kb of PAS; red). Color scheme for panels A
and B is explained below the panels. (C) Distribution of distances from TSSs for sites mapped in the 50 regions. We find a tight co-localization with
the TSS (defined as 0) for both factors, coordinates are taken positive in the transcript direction.
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about five probes are smoothed at each position.
Maximum likelihood estimators for a and b read:

�̂ ¼

P
k wkðhEik � hCikÞP

k wk
,

�̂k ¼
jEj hEik � �̂

� �
þ jCjhCik

jEj þ jCj
,

where hEik and hCik stand for as the group average of all
experiments, respectively controls, for probe k. |E| is the
number of experiments and |C| the number of controls.
This shows that the estimator �̂ is a weighted average of the
difference between enriched and control samples.
We apply a t-like statistic for locally weighted regression

t ¼ �̂=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
varð�̂Þ

q
, where varð�̂Þ ¼ �̂2

�

P
k ðw

2
kÞ=

P
k wk

� �2
� 1=jEj þ 1=jCjð Þ is the estimated variance in �̂
(cf. Supplementary any data and (56)) with the
(biased) estimated noise strength
�̂2
� ¼

P
k,e wkðLk,e � L̂k,eÞ

2=
P

k,e wk. L̂k,e ¼ �̂k þ �̂�e2E
is the estimated signal. The position p0 is then shifted
by one probe and the procedure is repeated along
the entire chromosome to determine the enrichment
at each position. The statistics is then assessed
non-parametrically as detailed below.

Site detection. As a first permissive selection, candidate
peaks are required to have a minimum of six contiguous
probes with t above the local 95th percentile computed
locally in 10 kb windows. To summarize each peak, a
Gaussian shape (he�ðpk��Þ2=2�2 ) is fit to the probes above
the threshold plus the neighboring three probes on either
side. h, �, � are used to define the height, location and
width of sites. This set of putative sites is then filtered
using a resampling method that allows to control the false
discovery proportion (FDP). The method is detailed in
(57,58). Briefly, to construct the null model, we extract
Gaussian shapes as described for all 924 possible label
permutations (six experiments and six samples). The sites
are then ranked according to their heights and a null-
distribution of the test statistics for each rank is computed
from the 924 permutations. For each rank r, we retain the
nr sites in the correct experiment-control assignment with
heights above the 95% percentile in the null-distribution.
We then control the FDP by retaining the highest rank r
that define a group with �5% predicted false positives,
that is by choosing the largest r such that r/nr� 0.05.

Site remapping. To compare results with the previous
analysis we keep hg12 build for the site detection.
Localization of sites to the hg17 genome version is
determined using the batch coordinate conversion tool
liftOver provided with the UCSC genome browser.

Data and probesets selection. We restrict the expression
analysis to the 745 probesets in the GNF SymAtlas
matching to genes on human chromosome 21 and 22.
The reference probeset identifiers for c-Myc and sp1 are
202431_s_at and 214732_at, respectively.

Regression models for expression data. To assess the
relation between gene expression levels and regulator
expression levels we introduce gene-specific susceptibilities
to c-Myc (ag) and sp1 (bg) via the linear model:

Ee
g ¼ Ig þ agE

e
c�Myc þ bgE

e
sp1 þ "ge: ðM1Þ

Ig is a gene-specific intercept and Ee
g the condition

normalized log2 expression of gene g in condition e, "ge
are independent Gaussian noise terms. Ee

c�Myc and
Ee
sp1refer to mRNA levels of the regulators in condition

e and are our best proxies for their activity levels. Notice
that we cannot prove that such susceptibilities reflect
direct causal interaction; these can also reflect indirect
regulation, or the existence of upstream regulators
influencing both the expression of the regulator and the
gene under consideration. Multilinear regression para-
meters and statistics are computed using the software R
(http://cran.r-project.org). When a gene symbol is repre-
sented by multiple probesets, the probesets expression
levels are averaged.

RESULTS

c-Myc and sp1-binding sites

We evaluate ChIP data for c-Myc and sp1 on human
chromosomes 21 and 22 (10) by adapting signal estimators
previously developed for GeneChips (Figure S3,
Methods). We then apply a resampling technique (57) to
control the false discovery proportion (FDP), resulting in
312 sites for c-Myc and 260 for sp1 (Table 1, left,
Figure. S6). To examine the localization of sites relative to
known genes we use the latest annotations and find that
factors are preferentially (�75%) located near genes
(as defined in the Materials and Methods section).
The negligible fraction of sites in the distal promoters
(51%) indicates that sites outside genes (�20%) occur far
from cis-regulatory enhancers, or that such elements can
be located beyond 10 kb (Figure 1A). Among the 75% of
sites near genes, sp1 occurs more frequently in 50 regions
(from �1.5 kb to þ0.5 kb), 75% versus 60% for c-Myc
(Figure 1B), which correlates with the known affinity
of sp1 for GC-boxes frequently located near TSSs.
Thus a significantly higher fraction of all sites (450%
for both factors) bind near TSSs than originally reported
(22%, (10)) and we also find fewer sites within genes or in
30 regions (maximally 10%). Specifically, 55% of the sp1
sites overlap with the 358 sites in the original mapping,
that is the old peak falls in the interval [�� 2�, �þ 2�]
defined by the Gaussian shape. Similarly 77% of
the c-Myc sites overlap with the 756 original sites.
A comparison with original mapping from (10) is detailed
in Figure S5 and in the online supplement. Finally no
c-Myc or sp1 site maps closer than 10 kb from any of the
eight annotated miRNA genes on chromosome 21 and 22.

Co-localization of c-Myc and sp1 sites is overrepresented
at evolutionarily conserved promoters

We next study the position of sites relative to TSS by
considering the distance between all peaks and each TSS.
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Sites occur preferentially within 500 bp of annotated TSSs;
additionally, the sp1 distribution is tighter and upstream
of c-Myc (Figure 1C). This shows that the sp1 site occurs
on average 150 bp upstream of annotated TSS, which
is encouraging considering the �1 kb resolution of the
mapping. It is also consistent with the enrichment of
GC-boxes found 65 bp upstream of TSSs (the result can be
generated at http://www.isrec.isb-sib.ch/ssa/). The resem-
blance between the c-Myc and sp1 localization profiles
hints at a co-localization of these factors near initiation as
found also in (10). Among all sites near TSSs (Table 1,
right) we find 130 TSS with dual c-Myc and sp1 sites while
the expected overlap is 43� 5 (P510�49, hypergeometric
distribution). This makes 50% (61% in the original
analysis) of sp1 sites and 62% of c-Myc sites (originally
29%) dual sites. Moreover, 96% of all dual sites found in
10 kb windows fall within 1 kb of each other, and without
obvious bias in the ordering. In comparison, only 19%
of close co-localization is expected under the null
hypothesis of random positions in the 10 kb window;
thus co-localization is highly non-random. Moreover,
positioning the sites with respect to conserved regions
between human and mouse or human and rat (genome
alignments taken from UCSC, cf. methods section) shows
that binding of c-Myc and sp1 often occurs in conserved
region, and that the enrichment increases with the
conservation level in the aligned regions (Figure 2A).
This agrees with previous reports for c-Myc (44), however
we add that dual sites are generally more conserved than
single sites.

Functional annotation of sites

Gene Ontology (GO) analysis restricted to chromosomes
21 and 22 (using the GO Tree Machine http://genereg.
ornl.gov/gotm) highlights the dominantly proliferation-
associated character of the sites. However, the three
groups (c-Myc-only, sp1-only and dual sites) represent
distinct functional sub-categories: the dual sites are
enriched for genes involved in RNA processing, genera-
tion of ATP, DNA checkpoints and ribonucleotide
biosynthesis; c-Myc-only sites point to the cell cycle
genes; lastly, the sp1-only group relates to intracellular
transport (GO results are detailed on our online
supplement).

Dual c-Myc/sp1 sites are enriched near active promoters

A recent genome-wide study identified active promoters
using an antibody against the TAF1 subunit of the
transcription initiation complex TFIID in IMR90 fibro-
blasts (15). Although the chromatin states of fibroblast
and lymphocytes lineages might differ considerably, we
find correlations between the TFIID sites and our
identified sets, indicating that important characteristics
of the regulatory landscape appear conserved across
lineages. The first observation is that c-Myc or sp1 are
significantly more frequent near active promoters, defined
here as the 255 TSSs harboring TFIID sites from (15) and
representing 15% of all TSSs on chromosomes 21 and 22.
Indeed binding of either c-Myc or sp1 occurs in over 60%
of the sites occupied by TFIID, as expected from (8),
whereas this fraction is lower than 20% in the absence of
TFIID (Figure 2B). Moreover, the relative fraction of
dual sites when TFIID binds is over 50% (P510�9,
hypergeometric test), while the three fractions are roughly
comparable in absence of TFIID. This analysis suggests
interaction between c-Myc and sp1 at core promoters (59).

Permissive chromatin distinguishes c-Myc only and dual
c-Myc/sp1 sites

To pursue this hypothesis, we reasoned that the specific
role of dual sites might also be reflected in the surrounding
chromatin state. We analyze a genome-wide histone
profiling study (17) reporting that tri-methylation at
H3-K4 lysine residues (and to a lesser extent di-methyla-
tion) and acetylation at lysine H3-K9 close to TSSs were
hallmarks of active transcriptional units in hepatocellular
carcinoma cells (HepG2 line). This was in agreement with
the TFIID study (15) in which histone acetylation
and methylation (without distinction between di- and
tri-methylation) were systematically found near TFIID
sites. Despite potential pitfalls in comparing different cell
lineages, we find a striking signature in the HepG2
methylation profiles that differentiate the dual sites
(Figure 2C). Namely, permissive chromatin islands on
chromosomes 21 and 22, characterized by tri-methylation
at lysine H3-K4 and acetylation at H3-K9, clearly coincide
with a larger fraction of c-Myc or sp1 sites than the ones
harbored in the di-methylated H3-K4 islands, character-
istic of the less permissive or facultative chromatin
state (60). Additionally, the fraction of c-Myc sites is

Table 1. Columns 1–2: Detected sites (FDP55%) and their positions with respect to annotated TSSs. The higher number of sites on chromosome 22

than chromosome 21 follows the number of annotated TSS (391 on chr 21, 864 on chr 22). Columns 3–7: All annotated TSS (UCSC genome

browser, hg17) are split in to four groups: those without c-Myc or sp1 sites, those with only c-Myc, only sp1 or both. To be associated with a TSS,

a site is required to lie between �1.5 kb and þ1.5 kb of the TSS. The percentages refer to the total number of TSSs on each chromosome. All sites

near genes with their functional annotations can be found at http://wiki.epfl.ch/naeflab. Here the smoothing used �¼ 200 bp; the number of

significant sites decreases as a function of � (Figures S4 and S5). All sites computed with different �’s are provided in the above website

c-Myc sp1 Annotated TSS (unique genes) No sites sp1 only c-Myc only Dual sites

chr21 108 69 391 (305) 301 (77.1%) 26 (6.6%) 31 (7.9%) 33 (8.4%)
chr22 204 191 864 (664) 614 (71.1%) 105 (12.1%) 48 (5.6%) 97 (11.2%)
Both 312 260 1255 (969) 915 131 79 130
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higher in the permissive states, consistent with (61), and
this is more pronounced for the dual sites (P510�11 for
di-methylation; P510�16 for tri-methylation; P510�15

acetylation; hypergeometric tests).

Tissue-specific expression for c-Myc and sp1 sites

We assess the functionality of the identified ChIP sites by
considering the expression profiles of all c-Myc and sp1
sites in a tissue expression compendium (40). We are thus
implicitly testing whether binding sites measured in Jurkat
cells are functional in other cell types. While this is not
expected for all regulators, it may hold here. First, there
are many lymphoid-related conditions in the gene expre-
ssion atlas where we expect similarity in the chromatin
states. Second, c-Myc and sp1 are basic transcription
factors that mediate generic or conserved functions.
Comparing the mean expression levels in all three
groups and tissues we find that these are highly correlated
with c-Myc mRNA level which probably reflects
the connection between c-Myc levels and proliferation
(Figure 3A). Moreover while the sp1-only sites have the
lowest expression, followed by the c-Myc-only sites,
the dual sites are generally expressed at highest levels,
noticeably in lymphoid lineages which are closest to
Jurkat cells (Figure 3A, tissue track). The association
between blood lineage, c-Myc expression and high
expression of the dual site targets is quantified in
Figure 3B. The mean expression levels of genes with
c-Myc sites, or those with dual c-Myc and sp1 sites,
are significantly correlated with c-Myc mRNA levels
across conditions. For sp1 this correlation is not
significant (Figure S7). Interestingly, the dual group is
correlated with c-Myc expression with a slope that is
�30% larger that for c-Myc-only sites, indicating that sp1
may contribute synergistically to the induction by c-Myc.
As expected the genes without sites show much weaker
correlation. It is also apparent from the conditions with
lowest c-Myc mRNA expression that the genes with
c-Myc sites, either single or accompanied by sp1 sites,
have higher baseline expression than genes without sites,
or genes with sp1 only sites (Figure S7). Given that it is
highly unlikely that c-Myc sites would systematically hit
high affinity probes, this presumably reflects that c-Myc
sites are frequent in promoters of housekeeping genes
that can be induced by multiple other regulators. A few
terminally differentiated conditions appear uncorrelated
despite intermediate to high c-Myc expression levels.

Strong sp1 sites enhance c-Myc susceptibility

Switching from a condition-centered to a gene-centered
view, we systematically investigate associations between
expression levels of genes and ChIP signals in their
promoters. We model the expression levels of all genes in
the atlas in function of c-Myc and sp1 mRNA levels using
multilinear regression. We aim to test whether a correla-
tion between gene expression and regulator activity
reflects the strength of binding sites measured with
ChIP. For this, the mRNA levels of the regulators are
taken as best proxies for the activity levels of the proteins.
The model (M1, methods section) assumes no indirect
regulation and measures the gene-specific contributions
for each transcription factor. To determine whether
the susceptibilities reflect binding strength we use the
nominal t scores for binding instead of fixed cutoffs as
in Figure 3. We find that ag shows a significant correlation
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Figure 2. Positions of sites assessed in genomic and functional data. (A)
Binding sites are enriched for conservation between human–mouse and
human–rat. The fold enrichment (expressed with respect to randomized
site locations) is plotted versus a conservation score taken as the
quantile of pairwise alignment scores taken from UCSC genome
database. For each conservation threshold, the number of sites falling
in conserved islands is divided by its expected number, assuming
random sites positions. Genome-wide alignments and scoring is
described in (42). (B–C). Overlap with TFIID sites (15) and modified
chromatin islands (17). In all cases the positions for c-Myc or sp1 sites
are taken as the location of the Gaussian profiles (cf. Figure. S2,
methods section). The TFIID- binding sites and the modified histone
islands are given as genomic intervals. Their coordinates were taken
from the original publications and mapped to the build hg17 of the
human genome (Materials and Methods Section). (B) c-Myc and sp1
bind preferentially to TSSs also bound by TFIID (15). Such TSSs (255)
are defined as having a TFIID island in a window of [�1 kb, þ1 kb]
around the TSS position and amount to 21% of all unique TSS region
on chromosomes 21 and 22. Such TSSs also bound by c-Myc or sp1 are
nearly 65% while this fraction is well below 20% for TFIID free sites.
The relative fraction of dual sites is clearly higher when TFIID binds:
the green fraction (dual) is larger than the combined blue (Myc) and
yellow (sp1), whereas all three are approximately equal for TSS regions
without TFIID. We find that 33% of all sp1 sites coincide with TFIID
and 27% for the c-Myc sites. (C) c-Myc-only and dual sites are
enriched near permissive chromatin islands (tri-methylated (Tri) and
acetylated H3-K4 residues (Ace), 2 right bars). Bars represent the
fraction of modified histone islands measured in HepG2 cells (17),
(supplementary material) also bound by TFIID, and which contain
either c-Myc, sp1, dual or no sites. We counted 125 such di-methylated
(Di), 241 tri-methylated (Tri) and 259 acetylated (Ace) islands. Whereas
the fractions c-Myc-only and dual sites is increased in the permissive
state, sp1 fractions is unchanged from the facultative to the permissive
states.
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(F-
igure 4A) with the ChIP signal strength for c-Myc (tMyc)
while not significant in the case of sp1 (Figure 4B),
even though the sp1-bound promoters exhibit weak
systematic positive bg. Analysis shows that for genes
with dual sites, c-Myc susceptibility generally increases
with the strength of sp1 binding (Figure 4C and D).
This synergistic trend is confirmed in a stratified
representation showing that ag for promoters with both
strong c-Myc and sp1 ChIP sites (the B group) is higher
than for promoters with weaker sites (Figure 4E).
The regression coefficients for genes in group B are
listed in Table S1. The susceptibility to sp1 mRNA level
does not show similar differences, although the sp1 sites
are subject to a slight increase in bg compared to c-Myc
sites (Figure 4F). Turning to the significance of the
regression parameters ag and bg, we find that the total
fraction of genes that correlate significantly with c-Myc
is about 65%, while only about 20% correlate with sp1
(Figure S10). For c-Myc, this fraction increases in the
c-Myc only (76%, P¼ 0.09, hypergeometric test) and dual
groups (87%, P¼ 0.025), while bg does not show large
differences across groups. Interestingly, while there is

overall bias for positive correlations (�65% for both
ag and bg), the fraction of positive ag is significantly
enriched in the c-Myc only group (84%, P¼ 0.01) even
more so for the dual sites (91%, P¼ 0.005). Finally the
fraction with positive bg is highest (86%, P¼ 0.026) for
the sp1-only sites.

DISCUSSION

We combined genome-wide protein–DNA interaction
data for the transcription regulators c-Myc, sp1 and for
the TAF1 subunit of the TFIID complex with histone
modifications and human expression data to establish the
functional correspondence between physical binding,
promoter activity and transcriptional regulation. Using
sliding linear modeling (SLM) and classifying binding
sites in Jurkat cells as sp1-only, c-Myc-only or dual,
we uncovered that sites with both factors within 1 kb of
each other showed several distinct features compared to
the single regulator sites. Specifically, the dual sites
showed a strong correlation with TFIID-bound promo-
ters, even if the latter were measured in IMR90 fibroblasts.
The dual sites also showed preference for permissive

Figure 3. Summary of expression levels for genes with binding sites across tissues. The null, c-Myc-only, sp1-only and dual groups are as in Table 1.
They are represented by 31 (c-Myc), 57 (sp1), 57 (dual), 600 (null) probesets in the tissue atlas. The gene expression matrix is condition centered.
(A) In all three lanes (c-Myc and sp1 expression, ChIP group and tissue) the horizontal axis represents the 79 tissue conditions from the SymAtlas
tissue atlas (40), each represented for the sp1-only, c-Myc-only and dual groups. Ordering is according to increasing mean expression (from left to
right) per group and tissue. In the lane ‘ChIP group’, the dual sites cluster at the right end of the scale, and this correlates with high c-Myc
expression (blue track, top). Sp1-only sites have generally lower expression followed by c-Myc-only sites which are interspersed. The ‘tissue’ lane
emphasizes that blood samples (20/79 samples, shown in red for the lymphoid and orange for the myeloid lineage) are enriched at the high expression
end. (B) Quantification of data in (A). The dots show for each condition the mean expression level in each group. The lines show the correlation
between the group means and c-Myc mRNA level. Slopes and adjusted R-squared are reported; all correlation are significant (P510�9 for the M
group, P510�10 for the B group and P50.0001 for the null group). The mean expressions in c-Myc-only and dual groups correlate well with c-Myc
expression levels. The dual group shows the highest slope (0.13) and clear positive outliers in the blood lineage. The weak correlation between the
null group and c-Myc mRNA probably reflects indirect regulation. The low outliers in the c-Myc and dual groups coincide with terminally
differentiated tissues, e.g. skin, uterus and tongue.
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chromatin states as measured in HepG2 cells and overall
higher degree of conservation between human and
rodents. When assessing the relationship between c-Myc,
sp1 sites and promoter activity, we have taken the risk
of comparing different tissues: sp1 and c-Myc sites are
from Jurkat cells, the TFIID sites from fibroblasts
and methylation status was measured in HepG2 cells.
Surprisingly the consistent distinction of dual sites
(Figure 2B and C) indicates that these tissues share
comparable chromatin states, which might be rooted in
the general proliferating state of immortalized cell lines.
Taken together, these findings pointed toward specific
functional characteristics of dual sites. Nevertheless,
to minimize caveats from difficult comparisons, we have
not used the HepG2 and fibroblasts in the study of
the expression data.

Classes of promoters were monitored across large
expression datasets to study the relationship between
promoter-binding configurations and gene expression.
By assuming that many sites measured in Jurkat cells
would also be found in other cell lines, linear models
were used to determine the susceptibility of sites to the
levels of the corresponding regulators as measured in the
tissue atlas. We found that for genes harboring both
factors, stronger sp1 binding increased the correlation
between c-Myc activity and target expression levels.
Furthermore, our analysis of correlation with regulator

mRNA levels supports the notion that functional
c-Myc sites are not strictly cell-type specific, which is
consistent with its involvement in basic cellular functions
such as growth or transcription. Specifically, the expres-
sion levels of genes with c-Myc site correlate well with
c-Myc expression levels in the majority of tissues, with
some exceptions. These insensitive conditions coincide
with terminally differentiated tissues in which chromatin
remodeling could prevent response to c-Myc while the
conditions with open chromatin respond in a graded
manner to the regulator level according to the proposed
model (62).
This analysis generalizes an earlier ChIP study (8) where

correlation between c-Myc levels and expression of c-Myc
sites was discussed. Importantly, we add the dependency
on sp1 sites using multilinear regression. Incidentally
cooperativity between c-Myc and sp1 has been dissected in
the hTert gene (63) which might provide a mechanistic
basis for the observed behavior of dual sites.
Cooperativity with sp1 has also been reported for other
bHLH family members, notably ARNT (64) and SREBP
(65). In agreement with studies of the c-Myc regulatory
networks (33) Gene Ontology analysis identified biological
processes linked to proliferation. Our analysis finds the
presence of c-Myc in 16% of all TSSs (8,35), supporting
the view that c-Myc might directly interact with the core
transcription machinery to induce gene expression and
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Figure 4. Relation between target expression, regulator expression levels and ChIP- binding strength for all genes. (A–B) Susceptibilities versus the
strength of the ChIP- binding sites (t parameter) for c-Myc (A) and sp1 (B). Each dot is one TSS represented by the highest t score occurring in a
fixed �1.5 to þ1.5 kb window. Gray line show correlation for c-Myc (r2¼ 0.26, P¼ 10�8) while that for sp1 is not significant. (C) Strength of c-Myc
(tMyc) versus sp1 (tsp1) sites. Colored grid indicates the mean of the c-Myc susceptibility ag in each square. Red indicates positive and green negative
mean values. Saturating colors represent absolute means �0.33. (D) c-Myc sites for two cutoffs (tMyc 46 in black; tMyc 49 in red) are binned
according to sp1 binding. The smoothed mean (loess regression) of ag in function of tsp1 shows increasing average ag. The increase is more
pronounced for stronger c-Myc sites (red). (E–F) Boxplots for the gene susceptibilities ag and bg stratified in groups. To emphasize the dependence on
site strength we define groups as follows: the null group (Ø) has tMyc59 and tsp159; the S group has tsp149; the M group has tMyc49; the B group
has both tMyc49 and tsp149. Groups are mutually exclusive and group size is indicated above the panels. (E) The distribution for ag shifts upwards:
the B group has the highest median followed by the M group. (F) The distribution for bg shows no similar behavior. Comparable results are obtained
with different processing of the raw ChIP data (Figures S8 and S9).
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that it might be helped in this task by sp1. In conclusion,
the regulatory logic, or the way the c-Myc and sp1 signals
are integrated at human promoters leads to complex
relationships between transcription- factor binding and
expression phenotypes. As ChIP experiments for multiple
regulators in mammalian tissue are produced (14) we
expect similar analyses to probe further combinatorial
dependencies in mammalian gene regulatory systems.

SUPPLEMENTARY DATA

Supplementary Data is available at NAR online.
The complete lists of binding sites, together with the

software source code, the Gene Ontology analysis and the
comparison with previous studies can be found at: http://
wiki.epfl.ch/naeflab.
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