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Abstract

Predicting candidate genes using gene expression profiles and unbiased protein-protein interactions (PPI) contributes a lot
in deciphering the pathogenesis of complex diseases. Recent studies showed that there are significant disparities in network
topological features between non-disease and disease genes in protein-protein interaction settings. Integrated methods
could consider their characteristics comprehensively in a biological network. In this study, we introduce a novel
computational method, based on combined network topological features, to construct a combined classifier and then use it
to predict candidate genes for coronary artery diseases (CAD). As a result, 276 novel candidate genes were predicted and
were found to share similar functions to known disease genes. The majority of the candidate genes were cross-validated by
other three methods. Our method will be useful in the search for candidate genes of other diseases.
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Introduction

Many complex diseases like coronary artery disease result from

a complex interplay of multiple genes. A great challenging of

biomedical research is to identify candidate genes, which will

further help elucidate their roles in the pathogenesis of complex

diseases. Recent accumulation of reliable molecular interaction

data has boosted progress in the discovery of novel susceptibility

genes and fueled expectations about opportunities of computa-

tional approaches for distinguishing disease-related genes from

non-disease ones. Recent studies on the prediction of candidate

genes based on PPI networks alone or in addition to gene

expression profiles [1,2,3] could return potential candidate genes

and facilitate a better understanding of the role of their topological

features in the prediction of susceptibility genes so far, but all have

investigated only one or two network topological features. Previous

discoveries [4,5,6,7,8] demonstrated that direct interaction

partners of a protein are likely to share similar functions with it,

and causative genes of some complex disease tends to reside in the

same network communities such as biological modules, protein

complexes, pathways or subnetworks of a given biological network.

Some further graph-theoretical analyses of molecular interaction

networks [8,9,10,11] have succeeded in identifying biological

network modules and deciphering the association between genes

and diseases. To sum up, a unified underlying hypothesis states

that genes sharing similar network topological features with known

disease genes may result in the same phenotypes. Support Vector

Machine (SVM), assumed as ‘a machine-learning algorithm’ based

on the Statistical Learning Theory (SLT), is generally introduced

into tackling classification problems. SVMs could have good

classification effects and performances with a few learning samples

[12]. SVMs make predictions and give final classification decisions

through learning from existing knowledge automatically [13].

Recently, SVMs have become very popular in the applications of

a wide variety of biological questions or topics

[13,14,15,16,17,18], including gene classification, functional pre-

diction and cancer tissue classifications. To a certain extent,

identifying candidate genes for a complex disease could be

regarded as a problem of distinguishing disease genes from non-

disease genes, which is one of the right problems that SVMs work

on. Apart from that, with the accumulation of human protein-

protein interaction networks, it is also necessary to introduce novel

approaches to find out effective network topological features for

gene classifications, and then further aid in the prediction of

candidate disease genes.

According to the hypothesis that genes sharing similar network

topological features in biological network settings might result in

the same or similar phenotypes, we introduced a method, termed

eCTFMing, to identify effective combined network topological

features and then utilize them into the candidate gene predication.

In this article, we firstly identified whether the primary features are

effective or not in classification of disease- and non-disease genes,

and then screened out effective features from primary features.

Finally, a set of optima combined features was constructed to carry

out our final prediction. After that, functional coherence between

candidate and known disease genes was examined to verify
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associations of candidate genes with the disease. To evaluate the

performance, we compared eCTFMining with three other

methods.

Materials and Methods

In this article, we introduced a method, called eCTFMing, to

identify candidate disease genes by analyzing network topological

features of genes in a PPI network. Figure 1 shows the detailed

steps of this method(see in Figure 1).

Data Sources and Preprocessing
The interactions of the Human Protein Reference Database

(HPRD, http://www.hprd.org/) are all manually extracted from

literatures by expert biologists who read, interpret and analyze

the published data. In order to validate whether our approach

relies upon the PPI data, we used an unbiased data sources from

Sebastian Kohler et al. [19] to predict candidate genes. Sebastian

Kohler et al. [19] constructed a PPI network which had 258314

interactions between 13725 genes. This PPI network contains five

PPI datasets from Homo Sapiens, Mus musculus, Drosophila

melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae and

these datasets comprise interactions extracted from HPRD,

BIND and BioGrid and additional interactions from IntACT,

DIP and STRING.

Gene expression profiles of CAD were downloaded from the

NCBI Gene Expression Omnibus (GEO, http://www.ncbi.nlm.

nih.gov/geo/) database with the accession numbers being

Figure 1. Flowchart of the eCTFMing method. This flowchart contains three mainly steps: (a) Screening of optima combined feature, (b)
prediction strategies and (c) validation followed throughout this study.
doi:10.1371/journal.pone.0039542.g001
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GSE974, GSE1145 and GSE2014. During the preprocessing

step, differential expression analysis was performed to screen out

differentially-expressed genes within each profile. A global

median normalization was carried out. The differentially

expressed genes were identified by t-test and a p-value cutoff

of 0.05 was selected to find differentially expressed genes. An

intersection manipulation was carried out to get differentially-

expressed genes in common in these three profiles. It should be

noted that the chromosomal locations for the differentially-

expressed genes were downloaded from the Ensemble database

(http://www.ensembl.org/index.html). In addition, one hundred

and thirty eight known disease genes and one hundred and sixty

eight disease loci for this disease were acquired from the Online

Mendelian Inheritance in Man database (OMIM, http://www.

ncbi.nlm.nih.gov/sites/entrez?db =OMIM).

Construction of Positive, Negative and Test Sets
Positive genes were defined as CAD disease genes collected

from the OMIM online database and literature mining. Negative

genes consisted of all the remaining genes in the human PPI

network by excluding positive genes and differentially-expressed

genes. The test gene set is the intersection between the

differentially-expressed genes and those genes located within the

disease loci.

Selection of Network Topological Features
For all these three gene sets, we defined six commonly-used

measurements for each gene, gi, to evaluate its network topological

features in the PPI network.

N Degree (D): in the network, the degree of gene gi is equal to the

number of its adjacent links.

N Neighbor count of disease genes (N): N is the number of

neighboring disease genes among all the neighboring genes of

gene gi.

N Ratio of disease genes in neighbor (R): R is the ratio of the

count of neighboring disease genes to the count of all neighbor

genes.

N Betweenness centrality (B): the betweenness centrality of gene

gi is the count of shortest paths between other nodes that run

through the node of interest.

N Clustering coefficient (C): C is the ratio of the number of edges

between a vertex’s neighbors to the total possible number of

edges between the vertex’s neighbors.

N Mean shortest path length to disease gene (M): A shortest path

between two nodes corresponds to the minimum number of

edges that have to be traversed in a network to get from one

node to the other. In this study, we calculated the average

length of shortest paths from gene gi to all the disease genes.

According to these network topological measurements, we got

a vector V of topological features, labeled as (D, N, R, B, C, M),

and then tested whether there was a significant disparity between

positive and negative gene sets or not. In this step, a Wilcoxon

rank sum test analysis for each measurement was performed

between positive and negative sets and the corresponding

significance threshold (p value) was set to 0.05.

Identification of Effective Topological Features
A ten-fold cross-validation test was used to evaluate the

classification performance and then screen out optima training

set for SVM classifications. Six specific topological features were

the primary input features for training six support vector machines

with each one performing for 1,000 randomizations. The pre-

diction power was evaluated by precision, true positive rate (TPR)

and false positive rate (FPR). These three indexes were jointly used

to pre-screen these topological features.

Combination of Effective Features and Identification of
Optima Combined Features
It should be noted that at this step all possible combinations

were considered. If we have n features in the topological feature

vector V, there will be 2n combinations in total. Then we

combined the effective topological features, retrained the SVMs

using each combined feature out of 2n21 combinations and

performed the SVM classification predictions for 1,000 randomi-

zations. After that, the classification performance was evaluated by

precision, TPR and FPR. The best combinations were chosen as

optima combined features.

Prediction of Candidate Genes
The optima combined features were used to pick out candidate

genes of CAD from the test gene set. This process was performed

repeatedly for 10,000 randomizations. With each randomization,

we tested whether each gene could be classified to be a disease

gene. If so, this gene was finally assumed as a candidate gene in

our result.

Analysis of Functional Coherence
We applied BiNGO [20], a Cytoscape [21] plug-in, to assess

which Gene Ontology (GO, http://www.geneontology.org/)

terms were significantly overrepresented in a set of known disease

genes. Benjamini and Hochberg multiple testing corrections were

used to adjust the raw P-values with the significance threshold

being 0.05. Meanwhile, GO function annotations were acquired

for candidate genes. And then, we tested whether candidate genes

shared the same functions with known disease genes to validate the

associations of candidate genes with this disease.

The Web-based Gene Set Analysis Toolkit [22] (WebGestalt) is

a suite of tools for functional enrichment analysis in various

biological contexts. Here, we used it to compare candidate and

disease gene lists with genes in KEGG pathway contexts

respectively to identify significant pathways which candidate and

disease genes located in. A significant level of 0.01 was selected as

the cutoff for selecting significantly enriched pathway categories.

Results

Selection of Network Topological Features
According to results in Table 1 and Figure 2, we found that

these widely-used topological features did have more or less

contributions individually for classifications of positive and

negative genes. From the probability distribution in Figure 2a,

together with median results in Table 1, most CAD positive

genes were linked to more interacting neighbors than negative

ones in the network. To be more exact, a majority of negative

genes had less than eight links to other nodes. In contrast, there

were visible differences in their neighboring links between CAD

positive and negative genes when the values went higher than 8.

Noticeably, most positive genes were connected to more than 18

neighbors, indicating that CAD positive genes, to some degree,

are very likely to be hub node members in the network, which is

coincident with previous study [23]. In addition, nearly 87.3% of

negative genes had no direct interactions with known disease

genes, while 32% of positive genes had at least one link to known

disease genes. As for the betweenness centrality, positive genes

were with higher connectivity to create short path lengths

Predicting Candidate Genes through Their Features
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between two nodes across the network than negative genes.

These CAD positive genes will naturally experience much higher

visits because of this added connectivity (Figure 2b). When it

comes to the clustering coefficient, more than 50% of the

negative genes had a clustering coefficient of zero, which

indicated that the majority of CAD negative genes were likely

to be isolated nodes (Figure 2c). Additionally, disease genes had

slightly shorter path lengths than non-disease genes, and shortest

path lengths were ranging from two to four between disease

genes (Figure 2d). Therefore, it seems to be possible to utilize

these network topological features to train Support Vector

Machines in distinguishing CAD disease genes from non-disease

genes through network topological analysis.

Confirmation of Effective Topological Features
As for each of the topological features, a corresponding SVM

classifier was trained and its precision, true positive rate (TPR) and

false positive rate (FPR) were evaluated to confirm whether this

feature was effective in gene classification. One criterion was that

each of the resulting features we chose should have relative higher

values of classification precision and TPR but lower value of

classification FPR. In figure 3, we found the classification

performance of the betweenness centrality measurement was of

lower values of precision and TPR but higher value of FPR,

indicating that betweenness could not be selected as an effective

feature in further classification. And the classifiers of D, N and M

features had higher precision, respectively. We also found that

Table 1. Summary of Significance analysis and median values of the topological features for the positive genes and negative
genes.

Mean p value

Positive Set Negative Set

Degree 6.9805 16.735 5.11E215

Neighbor number of disease gene 0.1916 1.0427 0

Ratio of disease gene in neighbor 0.0263 0.1115 0

Betweenness centrality 2.41E+04 8.31E+04 1.40E213

Clustering coefficient 0.1048 0.0882 7.61E205

Mean shortest path length to disease gene 3.7379 3.2778 2.04E219

doi:10.1371/journal.pone.0039542.t001

Figure 2. Probability distributions of the ‘Degree’, ‘Betweenness Centrality’, ‘Clustering Coefficient’ and ‘Mean Shortest Path
Length’ topological features for positive and negative gene sets.
doi:10.1371/journal.pone.0039542.g002
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there were lower FPR using N and R features to train SVM and

the FPR of B and C features were both much higher than the

others. Afterwards, according to the threshold of precision, TPR

and FPR, five network topological features (C, D, M, N, and R)

were finally retained and confirmed as effective features for

distinguishing CAD disease genes from non-disease genes.

Combining Topological Features and Screening Optima
Combined Features by SVM
We retrained 31 (2521) SVMs for gene classification with each

of the corresponding combinations of five effective topological

features as feature inputs. Then their classification performances

were evaluated according to values of precision, TPR and FPR

(see in Figure 4). From the results, the combined features of N, R,

C and M could effectively distinguish disease from non-disease

genes. We defined these combined features as optima combined

features.

Disease Genes Prediction
During the SVMs trainings and predictions, we randomly

selected negative genes with an identical number of positive genes

from the negative gene set as the size of negative gene set was

much larger than positive one. For fear of the possible selection

bias, this step of disease gene prediction was performed for 10,000

times to get CAD candidate genes using the optima combined

features, while the negative gene inputs were different between

every two manipulations. After 10,000 predictions, the intersection

of each prediction was defined as our final prediction, and 276

candidate genes were finally returned.

Analysis of Functional Coherence
Functional coherence between candidate and known disease

genes was examined to verify associations of candidate genes with

the disease. In this step, we performed function and pathway

enrichment analyses for candidate and disease genes, respectively.

BiNGO, a Cytoscape plugin to assess overrepresentation of

Gene Ontology categories in Biological Networks, was used to

map the predominant functional themes of the tested gene set on

the GO hierarchy, and take advantage of Cytoscape’s versatile

visualization environment to produce an intuitive and customiz-

able visual representation of the results. Genes associated with the

same disease phenotype were found to share common cellular and

functional characteristics, as annotated in the Gene Ontology (See

in Figure S1 and Table S1). We found that a majority of CAD

candidate genes that had similar network topological features

tended to have a significantly functional relatedness to known

disease genes in following categories such as protein binding, receptor

binding, molecular transducer activity, signal transducer activity, receptor

activity, oxidoreductase activity, hydroxymethylglutaryl-CoA reductase

(NADPH) activity and so on. Moreover, a partial of CAD candidate

and known disease genes were annotated on the GO terms of

‘auxiliary transport protein activity’, ‘carbohydrate binding’ and ‘lipid

binding’. Genes with similar phenotypes might share similar

functions; therefore we compared the 276 candidate genes with

the cardiovascular GO annotation initiative genes (Table S1). We

found that 216 of the candidate genes were in the Cardiovascular

GO Annotation list of genes known to be associated with

cardiovascular processes. For example, one gene (CD55) was

found to influence monocyte cholesterol homeostasis and partic-

ipate in the development of CAD [24].

Figure 3. Performances of six topological features by SVM. A: Precision; B: TPR; C: FPR. (D) - Degree; (N) - Neighbor number of disease gene;
(R) - Ratio of disease gene in neighbor; (B) - Betweenness centrality; (C) - Clustering coefficient; (M) - Mean shortest path length to disease gene.
doi:10.1371/journal.pone.0039542.g003

Figure 4. Performances of combined topological features by SVMs. D - Degree; N - Neighbor number of disease gene; R - Ratio of disease
gene in neighbor; C - Clustering coefficient; M - Mean shortest path length to disease gene. The character labels represented the combined
topological features, respectively.
doi:10.1371/journal.pone.0039542.g004
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WebGestalt, an online analysis platform, is a suite of tools for

functional enrichment analysis in various biological contexts. It

was used to evaluate the overlaps of candidate and disease gene

lists with genes in KEGG pathway contexts respectively and then

significant pathways which candidate and disease genes located in

were identified. We found many candidate genes participated in

specific KEGG pathways where known disease genes were over-

represented and these two gene sets shared 60 (nearly 25%)

common KEGG pathways such as cytokine-cytokine receptor interaction,

Regulation of actin cytoskeleton, Focal adhesion, MAPK signaling pathway,

Adipocytokine receptor signaling pathway, VEGF signaling pathway, Type I

diabetes mellitus, hematopoietic cell lineage, and complement and coagulation

cascades and so on (Table S2).

One interesting result we found was that known and candidate

disease genes were over-represented in the KEGG pathway of

cytokine-cytokine receptor interaction (Figure 5), which might

suggest involvement of inflammation in the CAD process. In this

pathway, candidate genes like LTBR, IFNGR1, SF14 and IL1R2

tended to have direct interactions with known disease genes. Some

of our results had been cross-validated by previous studies. It is

known that the cytokine network is a complex and dynamic system

composed of numerous biological responses in human body.

Cytokines and their interaction with the coagulation system play

important roles, especially [25] in the maintenance of the

thrombo-hemorrhagic balance in vivo in human subjects. Martins

et al. [26] declared that cytokine profiles may have a role in

differentiating patients with CAD with myocardial infarction from

those with chest pain due to other disorders and in deciphering the

role of inflammation in the pathogenesis of CAD. Tiroch et al. [27]

argued that gene expression analysis in atherectomy specimens

derived from restenotic coronary lesions indicated activation of

Interferon gamma signaling in neointimal smooth muscle cells,

which, in some way, verified the role of the candidate gene, the

Interferon gamma (IFNG) gene, in the pathogenesis of CAD. Kim

et al. [28] further suggested IFNG gene may be one of the factors

determining the extent of CAD in the Korean population. Also,

ghrelin encoded by the GHR gene, a novel endogenous ligand for

the growth hormone secretagogue receptor, was considered [29] to

exert a protective effect against atherosclerosis. The LEPR gene,

a member of the family of cytokine receptors type I, encodes the

protein of leptin, which is also an independent risk factor [30,31]

for CAD. Because thrombus formation is a major cause of acute

coronary events and leptin was shown previously to facilitate ADP-

induced platelet aggregation. Leptin-induced platelet activity

required activation of a signaling cascade that included the long

form of the leptin receptor, three kinases of JAK2, PI3K and

PKB/Akt, IRS-1, and PDE3A. In addition, smooth muscle cell

(SMC) proliferation in atherosclerosis was found [32] to mediate

through the interaction of growth factors like platelet-derived

growth factor-RB (PDGF-RB) and insulin-like growth factor-1

(IGF-1) and their receptors (R).

Another interesting findings was that known and candidate

disease genes were over-represented in the KEGG pathway of

hematopoietic cell lineage (Figure 6), which might also suggest

Figure 5. The detailed interaction information of known and candidate disease genes in the KEGG pathway of cytokine-cytokine
receptor interaction. Blue nodes represent candidate disease genes, and the yellow ones represent known disease genes.
doi:10.1371/journal.pone.0039542.g005
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involvement of inflammation in the CAD development. In the

pathway, IL2RA, IL3, CD9, CD10, CD25 and CD117 appeared

to interact with known disease genes directly, while some of our

results were verified by previous CAD-related studies. Tabata et al.

[33] declared that engagement of one candidate gene, namely the

cell-adhesion CD44 gene, with low molecular weight hyaluronan

was centrally involved in the inflammatory pathogenesis of

athelosclerotic plaques through migration of monocytes and

foamed macrophage differentiation. Hagg et al. [34] showed that

pro-inflammatory cytokines could affect the expression of CD44

and also examined the role of elevated CD44 expression levels in

human macrophages. To be more exact, an IL-6-CD44 feedback

loop was found in macrophages and this positive feedback loop

may be the cause of aggravating atherosclerosis development.

Figure 6. The detailed interaction information of known and candidate disease genes in the KEGG pathway of hematopoietic cell
lineage. Blue nodes represent candidate disease genes, and the yellow ones represent known disease genes.
doi:10.1371/journal.pone.0039542.g006

Figure 7. The detailed interaction information of known and candidate disease genes in the KEGG pathway of complement and
coagulation cascades. Blue nodes represent candidate disease genes, and the yellow ones represent known disease genes.
doi:10.1371/journal.pone.0039542.g007
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Wolf et al. [24] found that differential CD14-dependent receptor

clustering within microdomains experienced noticeable effects in

response to in vivo lipopolysaccharide (LPS) and/or atherogenic

lipoprotein activation. Moreover, they observed more evidences of

increased DRM-association of the GPI-anchored proteins CD14,

CD55, CD64, the scavenger receptors CD36, CD91 and CD163,

the integrin CD11a, and complement receptor 3 complex

CD11b/CD18 from patients with CAD.

In figure 7, we assumed the KEGG pathway of complement

and coagulation cascades might be CAD risk related. Candidate

and known disease genes in this pathway, appearing to be altered

in patients with CAD, acted an important role [35] in the

complement cascade and the innate immunity as well as in the

regulation of proteolytic cascade involved in inflammatory and

coagulation processes. Apart from that, the increased levels or

genetic mutations in the F2 receptor (F2R) involved in coagulation

may play a role in the pathogenesis of coronary artery disease. By

virtue of its strong correlation to plasma TNF-alpha, F2R may be

an important mediator [36] of the effects of inflammation on the

vessel wall, and this study further provided promising strategies of

blocking F2R to the treatment of human atherosclerosis. Another

study demonstrated that in men F2R genetic variants tended to

influence the risk of the occurrence of myocardial infarction

mainly through an interaction with IL6 serum levels. Changes in

plasminogen activator inhibitor 1 and tissue-type plasminogen

activator (PLAT gene) [37] were detected during exercise in

patients with coronary artery disease. Karlsson et al. [38] argued

that there might be a role of plasma and tissue-type plasminogen

activator in coronary atherosclerosis, suggesting that treatment

with recombinant tissue-type plasminogen activator (PLAT), in

unstable coronary artery disease in men reduced myocardial

ischemia.

Comparison with other Methods
Similar to our method, Prioritizer and PandS methods could

be used to rank genes related to a specific disorder with the

assumption that disease genes in a specific disorder are usually

functionally related. Also, on the basis of the assumption that

phenotypically similar diseases are caused by functionally related

genes, CIPHER [6] could integrate human protein–protein

interactions, disease phenotype similarities, and known gene–

phenotype associations effectively, assuming as a global network-

based inference approach for human disease gene identification.

While, Prioritizer [39] ranks genes based on their functional

interactions with genes in different susceptibility loci. As for

PandS(PROSPECTR and SUSPECTS combined) [40], PRO-

SPECTS differentiates between disease and non-disease genes

using sequence-based features; SUSPECTS scores candidate

genes using the PROSPECTR algorithm and also assess the

similarity between their annotations and those of known disease

genes. To validate the results with those obtained by our method,

the Prioritizer, PandS and CIPHER methods were introduced to

explore CAD candidate genes through the genome-wide scan of

CAD susceptibility loci. From the results, we can safely draw

a conclusion that our candidate CAD genes could be cross-

validated by these well-known disease gene identification

methods and show close associations in shared disease risk

pathways or GO functional categories with known CAD disease

genes (see in Table S1).

Discussion

Coronary artery disease, as one of complex diseases, is

assumed to be caused by the combined effects of multiple

disease genes. We found that the eCTFMining method could

take into account of different network topological features of

genes in the biological network to characterize their possible

functional relationships with known disease genes and further aid

in the disease gene identification. In our research, CAD-related

genes are likely to have the following characteristics: i) they tend

to be hubs in the network, often with more links to other genes

than non-disease genes; ii) these genes follow the rule of ‘guilty

by association’, and if there are more disease-related interacting

neighbors for a gene, this gene is more likely to be a candidate;

iii) the neighborhood of one disease gene is well connected in the

network namely that CAD disease genes have much higher

clustering coefficient values than non-disease genes; and iv)

disease genes are likely to locate in small-world subnetworks as

the mean shortest path length between disease genes is generally

less than 4 (see in Figure S2).

It must be noted that several human processes like the cytokine-

cytokine receptor interaction pathway, the hematopoietic cell

lineage pathway, the complement and coagulation cascades

pathway show significant associations with coronary artery disease,

which also suggest involvement of inflammation in the disease

development. Thus, there might be common mechanisms between

the inflammatory pathogenesis and coronary artery disease. Apart

from that, some attentions should be paid to those pathways as

they mainly consist of CAD candidate genes and known disease

genes. Here, we declare that studies on CAD disease-related

pathways might provide insights into possibly promising drug

target discovery.

Different from other methods based on single topological

feature, our method takes advantage of all the commonly-used

network topological features and then searches the optima feature

combinations for CAD disease gene identification. Our method

has returned affluent results in CAD disease gene prediction and

a majority of them have been cross-validated by another method

or two. Few candidate genes that are not verified by current

knowledge systems would help researchers to create new

hypothesis for experiments. However, our method relies partly

on the confidence in, and quality of, PPI or known disease gene

datasets. To sum up, with further improvement of protein-protein

interaction networks and disease genes databases, the performance

of our method could be more effective and dependable.

Supporting Information

Figure S1 The GO function annotation of known disease
genes and candidate disease genes. Dark yellow circular

nodes are more significantly overrepresented by known disease

genes. White nodes are not significantly overrepresented; they are

included to show the yellow nodes in the context of the GO

hierarchy. The area of a node is proportional to the number of

genes in the test set annotated to the corresponding GO category.

The square nodes are significantly overrepresented by known and

candidate disease genes.

(TIF)

Figure S2 Distribution of the topological features of
positive/negative genes and candidate genes.

(TIF)

Table S1 List of 276 candidate disease genes.

(DOC)

Table S2 Pathway list of enrichment by known and
candidate disease genes.

(DOC)
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