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The Arp2/3 complex generates branched actin networks at different locations of
the cell. The WASH and WAVE Nucleation Promoting Factors (NPFs) activate the
Arp2/3 complex at the surface of endosomes or at the cell cortex, respectively. In
this review, we will discuss how these two NPFs are controlled within distinct, yet
related, multiprotein complexes. These complexes are not spontaneously assembled
around WASH and WAVE, but require cellular assembly factors. The centrosome,
which nucleates microtubules and branched actin, appears to be a privileged site
for WASH complex assembly. The actin and microtubule cytoskeletons are both
responsible for endosome shape and membrane remodeling. Motors, such as dynein,
pull endosomes and extend membrane tubules along microtubule tracks, whereas
branched actin pushes onto the endosomal membrane. It was recently uncovered that
WASH assembles a super complex with dynactin, the major dynein activator, where the
Capping Protein (CP) is exchanged from dynactin to the WASH complex. This CP swap
initiates the first actin filament that primes the autocatalytic nucleation of branched actin
at the surface of endosomes. Possible coordination between pushing and pulling forces
in the remodeling of endosomal membranes is discussed.

Keywords: HSBP1, FAM21, WASH, CCDC53, SWIP, strumpellin, dynactin, capping protein

INTRODUCTION

Active movement of cells or within cells is fueled by dynamics of cytoskeletal elements, such as
actin filaments and microtubules together with associated molecular motors. Monomeric globular
actin is polymerized into linear or branched structures of filamentous actin. Some linear actin
cytoskeletons, e.g., stress fibers, can exert contractile forces by means of associated myosins,
but branched actin structures also generate forces, pushing forces in this case, by their mere
polymerization. The key role of branched actin is to remodel membranes during cell migration,
endocytosis and intracellular trafficking.

Branched actin polymerization is due to a conserved and ubiquitous heptameric complex, the
Arp2/3 complex, which nucleates a new actin filament off a pre-existing one (Pollard, 2007). The
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Arp2/3 complex is activated by a conformational change, in
which the two Actin-related proteins it contains, Arp2 and
Arp3, come into close proximity, thus mimicking the end of an
actin filament, which can then initiate a new filament. Arp2/3
activity is promoted by the binding of Nucleation Promoting
Factors (NPFs) to two sites on the Arp2/3 complex (Zimmet
et al., 2020). Since an actin filament is required to generate
new filaments by the Arp2/3 complex, the branching reaction is
autocatalytic: the products of the reaction can become substrates
of subsequent reactions. This raises the question of where the
first filament comes from Achard et al. (2010). A number of
answers have been proposed: short and freely diffusing actin
filaments might be generated by cofilin-induced severing of
previous filaments (Ichetovkin et al., 2002; Chen and Pollard,
2013), primer filaments might be nucleated by independent
nucleators, such as formins or Spire (Zuchero et al., 2009; Isogai
et al., 2015), or by the Arp2/3 complex itself activated in this
case by atypical activators, such as SPIN90, which do not require
a pre-existing filament (Wagner et al., 2013). These various
mechanisms are not mutually exclusive and can be combined
(Cao et al., 2020).

NPFs carry their Arp2/3 activation motif, commonly referred
to as WCA, at their C-terminus. The WCA motif induces
a conformational change of the Arp2/3 complex and loads
a first actin molecule on the rearranged Arp2/3 (Pollard,
2007). WCA motifs are constitutively active, since they fold
upon binding their partners, actin and Arp2/3 (Chereau et al.,
2005; Derivery et al., 2009a; Zimmet et al., 2020). Therefore,
in order to regulate Arp2/3 activation, WCA motifs must
be masked either in an autoinhibited conformation, as for
N-WASP, or within a stable multiprotein complex, as for WAVE
(Derivery and Gautreau, 2010). Four families of NPFs, WAVE,
WASH, WASP, and WHAMM, coexist in mammalian cells
with an overall division of labor, consisting in activating the
Arp2/3 complex at different subcellular locations (Molinie and
Gautreau, 2018). For example, WAVE generates branched actin
networks at the cell cortex and especially in adhesive protrusions
such as lamellipodia, whereas WASH generates branched actin
networks at the surface of endosomes and around centrosomes.
Multiprotein complexes containing NPFs are responsible for the
subcellular localization of the NPF, its maintenance in an inactive
state and WCA exposure upon binding to upstream activators
(Molinie and Gautreau, 2018).

ASSEMBLY OF WASH AND WAVE
COMPLEXES

WASH and WAVE Are Regulated Within
Analogous Complexes
WAVE has been purified from bovine brain and HeLa cells by
classical chromatography and found to be contained within a
pentameric complex (Sharon et al., 2002; Gautreau et al., 2004).
A canonical WAVE complex is composed of CYFIP, NCKAP,
ABI, WAVE and BRK1 subunits, with isoform variations due
to the presence of 2 or 3 paralogous genes for 4 out of the 5

subunits. A detailed map of subunit interactions was derived
from in vitro reconstitutions first and then crystallography
(Gautreau et al., 2004; Innocenti et al., 2004; Chen et al., 2010).
Overall a trimeric subcomplex composed of ABI-WAVE-BRK1 is
covered by a platform made of a dimeric subcomplex composed
of the large subunits NCKAP and CYFIP. The native and properly
reconstituted WAVE complexes are inactive NPFs, because their
WCA motif is masked (Derivery et al., 2009a; Ismail et al., 2009;
Chen et al., 2010).

WASH has been purified by conventional and affinity
chromatography and found to be also contained within a
pentameric complex (Derivery et al., 2009b; Gomez and
Billadeau, 2009; Jia et al., 2010). The WASH complex is composed
of SWIP, Strumpellin, FAM21, WASH, and CCDC53 subunits.
These subunits have been recently renamed WASHC1-5, but we
will use here the original names for easier recognition in the vast
majority of publications. A single gene usually encodes subunits
of the WASH complex with the exception of WASH and FAM21,
which are encoded by paralogous genes in mammalian genomes
(Linardopoulou et al., 2007; Gomez and Billadeau, 2009).

Jia and colleagues have recognized analogous pairs of subunits
in WAVE and WASH complexes using HHPred analysis
(Jia et al., 2010). CYFIP corresponds to SWIP, NCKAP to
Strumpellin, WAVE to WASH and BRK1 to CCDC53. The
last subunit ABI also probably corresponds to FAM21, even
though this pair is below the detection threshold. The HHPred
analysis, which compares consensus sequences derived from
multiple orthologs of the pair, catches distant relationships,
which typically escape BlastP analysis. Indeed, no hybrid complex
between WAVE and WASH subunits has been detected so far.
In evolutionary distant species, when the WAVE gene is lost,
the whole set of genes encoding WAVE complex subunits is
also lost, and similarly for WASH (Veltman and Insall, 2010).
These observations further highlight the importance of WAVE
and WASH complexes and their distinct functions.

Assembly Lines of WAVE and WASH
Complexes
The question of how nascent subunits eventually assemble into a
functional multiprotein complex has rarely been addressed, but
has turned out to be important. In most cases, it appears that
expression levels of subunits are somehow coordinated and that
remaining excess subunits are degraded (Taggart et al., 2020).
This is probably why multiprotein complexes are frequently
destabilized when one of their subunits is missing in knock-down
or knock-out experiments. This has been consistently reported
for the WAVE complex (Kunda et al., 2003; Innocenti et al.,
2005; Steffen et al., 2006; Derivery et al., 2008) and the WASH
complex (Derivery et al., 2009b; Jia et al., 2010; Gomez et al., 2012;
Visweshwaran et al., 2018).

The assembly of the WAVE complex was first recognized as a
multi-step process. Its smallest subunit, BRK1, is the only subunit
in excess in the cytosol (Gautreau et al., 2004) and this free form
is a homotrimer assembled along a coiled coil (Derivery et al.,
2008; Linkner et al., 2011). Within the WAVE complex, a single
molecule of BRK1 associates with single molecules of ABI and
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WAVE through a heterotrimeric coiled coil (Chen et al., 2010).
A dissociation step thus had to exist from the free homotrimer
to the heterotrimer (Figure 1). But it is not known whether this
transition is spontaneous or facilitated. In the analogous situation
of the WASH complex, this process is facilitated.

The HSBP1 assembly factor promotes the homo- to hetero
trimer transition of CCDC53, the BRK1 equivalent in the
WASH complex. HSBP1, Heat Shock Factor Binding Protein
1, inhibits the HSF1 transcription factor, which is active as
a trimer organized along coiled coils (Satyal et al., 1998;
Pockley, 2003). HSBP1 itself is also a free homotrimer organized
along a coiled coil (Visweshwaran et al., 2018). When the two
homotrimers, HSBP1 and CCDC53, are mixed in the test tube,
they spontaneously form a mixed heterotrimer, containing a
single subunit of CCDC53 (Visweshwaran et al., 2018). So, this
homo-to-hetero trimer transition, which was inferred for the
WAVE complex, was shown to require an assembly factor in the
case of the WASH complex.

The defect associated with HSBP1 inactivation in cells is the
absence of a trimeric form of the WASH complex containing

the 3 “small” subunits, CCDC53, WASH and FAM21 (but
not Strumpellin, nor SWIP). An equivalent subcomplex was
not detected in cells for the WAVE complex, but is likely to
exist since the in vitro reconstitution of the WAVE complex
involved combining the trimeric subcomplex of small subunits
with the dimer of the large subunits NCKAP-CYFIP (Chen
et al., 2010, 2014). Surprisingly, HSBP1 inactivation did not
affect levels of the WASH pentameric complex, even though it
did impair WASH associated functions in endosomal sorting
(Visweshwaran et al., 2018). The WASH trimeric complex
must thus be active. This conclusion is consistent with the
fact that Strumpellin inactivation does not abolish WASH-
dependent actin polymerization at the surface of endosomes
(Tyrrell et al., 2016).

In the case of the WASH complex, it is not yet known
how the pentameric complex is built. The intact levels of
pentameric WASH in HSBP1 depleted cells argue against the
simple addition of the dimeric complex to the trimeric complex,
but this observation can also be accounted for if pentamers are
built from trimers with a much faster rate than the one of trimer

FIGURE 1 | Model of assembly and activation of WAVE and WASH complexes. Smallest subunits, BRK1 and CCDC53 respectively, also exist as free trimers, which
are precursors of the complexes. In order to assemble a first trimeric subcomplex, these trimers have to be dissociated in order to contribute a single subunit to
complex assembly. HSBP1, a centrosomal protein, promotes this step in the case of the WASH complex. Nudel promotes the assembly of the pentameric WAVE
complex. The WAVE complex is inactive and must be activated by the small GTPase Rac1 and through phosphorylation of the WAVE protein within the complex.
The WASH complex, in contrast, is active already in its intermediate trimeric state. Activation of the fully assembled WASH complex requires phosphorylation and
K63-linked ubiquitination of WASH.
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assembly. In the case of the WAVE complex, Nudel has been
reported to promote pentameric WAVE assembly. Indeed this
protein is engaged in multiple interactions with subunits of both
WAVE subcomplexes (Wu et al., 2012). However, the structural
transition in WAVE complex assembly that Nudel promotes is
not yet established.

The Centrosome, a Privileged Site for
Complex Assembly
The assembly factor HSBP1 is very concentrated in the peri-
centriolar material surrounding centrioles. This centrosomal
localization has been seen in Dictyostelium ameba as well as
in tissue and cell line of human origin (Visweshwaran et al.,
2018). The other assembly factor, Nudel, is an adaptor of the
dynein microtubule motor, which transports cargoes to the
minus ends of microtubules. Consistently, Nudel accumulates
at centrosomes (Feng et al., 2000). When cells are produced
without centrosomes through the use of centrinone, a chemical
inhibitor that blocks their duplication, HSBP1 becomes diffuse
and the steady-state levels of WASH complexes are reduced
(Visweshwaran et al., 2018). Together these observations
suggest that the WASH complex, and probably the WAVE
complex, are assembled at the centrosome. The concentration
of reactants in a single defined location compared to the
whole 3D volume of the cell might facilitate assembly of these
multiprotein complexes.

The pericentriolar material is known to be composed of
many coiled coil containing proteins (Kuhn et al., 2014), which
could contribute to the homo-to-hetero trimer transition. The
protein Pericentriolar Material 1 (PCM1) is a centrosomal coiled
coil protein, which appears to anchor the WASH complex at
the centrosome, where it promotes the nucleation of branched
actin networks (Farina et al., 2016). WASH also binds to the
centrosomal proteins, γ-tubulin and BLOS2 (Monfregola et al.,
2010). The WASH complex is active at the centrosome (Farina
et al., 2016). WASH-dependent centrosomal branched actin
was found to anchor centrosomes to the nuclear envelope in
interphase cells through the LINC complex (Obino et al., 2016).
In mitotic cells, WASH-dependent centrosomal branched actin
promotes the formation of spindle microtubules at the beginning
of mitosis, in prometaphase (Plessner et al., 2019) and on
the opposite might be responsible for the decrease of spindle
microtubules during mitotic exit in anaphase (Farina et al., 2019).

Centrosomes are also a privileged site for the degradation
mediated by the ubiquitin-proteasome pathway. Misfolded
proteins are degraded by the ubiquitin-proteasome pathway and
accumulate around centrosomes when degradation capacities
are overwhelmed (Johnston et al., 1998; Kopito, 2000). The
term aggresome has been coined to designate this central
aggregation due to dynein mediated transport. Nudel was shown
to participate in this transport of misfolded proteins (Wan
et al., 2012). It actually makes sense that centrosomes are
privileged sites for both assembly of multiprotein complexes and
degradation of misfolded proteins. Indeed, complex assembly
often fails for subunit unbalance: incomplete assemblies cannot
reach the native state of the full complex, and thus degradation

of improper assembly intermediates prevents their potential
deleterious effects.

REGULATION OF WAVE AND WASH
COMPLEXES

Regulation of Levels and Activity
The regulation of levels of multiprotein complexes can in
principle be achieved by the coordinated regulation of the
expression of all subunits or by the regulation of the rate of
their assembly, since subunits are only stable when part of
their corresponding complex. There are numerous publications
reporting up- or down- regulation of a single subunit from a
multiprotein complex. For examples, the Arp2/3 and WAVE
complexes are up-regulated in numerous cancers (references in
Molinie and Gautreau, 2018), but the mechanisms responsible for
these cases of deregulation are not known. The WASH complex is
also up-regulated in mammary carcinomas (Visweshwaran et al.,
2018). In this case, HSBP1 is also overexpressed, suggesting that
tumor cells manage to produce more WASH complexes through
the up-regulation of the HSBP1 assembly factor. Furthermore,
HSBP1 overexpression is associated with poor metastasis-free
survival of breast cancer patients.

Regulation of the activity of WAVE and WASH complexes is
more often studied than the regulation of their levels. Activation
of WAVE and WASH complexes involves the exposure of the
so-called WCA motif that activates the Arp2/3 complex. At
resting state, the WCA motif is masked and post-translational
modifications of the N-terminal domains of WAVE and WASH
subunits appear to play a critical role to release the masked
WCA. Phosphorylation of Tyr 150 of WAVE2 by the Abl
kinase is required for WAVE activity (Leng et al., 2005; Stuart
et al., 2006; Chen et al., 2010). Similarly, phosphorylations of
Tyr141 and 261 by Lck and Btk, respectively, were found to
be critical for WASH activity (Huang et al., 2016; Tsarouhas
et al., 2019). Polyubiquitination of WASH on Lys 220 with
K63-linked chain synthesized by the MAGE-L2/TRIM27 E3
ubiquitin ligase activates the WASH complex in an in vitro assay
(Hao et al., 2013).

The upstream regulation of WAVE and WASH complexes,
however, considerably differ. The WAVE complexes depend on
the small GTPase Rac1 for their recruitment and activation
at the lamellipodial edge (Miki et al., 1998; Steffen et al.,
2004). Rac1 collaborates with the other small GTPase Arf1 for
WAVE activation (Koronakis et al., 2011; Humphreys et al.,
2012). In contrast, among the many binding partners of the
WASH complex, it is not clear which one is responsible for
its activation, if any one of them is. Recruitment of the
WASH complex at the surface of endosomes involves multiple
binding sites for the retromer along the extended tail of the
FAM21 subunit (Harbour et al., 2012; Jia et al., 2012; Helfer
et al., 2013). However, endosomal recruitment of the WASH
complex also occurs in the absence of functional retromer
(McNally et al., 2017; Evans et al., 2020). HRS has been
involved in retromer-independent recruitment, even if HRS and
WASH do not belong to the same endosomal microdomains
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(MacDonald et al., 2018). Direct interaction of the WASH
complex with endosomal lipids is also likely to contribute
to endosomal recruitment (Derivery et al., 2009b, 2012).
Phosphoinositides, such as phosphatidylinositol 3-phosphate
(PI3P) and phosphatidylinositol 4-phosphate (PI4P), appear
critical for WASH recruitment and activation on endosomal
microdomains (Dong et al., 2016; Singla et al., 2019).

Roles of the WASH Complex
The WASH complex is involved in endosomal cargo sorting.
WASH was first implicated in the retrograde trafficking of the
cation-independent mannose-6-phosphate receptor, CI-MPR,
even if the retromer is not involved in CI-MPR trafficking
against all expectations (Gomez and Billadeau, 2009; Kvainickas
et al., 2017; Simonetti et al., 2017; Evans et al., 2020). WASH
was repeatedly implicated in cargo recycling toward the plasma
membrane, in the case of β2 adrenergic receptor (Puthenveedu
et al., 2010), α5/β1 integrins (Zech et al., 2011), EGFR (Gomez
et al., 2012), GLUT1 (Piotrowski et al., 2013; Lee et al., 2016), TCR
(Piotrowski et al., 2013), ATP7A copper transporter (Phillips-
Krawczak et al., 2015), LDLR (Bartuzi et al., 2016) and several
others. This activity relies on interaction of the WASH complex
with the so-called Commander assembly of complexes, composed
of retromer and retromer-like components, retriever and CCC
complexes (Phillips-Krawczak et al., 2015; Bartuzi et al., 2016;
McNally et al., 2017; Chen et al., 2019).

The branched actin networks that WASH generates directly
contribute to receptor sorting provided that they have an affinity
for actin (Puthenveedu et al., 2010; MacDonald et al., 2018).
Branched actin maintains lipidic microdomains diffusing in the
endosomal membrane, because, when actin polymerization is
impaired, they coalesce into a single domain, where WASH
appears unable to detach from endosome membrane as seen
by FRAP (Derivery et al., 2012). This behavior is best observed
when endosomes are artificially enlarged by the expression of an
active form of Rab5. Endosomes have occasionally been reported
to clump when WASH is inactivated or actin polymerization is
inhibited (Drengk et al., 2003; Derivery et al., 2009b; Gomez et al.,
2012; Gautreau et al., 2014). This clumping phenotype might
be related to the lack of dynamics of endosomal microdomains
and the absence of their actin shell. But the most consistently
reported phenotypes are pronounced tubulation of endosomes
(Derivery et al., 2009b; Gomez and Billadeau, 2009), enlarged
spherical endosomes (Gomez et al., 2012), or a mixture of
both (Fokin et al., 2021). The reason for the predominance
of one phenotype over the other is not known, but defective
cargo sorting and defective generation of transport intermediates
similarly characterize both phenotypes.

Endosomes are tubulo-vesicular structures, so the tubulation
phenotype in perturbed conditions is the exaggeration of
a normal process. It simply reveals that pulling endosomal
membranes by microtubule motors continues when branched
actin formation is impaired. Tubular extensions containing
sorted cargo proteins give rise to autonomous transport
intermediates upon scission. When scission is blocked with a
dynamin chemical inhibitor, WASH can be clearly localized
at the base of endosomal tubules, at the right location to

perform scission (Derivery et al., 2009b; Figure 2). When
endosomes enlarge homogeneously, remaining spherical, upon
WASH inactivation (Gomez et al., 2012), the defect can be
interpreted as a role of branched actin in the generation
of membrane tubules. Branched actin is required to stabilize
tubules containing β2 adrenergic receptor (Puthenveedu et al.,
2010). Mechanistically, branched actin would push against
the bulk of the endosome in this case to contribute to
tubule formation, in a manner most similar to the role of
branched actin in yeast endocytosis (Kaksonen and Roux, 2018).
In mammalian cells, branched actin surrounds the neck of
clathrin-coated pits like a compressive collar and contribute
to scission together with dynamin (Collins et al., 2011).
Unfortunately, the ultrastructural organization of branched actin
at the surface of endosomes is not yet elucidated. A major
difference between endocytosis and the generation of transport
intermediates from endosomes is that the latter require, in
addition to branched actin, microtubules and microtubule
motors, as seen in in vitro reconstitutions (Bananis et al., 2003;
Murray et al., 2008).

Role of Dynactin in Initiating Endosomal
Branched Actin
Dynactin is a large megadalton complex that promotes the
activity and processivity of the minus end directed microtubule
motor dynein (Schroer, 2004). Dynactin is organized along a
minifilament made of 8 molecules of Actin-related protein 1
(Arp1), one molecule of Arp11 and one molecule of β-actin
(Urnavicius et al., 2015). This actin-like filament is capped by
the capping protein. The capping protein, in fact a heterodimer
of CPα and CPβ, terminates the elongation of actin filaments
in the cytosol. The presence of an actin-like minifilament in a
complex oriented toward microtubule and microtubule motors
has remained a puzzle since its discovery almost 30 years ago
(Lees-Miller et al., 1992). The WASH complex also recruits the
capping protein. It does so through a so-called CPI motif at
the C-terminus of the FAM21 subunit (Derivery et al., 2009b;
Hernandez-Valladares et al., 2010; Jia et al., 2010). This CPI motif
is unique to the WASH complex, as the equivalent subunit in
the WAVE complex, ABI, rather displays an SH3 domain at its
C-terminus.

Dynactin can be found throughout the cytosol, but it is
enriched at the surface of endosomes (Habermann et al., 2001;
Yeh et al., 2012), where it interacts with the coat complex ESCPE-
1, composed of dimers of SNX1/SNX2 on the one hand and of
SNX5/SNX6 on the other hand (Wassmer et al., 2009; Simonetti
et al., 2019). Dynactin/dynein, as well as kinesins, participate in
the tubulation of endosomes (Hunt et al., 2013; Brown et al.,
2014; Delevoye et al., 2014; Marchesin et al., 2015). Dynactin
can be colocalized and coimmunoprecipitated with the WASH
complex, indicating that the two molecular machines directly
or indirectly interact (Fokin et al., 2021). When mixed in the
test tube, the CPI of the WASH complex appropriates capping
protein from dynactin. The Arp1/11 minifilament of dynactin
can then be elongated with actin and thus provides the first
actin filament for the Arp2/3 branching reaction controlled by
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FIGURE 2 | Model of WASH-dependent generation of endosomal branched actin. (A) Dynactin is an essential adaptor for dynein-mediated transport. Dynactin
interacts with the WASH complex, which uncaps its actin-like minifilament through its CPI motif. (B) Uncapped dynactin elongates an actin filament, which can then
serve as a substrate for Arp2/3 mediated branching induced by its WCA motif. (C) The actin-like minifilament of dynactin is embedded in the branched actin network
and thus undergoes a retrograde flow. The membrane tube is elongated by the pulling force of dynein, whereas WASH-Arp2/3 at the neck of the membrane tube
pushes against the bulk of the endosome. These opposing forces are likely to stretch the membrane and promote its scission. WASH dependent branched actin
networks were also reported to regulate the organization of lipidic microdomains and endosomal tubulation.
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the WCA of the WASH subunit (Figure 2). This molecular
scenario accounts for the facts that both dynactin and the CPI
motif of FAM21 are required for the generation of endosomal
branched actin networks.

The Arp1/11 minifilament of dynactin is embedded in the
branched actin network it initiates. As a consequence, it should
be subjected to the so-called retrograde flow due to extension of
filaments abutting the WASH displaying membrane. It remains
to be seen whether dynactin is complexed with dynein motors
and adaptors when embedded in the branched actin network. It
might well be, since the minifilament can accommodate dynein
adaptors on its sides and elongate an actin filament from its
barbed end. Structurally, there seems to be no steric hindrance
(Urnavicius et al., 2015, 2018). If it is indeed the case, then dynein
pulling the membrane tubule and branched actin pushing against
the bulk of the endosomes stretch the neck of the tubule. This
mechanical strain can favor either tubule elongation or scission of
the tubule at its base, in agreement with the phenotypes described
upon WASH knock-down or knock-out.

CONCLUSION

Many studies of the WASH complex have been guided by its
analogy with the WAVE complex. Its assembly bears a striking
resemblance to the one of WAVE, as far as this homo-to-hetero
trimer transition is concerned, for example. This allowed the
identification of an assembly factor HSBP1, which reinforces
the ties of WASH with the centrosome, that is a site of both
assembly and functioning of the WASH complex. Studying
the assembly of WASH also revealed a novel subcomplex, the

trimeric WASH-CCDC53-FAM21 that appears to carry many, if
not all, of the WASH associated functions. Assembly regulation
seems to the major way that tumor cells use to upregulate the
WASH complex in invasive cancers. The WASH complex is
distinct, however, from the WAVE complex with the numerous
interactions it makes with molecular machines associated with
microtubules. This is naturally in line with the essential role of
microtubules in the shape, motility and function of endosomes.
One of the most striking examples of cooperation is the use of
dynactin to generate a first primer filament and thus to initiate
endosomal branched actin networks. Assembly of molecular
machines and their collaboration within super-complexes are
major challenges ahead of us for our understanding of the
intimate functioning of WASH-dependent endosomal sorting.
It requires endeavors in in vitro reconstitutions in combination
with cell biology.
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