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Abstract

Pseudokinases lack essential residues for kinase activity, yet are emerging as important regulators of signal transduction
networks. The pseudokinase STRAD activates the LKB1 tumour suppressor by forming a heterotrimeric complex with LKB1
and the scaffolding protein MO25. Here, we describe the structure of STRADa in complex with MO25a. The structure reveals
an intricate web of interactions between STRADa and MO25a involving the aC-helix of STRADa, reminiscent of the
mechanism by which CDK2 interacts with cyclin A. Surprisingly, STRADa binds ATP and displays a closed conformation and
an ordered activation loop, typical of active protein kinases. Inactivity is accounted for by nonconservative substitution of
almost all essential catalytic residues. We demonstrate that binding of ATP enhances the affinity of STRADa for MO25a, and
conversely, binding of MO25a promotes interaction of STRADa with ATP. Mutagenesis studies reveal that association of
STRADa with either ATP or MO25a is essential for LKB1 activation. We conclude that ATP and MO25a cooperate to maintain
STRADa in an ‘‘active’’ closed conformation required for LKB1 activation. It has recently been demonstrated that a mutation
in human STRADa that truncates a C-terminal region of the pseudokinase domain leads to the polyhydramnios,
megalencephaly, symptomatic epilepsy (PMSE) syndrome. We demonstrate this mutation destabilizes STRADa and prevents
association with LKB1. In summary, our findings describe one of the first structures of a genuinely inactive pseudokinase.
The ability of STRADa to activate LKB1 is dependent on a closed ‘‘active’’ conformation, aided by ATP and MO25a binding.
Thus, the function of STRADa is mediated through an active kinase conformation rather than kinase activity. It is possible
that other pseudokinases exert their function through nucleotide binding and active conformations.
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Introduction

Pseudokinases are classified as protein kinases that lack key

catalytic residues within their kinase domain [1,2]. These proteins

are emerging as important regulators and scaffolding components

of various signal transduction networks [2]. Despite being

predicted to lack intrinsic kinase activity, several ‘‘pseudokinases’’

such as WNK, CASK, and IRAK2 still possess the ability to

phosphorylate substrates. In the case of WNK isoforms, the

missing conserved catalytic Lys residue in subdomain-II is

substituted by another Lys residue located in subdomain-I [3].

CASK, despite lacking the conserved Mg2+ binding Asp residue in

the DFG motif of subdomain-VII, folds into an active conforma-

tion capable of binding ATP and phosphorylating substrates in the

absence of Mg2+ ions [4]. Interestingly, recent studies have shown

that mutations in CASK affect brain development and cause

mental retardation in humans [5]. Recent data also indicate that

the IRAK2 pseudokinase, despite lacking the Mg2+ binding DFG

motif as well as the catalytic HRD motif, still possesses activity [6].

These results suggest that some of the other proteins in the human

genome that are classified as pseudokinases may still possess

catalytic activity and thus function as normal kinases.

The STe-20 Related Adaptor (STRAD) pseudokinase forms a

1:1:1 heterotrimeric complex with the LKB1 tumour suppressor

kinase and the scaffolding protein MO25 [7,8]. In humans, there

are two closely related isoforms of STRAD (STRADa and

STRADb) and MO25 (MO25a and MO25b) that similarly

interact with and activate LKB1. Loss-of-function mutations in the

LKB1 kinase in humans result in the inherited Peutz-Jeghers

cancer syndrome [9]. Inactivating mutations in LKB1 are also

increasingly being reported in sporadic cancers, in particular lung

cancer [10]. LKB1 exerts its tumour-suppressing effects by

phosphorylating and activating AMP-activated protein kinase

(AMPK) as well as a number of other related kinases [11]. LKB1-

mediated activation of AMPK occurs when cellular energy levels

are low, and activation of AMPK inhibits cell growth and

proliferation through multiple pathways, including suppressing

activity of mTOR [12,13].
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Recently, it was reported that a severe human developmental

and epileptic syndrome termed polyhydramnios, megalencephaly,

symptomatic epilepsy (PMSE), was caused by a homozygous

partial deletion in the STRADa gene (LYK5), truncating 180 C-

terminal residues of the protein [14]. Individuals affected by this

condition suffer from severe mental retardation, gross movement

disorders, and childhood mortality [14]. How this mutation affects

STRADa function and its ability to interact with LKB1 is

unknown, although histological staining of neuronal tissues of

PMSE patients has suggested elevated mTOR pathway activity,

which could potentially result from loss of LKB1 kinase activity.

Unlike the majority of kinases that require phosphorylation of

their T-loop, LKB1 is activated through direct interaction with

STRADa/b isoforms [7,8]. The kinase domain of LKB1 binds to

the pseudokinase domain of STRAD [7]. At least 12 point

mutations located in the LKB1 kinase domain that prevent LKB1

from interacting with STRAD isoforms have been identified in

human cancers [15]. Activation of LKB1 and interaction with

STRAD isoforms is markedly enhanced in the presence of

MO25a/b isoforms, indicating that MO25 stabilizes the interac-

tion between STRAD and LKB1. The C-terminal Trp-Glu-Phe

residues (WEF motif) of STRADa bind to MO25a, and mutations

of these residues abolish this interaction [8]. Structural analysis of

MO25a revealed a helical repeat, horseshoe-shaped protein that

interacts with the WEF motif of STRADa through a hydrophobic

pocket located on its convex C-terminal surface [16]. In contrast,

proteins that are distantly structurally similar to MO25a, such as

the Armadillo repeat proteins PUM1, b-catenin, and importin-a,

interact with their binding partners through their concave surface

[17–19]. Many of the surface-exposed residues on the MO25a
concave surface are conserved between species, suggesting that

these may mediate interactions with (an) unknown regulator(s)

[16]. Although STRADa mutants lacking the C-terminal WEF

motif are unable to interact with MO25a alone, they can still form

a heterotrimeric complex with LKB1 and MO25a, demonstrating

that STRADa possesses additional interactions with LKB1 and/or

MO25a, separate from the WEF motif [15].

All studies undertaken to date suggest that STRADa expressed

in bacteria is incapable of autophosphorylating or phosphorylating

other substrates tested (MBP, histone 2A, or LKB1) when assays

were undertaken in the presence of Mg2+ ions [7,15] (J. Boudeau,

unpublished data). Despite lacking detectable kinase activity,

STRADa is still capable of interacting with ATP as well as ADP in

a magnesium-independent manner [15]. Mutations that abolish

ATP binding do not affect the ability of STRADa to activate

LKB1 in the presence of MO25a. Thus, the role of ATP-binding

to STRAD is unclear.

Here, we report the structure of STRADa as part of the

STRADa/MO25a heterodimer. The data show that despite being

inactive, STRADa folds into an ATP-bound, closed conformation

with an ordered activation loop similar to that of fully active

protein kinases. Our data establish that STRADa is indeed

deficient in intrinsic catalytic activity because it lacks most essential

catalytic residues. Moreover, we observe that STRADa does not

only interact with MO25a through its WEF motif as previously

envisaged, but forms an extensive network of interactions with the

highly conserved concave surface of MO25a. Binding studies and

mutagenesis data show that the closed/‘‘active’’ conformation that

STRADa assumes is maintained through cooperative binding of

ATP and MO25a. STRADa mutants incapable of interacting

with ATP and MO25a are unable to activate LKB1, despite

interacting with it. We conclude that the ability of STRADa to

activate LKB1 is dependent on an active conformation rather than

catalytic phosphoryltransferase activity. Our results also indicate

that the human mutation that causes PMSE syndrome destabilizes

STRADa and prevents it from binding to, and activating LKB1.

Results and Discussion

STRADa Adopts the Canonical Kinase Fold
STRADa comprises a pseudokinase domain (residues 58–401),

two nuclear export sequences (residues 21–29 and 417–426) [20],

and a C-terminal WEF motif (residues 429–431) previously shown

to interact with MO25a [8,16]. We focused on the interaction

between the STRADa pseudokinase domain (residues 59–431) and

full-length MO25a (residues 1–341). These proteins were coex-

pressed in Escherichia coli and the STRADa/MO25a complex eluted

as a heterodimer of the expected size from a gel filtration column,

yielding approximately 60 mg of the complex from 4 l of culture

(Figure S1). Initial crystals of the STRADa/MO25a complex in

space group P212121 diffracted only to 4.8 Å resolution (Table 1).

With the help of chemical lysine methylation [21], diffraction of

these crystals (retaining the same space group and unit cell

dimensions) improved to 2.35 Å (Table 1). The structures of both

methylated and unmethylated crystals were solved by molecular

replacement and revealed the same packing/intermolecular

interactions. The high-resolution, methylated form of the complex

was refined to a final model with good statistics (Rfree/Rwork of

0.254/0.206; Table 1). The structure of STRADa exhibits the

classical bilobal protein kinase fold, with the N-terminal lobe

(residues 59–152) organized around a central b-sheet, and a C-

terminal lobe (residues 153–401) that is largely a-helical (Figure 1A).

A well-resolved molecule of ATP was observed in the cleft between

the small and large lobes of the pseudokinase (Figure 1A and 1B).

The ATP molecule displays the canonical binding mode and retains

a similar conformation to that of ATP molecules bound to active

kinases (root mean square deviation [RMSD] = 0.9 Å on all atoms

compared to ATP bound to PKA [22]).

STRADa Binds ATP Using a Mg2+-Independent
Mechanism

Sequence comparison reveals that STRADa lacks numerous

essential catalytic residues found in active protein kinases, namely

Author Summary

There are 518 human protein kinases that are responsible
for orchestrating the phosphorylation-dependant signal
transduction events that regulate almost all cellular
processes. Curiously, approximately 10% of protein kinases
lack one or more catalytic residues, and these kinases have
been termed pseudokinases. It has been proposed that
some pseudokinases act as scaffolds, bringing together
proteins involved in signalling networks. Here, we report
the structure of the pseudokinase STRADa in complex with
the adaptor protein MO25a; together these two proteins
regulate the LKB1 tumour suppressor kinase. Despite
lacking several key catalytic residues, STRADa binds ATP
and adopts an active conformation typical of catalytically
competent kinases. The affinity of STRADa for ATP is
enhanced by MO25a and vice versa. We go on to
demonstrate through mutagenesis studies that binding
to both ATP and MO25a is essential for the activation of
LKB1. Our data suggest that STRADa exerts its functions
through an active conformation, not through actual
catalytic activity, thus raising the possibility that pseudo-
kinases regulate signalling networks by adopting different
structural conformations.

Structure of the STRADa/MO25a Complex
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a conserved Gly residue in the glycine-rich loop (subdomain-I), the

Lys residue of the VAIK motif (subdomain-II), the catalytic Asp

residue of the HRD motif (subdomain-VIb), a conserved Asn

residue (subdomain-VIb), as well as the entire DFG motif in

subdomain-VII (Figure 1B and 1C). Despite missing these key

residues, STRADa adopts a similar overall conformation to that of

TAO2 (sharing 25% sequence identity and 37% sequence

similarity), an active protein kinase of known structure [23]

(RMSD = 1.4 Å on 197 Ca atoms). Comparison of the STRADa
and TAO2 structures reveals that a number of substitutions of key

catalytic residues are found in STRADa. Met83 replaces one of

the conserved Gly residues in the glycine-rich loop, Arg100

substitutes the catalytic Lys residue in the VAIK motif, Ser195

replaces the Asp residue in the HRD motif, His200 substitutes for

the conserved Asn in subdomain-VIb, and the entire DFG motif is

replaced by GLR (residues 213–215).

In active protein kinases, the DFG motif plays a pivotal role in

coordinating two Mg2+ ions: one that orients the c-phosphate into

the position required for phosphoryl transfer and the other that

controls ATP conformation by interacting with the b/c phos-

phates. Consistent with the lack of the DFG motif in STRADa, no

Mg2+ ions were observed in the STRADa-ATP complex, despite

1 mM MgCl2 being present in the crystallization mother liquor.

However, despite the absence of Mg2+ ions, the positioning of the

b/c phosphates in STRADa was similar to that of active TAO2

kinase complexed to MgATP (Figure 1B). The b-phosphate is

tethered through interactions with Arg215 from the GLR (DFG)

motif, and His200 (subdomain-VIb), basic residues that may

substitute for one of the positively charged Mg2+ ions (Figure 1B).

The second Mg2+ ion and its coordinating residues are also

missing; instead, the c-phosphate only interacts with a conserved

lysine (Lys197) in the catalytic loop. Thus, STRADa appears to

have evolved a novel, Mg2+-independent mechanism to bind the

phosphate groups of ATP. The presence of the two hydrogen

bonds between N1 and N6 atoms of the ATP adenine ring and the

protein backbone, observed in all active protein kinase structures,

further illustrates the conservation of the ATP binding pocket.

Thus, the STRADa structure explains previous observations that

STRADa can bind ATP in the absence of Mg2+, and its similar

affinity for ADP and ATP [15].

STRADa Adopts an Active Conformation
Although the activation loop of STRADa (residues 212–245) is

not phosphorylated, it is well ordered, a feature normally observed

only in structures of activated protein kinases that are phosphor-

ylated on their activation loop (Figure 1A). Remarkably, Asp232 in

the activation loop occupies a position similar to the activating

phosphorylated residue found in active kinases, e.g., (phospho)-

Ser181 in TAO2 (Figure 1B). Asp232 appears to play the same

structural role as the activating phosphate group, coordinating the

conserved arginine from the catalytic HRD motif (Arg194 in the

STRADa HRS motif) (Figure 1B and 1C). Further evidence that

Table 1. Summary of data collection, structure refinement, and analysis.

Parameter Subparameter Native Methylated

Space group P212121 P212121

Unit cell (Å) a = 73.3 — 73.7

b = 83.5 — 82.9

c = 134.3 — 134.3

Molecules/asu STRADa 1 1

MO25a 1 1

Resolution (Å) 20–4.8 (4.97–4.80) 20–2.35 (2.48–2.35)

Observed reflections 13,019 190,928

Unique reflections 4,229 (409) 34,668 (4,988)

Redundancy 3.0 (3.0) 5.5 (5.6)

I/sI 13.6 (1.9) 13.4 (2.9)

Completeness (%) 98.9 (97.1) 99.6 (99.9)

Rmerge 0.094 (0.487) 0.100 (0.617)

Rwork, Rfree — 0.206, 0.254

RMSD from ideal geometry Bonds (Å) — 0.011

Angles (u) — 1.277

B-factor RMSD (Å2) (Backbone bonds) — 1.063

Average B-factor (Å2) Protein — 28.59

Ligand (ATP) — 34.46

Water — 28.36

Ramachandran plot statistics (%) Most favoured region — 92.4

Additional allowed region — 6.7

Generously allowed region — 0.7

Disallowed region — 0.2

Values for the highest resolution shell are given in parentheses.
asu, asymmetric unit.
doi:10.1371/journal.pbio.1000126.t001

Structure of the STRADa/MO25a Complex
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Figure 1. STRADa structure, active site, sequence motifs, and interactions with MO25a. (A) Overall structure of STRADa shown in cartoon
representation (N-terminal lobe coloured brown, C-terminal lobe coloured green) with transparent molecular surface. For clarity, the WEF motif has
been omitted. Secondary structure elements are labelled according to the structure of PKA [22]. The activation loop is coloured yellow, with the
section that appears to be unique to STRADa/b (residues 221–229) coloured red. The ATP molecule is shown in stick representation, and an unbiased
Fo-Fc electron density map is shown in magenta, contoured at 2.5s. Dotted lines represent regions that were not well defined by electron density and
are not included in the refined model. (B) Superposition of the STRADa and TAO2 (PDB ID 1U5R [23]) active sites, highlighting key residues required
for activity. STRADa residues (labelled) are shown as stick models with yellow carbon atoms; the corresponding TAO2 residues are shown with blue,
transparent carbon atoms. Water molecules are represented by red spheres, and gray spheres represent Mg2+ ions from the TAO2 structure. The
glycine-rich loop and part of the activation loop have been omitted for clarity. (C) Multiple sequence alignment of STRADa and other pseudokinases,
highlighting (in yellow) key motifs that are normally essential in active eukaryotic protein kinases. (D) Crystallographic contacts between MO25a
(blue) and symmetry-related STRADa molecules shown in cartoon representations. The STRADa WEF motif bound to MO25a is shown as sticks with
green carbons. Dashed lines represent the distance from the last residue of the C-terminal lobe of each STRADa molecule able to donate the WEF
motif, corresponding to 52, 83, 65, and 55 Å (straight-line distances) for molecules A, B, C, and D, respectively). An additional tight crystallographic
contact, through the MO25a N-terminus (‘‘PFPF motif’’) is also indicated and further discussed in Figure S3B–S3F. (E) Structure of the STRADa (green)
MO25a (blue) complex. Residues that make direct contact are shown as sticks, with hydrogen bonds shown as dotted black lines.
doi:10.1371/journal.pbio.1000126.g001

Structure of the STRADa/MO25a Complex
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STRADa adopts the canonical active conformation stems from the

presence of a short antiparallel b-sheet between the b6 and b9

strands, which is a characteristic feature of the active state of kinases

[24]. Furthermore, the STRADa aC-helix is rotated into the

‘‘closed’’ conformation found in active kinases [25,26], with the

conserved ion pair between the Glu118 on the aC-helix and Arg100

in subdomain-II formed via two water molecules (Figure 1B).

Despite STRADa binding ATP in the correct orientation for

activity and folding into an active conformation, STRADa
(residues 59–431) expressed in E. coli did not autophosphorylate

or phosphorylate myelin basic protein (Figure S2). We have

attempted to detect activity in the presence and absence of

MO25a and/or 10 mM MgCl2. We have also generated

mutations converting all the missing catalytic residues on the

STRADa pseudokinase discussed above to the equivalent residues

found in the active kinase TAO2 (Figure S2). However, none of

these mutants showed autophosphorylation or phosphorylated

myelin basic protein in the presence or absence of Mg2+ ions and/

or MO25a (Figure S2). We also tested whether STRADa
possessed ATPase activity, employing a highly sensitive ATPase

assay kit (Innova Biosciences), but no activity was observed (E.

Zeqiraj, unpublished data). Nevertheless, it is impossible to

categorically rule out that STRADa will not, highly specifically,

phosphorylate an as-yet unidentified substrate.

Identification of the Biological STRADa/MO25a Complex
The asymmetric unit of the STRADa/MO25a complex crystals

contains one molecule of MO25a, with a conformation similar to

the previously published MO25a/WEF peptide complex structure

[16] (RMSD = 0.6 Å on 292 Ca atoms), and one molecule of

STRADa. The position and conformation of the WEF motif is

similar to that in the previously described MO25a/WEF complex

[16] (RMSD = 0.3 Å on 35 atoms, Figure S3A). Due to tight

crystal contacts (total buried surface on MO25a by STRADa and

its symmetry mates = 2,833 Å2), it was not immediately apparent

which contacts represented biologically relevant interactions and

which were crystallographic packing artefacts. Whereas clear

electron density is present for the last six amino acids of STRADa
(residues 426–431, including the WEF motif that interacts with

MO25a, Figure S3A), residues 402–425 of STRADa were not

visible in the electron density maps, and it was thus not possible to

directly identify the appropriate symmetry mates of STRADa and

MO25a that make up the biologically relevant binary complex.

Analysis of the crystal contacts between symmetry-related

molecules suggested that there were four possible ways in which

STRADa could interact with MO25a (Figure 1D). We studied all

four possible STRADa/MO25a complexes and ranked these in

terms of total buried surface area, a possible method for

distinguishing crystallographic from biological contacts [27].

Discounting the WEF motif interaction (800 Å2 buried surface

area), identical in all four possible complexes, the buried surface

area in each of the possible complexes is 1,550 Å2, 225 Å2, 58 Å2,

and 200 Å2 for complexes A, B, C, and D, respectively (Figure 1D).

In addition, the distances between the last well-defined residue of

the STRADa C-terminal lobe and the first well-defined residue of

the WEF motif at the extreme C-terminus of STRADa were

measured for the four possible complexes. This yielded direct

distances of 52, 83, 65, and 55 Å for complexes A, B, C, and D,

respectively (Figure 1D). Taken together, it appears that complex

A is the most likely biological interaction, since STRADa binds to

the (highly conserved) concave surface of MO25a and has the

largest buried surface area, while also possessing the shortest

distance from the C-terminal lobe to the WEF motif (Figure 1D).

Similarly, analysis of the possible complexes with PISA [28] yields

the highest (1.0) complexation significance score (CSS) for

complex A, while predicting that complexes B, C, and D will

not be stable in solution.

The 6-His purification tag that extends from the N-terminus of

STRADa (450 Å2 buried surface area in complex A) forms

additional contacts between MO25a and STRADa. SPR studies

demonstrate that His-tagged STRADa binds MO25a in vitro with

the same affinity as STRADa lacking the His tag (Figure S4).

Furthermore, MO25a residues 2–5 (Pro-Phe-Pro-Phe, termed the

PFPF motif here) make hydrophobic contacts in a pocket adjacent

to the STRADa ATP binding pocket on a symmetry-related copy of

STRADa (Figure S3B). This is unlikely to constitute a physiological

STRADa/MO25a interaction, as deleting this motif did not impair

the in vivo interaction of MO25a with either STRADa alone or a

complex of STRADa and LKB1 (Figure S3C and S3D). Moreover,

we were unable to affinity purify overexpressed STRADa or LKB1

from a cell extract employing a PFPF motif containing biotinylated

peptide (Figure S3E). A complex of LKB1/STRADa/

MO25a(DPFPF) still activated the heterotrimeric AMPK complex

expressed in E. coli with similar efficiency as wild-type LKB1/

STRADa/MO25a (Figure S3F). Nevertheless, it is possible that the

PFPF docking site on STRADa does play a role in enabling

STRADa to interact with other regulators or substrates of the

LKB1 complex. Intriguingly, a similar crystallographic interaction

can be observed in the structure of the mammalian AMPK

heterotrimeric complex [29]. In this case, a similar hydrophobic N-

terminal motif ‘‘MYAF’’ from the b2 domain interacts with the

kinase domain from the neighbouring molecule in the crystal lattice,

albeit not near the phospho-nucleotide binding site.

STRADa Interacts with the MO25a Concave Surface
MO25a is composed of seven structurally similar a-helical

repeats (named R0–R6) that form a horseshoe-shaped molecule

with a concave and a convex surface [16]. MO25a helical repeats

R1–R6 consist of three a-helices (H1–H3) each, whereas repeat

R0 consists of only two helices [16]. Helices H3 from repeat R1–

R5 are arranged in an almost parallel fashion and make up the

concave surface of MO25a (Figure 1E). Other helical repeat

adaptor proteins, such as PUM1, b-catenin, and importin-a, make

use of a similar concave surface to interact with macromolecular

partners [17–19]. Strikingly, the crystal structure of the STRADa/

MO25a complex reveals that, in addition to the interaction

through the WEF motif, a major additional binding interface

involves the STRADa N-terminal kinase lobe and the MO25a
concave surface (Figures 1E and 2). Part of the interaction surface

on STRADa is N-terminal to the aC-helix and comprises the loop

between the aB/aC helices (residues 104–109), termed the ‘‘aB

site’’ here (Figures 1E and 2A). This region forms an extensive

hydrogen-bonding network centred on Arg227 from the R5-H3 of

MO25a (Figure 1E), burying a total of 245 Å2 surface area.

Residues Tyr223, Arg227, Lys231, and Asn269 of MO25a engage

the side chains of residues Glu105 and Asn109 of STRADa,

whereas Leu104, Ala106, Cys107, and Ser108 contribute to the

interaction via their backbone atoms.

The aC-helix of STRADa runs along the concave surface of

MO25a facing the H3 helixes of the MO25a repeats R4, R3, and

R2 (Figures 1E and 2A; termed the ‘‘aC site’’ here). Tethered by

hydrophobic and hydrogen-bonding interactions (Figure 1E), the

aC-helix forms the major interaction surface, contributing a total

of 405 Å2 buried surface area on the MO25a concave surface.

C-terminal to the aC helix, a second hydrogen-bonding

network with comparable buried surface area (270 Å2) to the aB

site is present, and involves residues Leu124, Asn126, and Tyr185

from the STRADa helix aE (Figures 1E and 2A; termed the ‘‘aE

Structure of the STRADa/MO25a Complex
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site’’ here). This region interacts with Glu93, Lys96, and Phe92

from the R1-H3 helix of MO25a (Figure 1E). Together, the aB

site and the aE site appear to act as anchor regions, positioning the

aC-helix to run along the H3 helices of R1–R5 of MO25a.

Additional interactions are found between Phe178 of MO25a,

forming hydrophobic stacking interactions with residues from the

N-terminal b4 and b5 strands of STRADa (termed the ‘‘b4/b5

site’’ here; Figures 1E and 2A). STRADa and STRADb also

possess an insertion of ten residues (221–229) in the activation loop

that is not observed in TAO2 or other STE20 kinases (Figure 1A).

Within this insertion, His223, Gly224, and Arg226 show weak

interactions with the R0 and R1 helical repeat of MO25a (termed

the ‘‘activation loop site’’ here; Figure 2A). This interaction

perhaps explains why the STRADa activation loop is ordered. All

of the key interacting interface residues are highly conserved

between species of STRADa and MO25a (Figures 2 and S5).

The MO25a Concave Surface Is Required for STRADa
Binding

The structure of the STRADa/MO25a complex shows that, in

addition to the WEF binding pocket on the convex surface of

MO25a, a major network of interactions between STRADa and

the concave surface of MO25a is observed over the aB, aC, aE,

b4/b5, and activation loop sites. To test the importance of these

additional interactions, we investigated how mutations of residues

located on the MO25a concave surface affected interaction with

STRADa. We mutated residues in MO25a in the novel aB, aC,

aE, b4/b5, and activation loop binding sites as well as the

previously characterised WEF pocket (Figure 3A). As reported

previously, mutation of Met260 in the WEF pocket of MO25a
abolishes its ability to interact with STRADa in HEK293 cells

[16]. However, we also observed that mutations in the two anchor

regions (Phe92, Glu93, and Lys96 from the aE site and Tyr223

and Arg227 from the aB site) abolished MO25a binding to

STRADa (Figure 3A). Similarly, mutating Phe178 in the b4/b5

site, Ile145 and Ser182 in the aC site, or Arg107 in the activation

loop site markedly disrupted the MO25a-STRADa interaction.

Mutations of Leu141, Lys231, and Asn269 in the aC site did not

significantly affect binding (Figure 3A). Mutation of the reciprocal

interacting residues on STRADa, including Glu105, Asn109,

Asn126, Ile138, and Tyr185, also abolished or markedly reduced

binding to MO25a (Figure 3B). These results confirm the

Figure 2. Sites of the STRADa/MO25a interaction and sequence conservation. (A) STRADa/MO25a complex and the interaction surface, as
defined with the program CONTACT from the CCP4 package [42]. Surfaces of atom pairs closer than 3.9 Å are coloured red. The MO25a surface is
coloured grey, and the N- and C-lobes of STRADa are coloured brown and lime green, respectively. Arg240 is shown as sticks. To aid visualization, on the
right side of the figure, the complex is ‘‘opened up’’ by rotating the STRADa molecule about the vertical axes 290u and MO25a +90u with respect to the
binary complex. (B) Sequence conservation (dark blue = conserved, white = not conserved) of STRADa and MO25a from Caenorhabditis elegans to Homo
sapiens (sequence alignments provided in Figure S5). The putative LKB1 binding pocket and the Arg240 site are indicated with an arrow. STRADa and
MO25a are shown in the same orientation as in (A) to aid visualization of conserved areas that are buried in the STRADa/MO25a complex.
doi:10.1371/journal.pbio.1000126.g002
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importance of the network of interactions between the concave

surface of MO25a and STRADa in enabling the stable association

between these two proteins, at least in the absence of LKB1.

Previous work has shown that MO25a mutants in which the

WEF pocket was disrupted, and that were no longer able to form a

complex with STRADa, were still capable of forming a

heterotrimeric complex with LKB1 and STRADa [8,15].

Similarly, MO25a mutants in which key STRADa binding

residues located within the concave surface were mutated are still

capable of interacting with the LKB1/STRADa complex

(Figure 3C). Even double MO25a mutants in which both the

WEF pocket and the aB, aE, or b4/b5 sites were disrupted were

capable of associating with the LKB1/STRADa complex

(Figure 3C). Moreover, the specific activity of LKB1/STRADa
complexes associated with these MO25a mutants was either

normal or only moderately reduced (Figure 3C). This suggests the

presence of additional interactions between MO25a and LKB1 in

the presence of STRADa.

Earlier studies revealed that mutation of a conserved Arg240

residue located on the concave surface of MO25a reduced

interaction with LKB1 complexed to STRADa lacking the WEF

motif [15]. Arg240 might be involved in interaction with LKB1, as

this residue is located on the concave surface of MO25a, distant

from STRADa (Figure 2). To further investigate the role of

Arg240 in enabling MO25a to associate with LKB1/STRADa,

we mutated Arg240 alone or in combination with residues in

either the WEF pocket (Met260) or the aB STRADa binding sites

(Arg227). We found that mutation of Arg240 alone does not

prevent MO25a from interacting with LKB1/STRADa
(Figure 3D). However, a double MO25a mutant lacking Arg240

and a key concave surface-binding site in the aB site (Arg227),

markedly impaired binding to LKB1/STRADa (Figure 3D). A

Figure 3. Mutation of MO25a concave surface residues abolishes STRADa and LKB1 binding. (A and B) The indicated constructs of GST-
STRADa and Myc-MO25a were expressed in 293 cells. Cells 36 h post-transfection were lysed, and GST-STRADa was purified with glutathione-
Sepharose. The purified GST-STRADa preparation (upper panels), as well as the cell extracts (lower panels), was immunoblotted (IB) with the indicated
antibodies. Similar results were obtained in three separate experiments. Dotted line indicates the junction of two gels. AL, activation loop. (C and D)
Two hundred ninety-three cells were cotransfected with the indicated constructs of GST-LKB1, Flag-STRADa, and Myc-MO25a. Cells 36 h post-
transfection were lysed, and GST-LKB1 was purified and assayed for its ability to phosphorylate the LKBtide peptide. Kinase activities are
representative of three independent assays carried out in triplicate (error bars represent the standard deviation for one experiment). Affinity-purified
GST-LKB1 preparation (upper panel), as well as cell extracts (lower panel), was immunoblotted with the indicated antibodies.
doi:10.1371/journal.pbio.1000126.g003
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triple mutant of MO25a lacking Arg240, Arg227, and the WEF

pocket site failed to associate with LKB1/STRADa and stimulate

LKB1 activity (Figure 3D). These observations indicate that

MO25a possesses three sites with which it can interact with the

LKB1/STRADa complex (Figure 2), namely two STRADa
binding regions (extensive concave MO25a surface and WEF

pocket) as well as a putative LKB1 binding site (Arg240).

The STRADa/MO25a Interaction Is Similar to the CDK/
Cyclin Complex

Inspection of the STRADa/MO25a complex reveals an

unexpected resemblance to the interaction between activated

cyclin-dependent kinase 2 (CDK2) and its activating regulatory

subunit cyclin A (Figure 4A and 4B) [30]. Although MO25a/b
isoforms are not related to cyclins at the primary sequence level,

both proteins consist of multiple a-helical repeats. Crystal

structures of CDK2/cyclin A complex have revealed cyclin A

binds to the so-called ‘‘PSTAIRE (aC) helix’’ of CDK2 kinase as

well as the loop immediately preceding this helix [30]. Compar-

isons between free CDK2 and CDK2/cyclin A complex structures

have shown that the cyclin molecule orients a conserved glutamate

residue (Glu51) from the aC-helix of the protein kinase to allow

formation of an ion pair with a lysine residue (Lys33) from the

conserved VAIK motif [30], which keeps the CDK2 kinase in a

closed conformation (Figure 4B). Similarly, the position of MO25a
in the STRADa/MO25a complex is centred on helix aC and the

loop preceding this helix (aB region; Figure 1E). The interaction

between Glu118 from the aC-helix and Arg100 from the VAIK

(VTVR in STRADa) motif (analogous to the Glu51-Lys33

interaction in CDK2) is maintained, albeit via two water molecules

(Figure 1B).

Another example in which this type of interaction is involved in

regulating the activity of protein kinases is the ligand-induced

dimerisation of the EGFR family of tyrosine kinases (Figure 4C).

Although this type of dimer has not been observed in solution,

crystal structures and biochemical data demonstrate the impor-

tance of dimer formation that involves the intermolecular

interaction of the EGFR aC-helix on one monomer and the C-

lobe on the other monomer (Figure 4C) [31]. A comparison

between the structure of active, dimeric EGFR kinase with the

monomeric form reveals the role of dimerisation for keeping the

EGFR kinase in the closed and active conformation. Similarly, the

structure of STRADa in complex with MO25a resembles the

closed conformation of both CDK2 and EGFR kinase, with its

activation loop and aC-helix positioned in an orientation that is

typical of active protein kinases (Figure 4D and 4E). Such

regulatory mechanism may also explain why some members of the

EGFR family of kinases that lack kinase activity and are classified

as pseudokinases (Her3) are still able to exert their function [31],

despite their ‘‘inactivatory’’ substitutions, similar to what has been

observed for STRADa (Figure 1C).

The interactions in the EGFR homodimer, the CDK2/cyclin A

heterodimer, and the STRADa/MO25a complex are similar only

in general topological terms. However, it appears that the

Figure 4. Structural comparison of the STRADa/MO25a interaction. (A–C) Resemblance of (A) STRADa/MO25a complex with (B) the CDK2/
cyclin A complex (PDB ID 1FIN) and (C) the EGFR/EGFR kinase domain dimer (PDB ID 2GS2). The kinases are shown as green ribbons, with the binding
partners shown as blue ribbons. The aC-helix, where the binding of the ‘‘activator’’ is centred, is labelled. (D and E) Comparison of the STRADa
structure (green) to the active and inactive structures of CDK2 and EGFR (gray). Residues from the C-lobe of STRADa (152–431) were superimposed
onto the structures of inactive CDK2 (PDB ID 1HCK [56]) and EGFR kinase (PDB ID 2GS7), and active CDK2 (PDB ID 1JST) and EGFR (PDB ID 2GS2). The
activation loop of STRADa has been coloured yellow, and the activation loops of CDK2 and EGFR kinase are shown in magenta.
doi:10.1371/journal.pbio.1000126.g004
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mechanism of protein kinase interaction via helix aC with their

activity modulators is wider than previously thought, and not

exclusive to the CDK family of kinases. Indeed, there are many

examples of how protein kinases are stabilised in an active

conformation via helix aC. These include members of the MAP

kinase family [32], the AGC family of kinases ([33–35], and

several tyrosine kinases ([36]). Although in these examples the aC-

helix is stabilised by flanking N- or C-terminal sequences/domains

present in the same polypeptide chain, the mechanisms of

allosteric activation are similar.

STRADa ATP Binding Is Markedly Enhanced by MO25a
Although MO25a appears to induce a STRADa active

conformation similar to CDK2/cyclin A, the effect of this ‘‘active

conformation’’ cannot be measured through ATPase/kinase

activity due to STRADa being a pseudokinase. Instead, we

investigated how affinity of ATP for STRADa was modulated by

its interaction with MO25a. We used the fluorescent ATP

analogue 29,39-O-2,4,6-trinitrophenyl-ATP (TNP-ATP), whose

fluorescence emission is enhanced upon its titration with ATP-

binding proteins/enzymes [37], a feature that has previously been

exploited to measure equilibrium binding constants of kinases for

ATP [4]. Using this approach, the Kd of STRADa for TNP-ATP

in the absence of MO25a was determined to be 1.1 mM

(Figure 5A, 5B, and 5E). Kd values of STRADa for ATP and

ADP were also assessed by their ability to displace bound TNP-

ATP and found to be 2–3 mM (Figure 5C, 5D, and 5E). Strikingly,

addition of an equimolar amount of MO25a to STRADa
enhanced binding of TNP-ATP by an order of magnitude

(Figure 5A, 5B, and 5E) and TNP-ATP displacement by two

orders of magnitude (Figure 5C, 5D, and 5E), indicating

significantly stronger affinity compared to the interaction of ATP

as a substrate to active kinases. In contrast, the binding of

STRADa to TNP-ATP was not enhanced by addition of the

MO25a(R227A/M260A) mutant that is unable to bind STRADa
(Figure 5A and 5B). The lack of a Mg2+ binding motif on

STRADa suggests that Mg2+ should not contribute to the

STRADa-ATP interaction. Indeed, Mg2+ did not affect binding

of STRADa to TNP-ATP or displacement of TNP-ATP by ATP

or ADP (Figures 5 and S6). This is in contrast with the CASK

‘‘pseudokinase,’’ where Mg2+ reportedly inhibits ATP binding and

hence kinase activity [4].

It should be noted that although STRADa does not appear to

require Mg2+ ions to bind ATP, most cellular ATP is complexed to

Mg2+ ions. Although there is no space for Mg2+ to bind in the

canonical protein kinase mode through the DFG motif, Mg2+ ions

could reside in the solvent-exposed region of the phosphate

moiety, replacing one of the ordered water molecules. Alterna-

tively, it is possible that conformational changes in the structure

could accommodate Mg2+ without affecting the ability of

STRADa to bind MO25a (see below). As mentioned previously,

the canonical Mg2+ coordinating residues appear to have been

substituted through evolution with positively charged residues

(Arg240 and H200), thus making redundant the role of Mg2+ ions.

ATP Stimulates Binding of STRADa to MO25a
To further investigate the functional consequences of ATP

binding to STRADa, we employed quantitative SPR measure-

ments to evaluate how ATP influenced affinity of STRADa for

MO25a (Figures 6 and S7). In the absence of ATP, the binding of

STRADa for MO25a was fitted to a single-site binding equation

(Figure 6A and 6E). From measuring the rate constants for

association and dissociation (Figure S7 and Table S1), the

dissociation constant Kd was calculated as 3.8 mM (Figure 6A

and 6E). However, in the presence of ATP, binding could be fitted

to a two-site binding equation (Hill slope of 0.4, Figure 6A and

6E). The second binding constant (Kd2) was measured as 12 nM,

over two orders of magnitude higher than Kd1 calculated as

2.5 mM (Figure 6A and 6E). MgATP enhanced binding of

STRADa to MO25a, to a similar extent as ATP (Figure 6A).

These results indicate that binding of ATP to STRADa leads to a

high-affinity MO25a interaction site being exposed. Mutation of

Met260 in the WEF binding pocket of MO25a did not

significantly affect binding of MO25a to STRADa, nor did it

influence the effect of ATP at enhancing interaction (Figure 6B

and 6E). It should be noted that this observation contrasts with the

data obtained from coexpression studies in 293 cells (Figure 3A)

and previous studies [16], in which mutation of Met260 inhibits

MO25a binding to STRADa, suggesting that the WEF pocket is

required for cellular complex assembly of MO25a and STRADa.

Mutation of Arg227, in the newly identified concave site of

MO25a, which interacts with the aB site of STRADa, virtually

abolished binding of STRADa observed by SPR in the absence of

ATP. In the presence of ATP or MgATP, no two-site binding of

MO25a(R227A) to STRADa was detected, displaying only low

micromolar binding with a single site (Figure 6C and 6E). A

double MO25a(R227A/M260A) mutant failed to interact with

STRADa even in the presence of ATP (Figure 6D and 6E). These

results indicate that the key STRADa high-affinity binding site on

MO25a lies on the concave surface and is only recognized by

STRADa in the presence of ATP. Together with the finding that

MO25a also enhances affinity of STRADa for ATP (Figure 5),

this suggests that the interaction of ATP and MO25a to STRADa
is cooperative. A similar synergistic mechanism is observed for the

PKA catalytic subunit where a nucleotide analog was shown to

stabilise a complex with the PKI inhibitory peptide [38]. However,

in the case of PKA/PKI interaction the c-phosphate cannot be

transferred because there is no acceptor, whereas in case of

STRAD, it cannot be transferred because of the lack of a base

catalyst.

ATP and MO25a Are Required for STRADa Activation of
LKB1

Having established that ATP increases the affinity of STRADa-

MO25a interaction, we next explored whether ATP binding to

STRADa also affects assembly and activity of the LKB1

heterotrimeric complex. Using the STRADa-ATP structure, a

number of STRADa mutants were designed to disrupt binding of

the adenine or phosphate moieties of ATP (Figure 7A). Four of

these were indeed unable to interact with TNP-ATP in the

presence or absence of MO25a (Figure 7B). Interestingly, these

mutants also affected association with LKB1 when coexpressed in

293 cells (Figure 7C), suggesting that binding of ATP to STRADa,

in the absence of MO25a, enhances the ability of STRADa to

interact with LKB1. However, these mutants were capable of

forming complexes with LKB1 when coexpressed with LKB1 and

MO25a (Figure 7D), that retained catalytic activity as measured

by activation of AMPK (Figure 7D). It is possible that binding of

MO25a to these STRADa mutants compensates for their inability

to bind ATP, by inducing a closed ‘‘active-like’’ conformation of

STRADa, capable of binding and activating LKB1. To explore

this idea, we generated mutants of STRADa incapable of binding

to both ATP and MO25a. Strikingly, we found that these

combined STRADa mutants lost their ability to activate LKB1,

despite still being capable of forming a heterotrimeric complex

(Figure 7E).

Taken together, these observations suggest that the closed ‘‘active-

like’’ conformation of STRADa is maintained through binding to

Structure of the STRADa/MO25a Complex
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ATP and/or MO25a, and is required for activation of LKB1.

Mutations that prevent STRADa from binding to ATP or MO25a
do not affect activation of LKB1 (Figures 3 and 7), suggesting that

ATP binding to STRADa can compensate for loss of MO25a
interaction and vice versa. However, loss of both ATP and MO25a
binding prevents STRADa from activating LKB1. Such mutations

may leave STRADa in the open ‘‘inactive-like’’ conformation

incapable of activating LKB1. We have tried unsuccessfully to

crystallise STRADa in the absence of MO25a in order to

demonstrate this. Binding of ATP to several kinases, including the

EGF receptor tyrosine kinase, promotes the closed, active confor-

mation of these enzymes. Moreover, as discussed above, binding of

cyclin to CDK2 is reminiscent of the interaction of STRADa with

MO25a, and interaction of cyclin A is well known to promote the

closed active conformation of CDK2 [30].

The PMSE Mutation Structurally Impairs STRADa
The PMSE-causing mutation in humans results in a STRADa

truncation at residue 251, thus removing the last 180 amino acids

[14]. Inspection of the STRADa structure reveals that this

Figure 5. MO25a enhances the ability of STRADa to bind ATP and APD in a Mg2+-independent manner. (A) Fluorescence emission
spectra (excitation 410 nm) of TNP-ATP (5 mM) bound to the indicated forms of STRADa (2 mM) and/or MO25a (2 mM). A reference cuvette containing
TNP-ATP (5 mM) only was subtracted as background. (B) Saturation binding experiments for STRADa, STRADa complexed to MO25a (WT, wild type),
and MO25a (R227A/M260A) to TNP-ATP. Bound was defined as (Fx/Fmax) [R], where Fmax and Fx are maximal and fractional fluorescence (recorded at
540 nm), respectively, and [R] equals the binding capacity, defined by the enzyme concentration, fixed at 1.5 mM. Equilibrium binding curves were
then fitted to the quadratic equation suitable for tight binding interactions with ligand depletion (see Materials and Methods). Data are shown as an
average of three independent experiments6SEM. (C and D) Displacement of TNP-ATP by ATP and ADP in the presence and absence of 0.5 mM
MgCl2. Concentrations of TNP-ATP (5 mM), STRADa (2 mM), and STRADa/MO25a (2 mM) complex were fixed, and either ATP or ADP was titrated (0.05–
500 mM). Emission at 540 nm was recorded, and the fractional occupancy (Fx/Fmax) was plotted as a function of added nucleotide concentration.
Dose-response curves were fitted using GraphPad-PRISM (see Materials and Methods). Data are shown as an average of three independent
experiments6SEM. (E) Equilibrium binding constants for TNP-ATP, ATP, and ADP in the presence and absence of 0.5 mM MgCl2. Kd values were
calculated as explained in Materials and Methods.
doi:10.1371/journal.pbio.1000126.g005
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Figure 6. ATP enhances the ability of STRADa to bind MO25a in a Mg2+-independent manner. Binding of STRADa to MO25a was
assessed in an SPR BIAcore assay by immobilising (A) MO25a (WT, wild type), (B) MO25a (M260A), (C) MO25a (R227A), and (D) MO25a (R227A/M260A)
to a CM5 sensor chip, and STRADa was allowed to bind over 50 s by injecting different concentrations over a range of 0.4 nM to 5 mM in the
presence or absence of 0.1 mM ATP and/or 1 mM MgCl2. Response levels for specific binding of STRADa to MO25a was plotted against STRADa
concentration (log scale), using, where appropriate, a variable slope model to determine the Hill slope from the data. Similar results were obtained in
at least two separate experiments. (E). Reported Kd values were calculated by measuring association (ka) and dissociation (kd) rates (Table S1) from the
BIAcore sensorgram data shown in Figure S7 and using Scrubber-2 software. Kd values reported here were calculated as Kd = kd/ka (see Materials and
Methods). Equilibrium binding constants were also calculated from a saturation binding model, and similar values were obtained, as expected for
specific binding that follows the law of mass action (see Figure S7 and Materials and Methods). ND = not determined.
doi:10.1371/journal.pbio.1000126.g006
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mutation would delete almost half of the C-terminal lobe of the

pseudokinase domain, beginning with structurally vital compo-

nents such as helix aF (Figure 8A). This could destabilize the

STRADa protein, as helix aF forms numerous hydrophobic

interactions within the C-lobe of the pseudokinase domain, which

would become solvent exposed in the PMSE mutant. We

attempted to express the PMSE-STRADa (residues 1–251) mutant

in 293 cells and found that it was expressed at significantly lower

levels than full-length STRADa (Figure 8B), consistent with this

fragment being unstable. Moreover, STRADa (1–251) failed to

interact with or activate LKB1 (Figure 8B). These results confirm

that the STRADa mutation found in PMSE patients represents a

loss-of-function mutation that would be unable to stimulate the

LKB1 pathway. This could account for the elevated mTOR

Figure 7. Interaction of ATP and MO25a with STRADa controls LKB1 activity. (A) The structure of the ATP binding site of STRADa in which
the key interacting residues are emphasized. (B) Fluorescence emission spectra (excitation 410 nm) of TNP-ATP (5 mM) bound to wild-type and
mutant forms of STRADa (2 mM) and/or wild-type MO25a (2 mM). A reference cuvette containing only TNP-ATP (5 mM) was subtracted as background.
A Coomassie Blue-stained SDS-PAGE gel of each form of STRADa analysed is shown (GGK = G76D+G78D+K197E, GGR = G76D+G78D+R215E, and
GGKR = G76D+G78D+K197E+R215E). (C) Wild-type GST-LKB1 and indicated forms of Flag-STRADa were expressed in 293 cells in the absence of
MO25a. Cells at 36 h posttransfection were lysed and GST-LKB1 affinity purified on glutathione-Sepharose. The purified GST-LKB1 preparation (upper
panel), as well as the cell extracts (lower panel), was immunoblotted (IB) with the indicated antibodies. Similar results were obtained in three separate
experiments. Dotted line indicates where the gel was cut. (D and E) 293 cells were co-transfected with the indicated constructs of GST-LKB1, Flag-
STRADa, and Myc-MO25a. Cells at 36 h posttransfection were lysed, and GST-LKB1 was affinity purified and assayed for the ability to activate the
heterotrimeric AMPK complex expressed in E. coli, as described in Materials and Methods. Kinase activities are representative of three independent
assays carried out in triplicate (error bars represent the SD for a single triplicate experiment). Affinity-purified GST-LKB1 preparation (upper panel), as
well as cell extracts (lower panel), was immunoblotted with the indicated antibodies.
doi:10.1371/journal.pbio.1000126.g007
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pathway activity that was observed in neuronal cells derived from

PMSE patients [14].

Concluding Remarks
We have described the first structure of the STRADa

pseudokinase and its interaction with MO25a, a heterodimeric

interaction within the heterotrimer LKB1 tumour suppressor

complex. A key discovery is the identification of an unexpected

extensive interaction between STRADa and the concave surface

of MO25a, previously proposed to harbour a ligand binding site

[16]. Armadillo repeat proteins that are structurally related to

MO25a, such as PUM1 [19], b-catenin [17], and importin-a [18],

also bind their macromolecular partners along their concave

surface. In general topological terms, the STRADa/MO25a
complex resembles the interaction between CDK2 and cyclin A,

and the EGFR/EGFR dimer, and provides another example of

protein kinase regulatory mechanism via helix aC.

Our data show that, despite lacking most essential catalytic

residues, STRADa has maintained its ability to adopt a closed

active-like conformation, which binds ATP and possesses an

ordered activation loop similar to active protein kinases. This

closed conformation is stabilized through binding of ATP and/or

MO25a. Moreover, binding of MO25a to STRADa markedly

enhances affinity for ATP, and binding of ATP to STRADa
stimulates interaction with MO25a. Our findings support a model

in which binding of either MO25a or ATP is sufficient to enable

STRADa to activate LKB1. Consistent with this, mutant forms of

STRADa that are incapable of binding both ATP and MO25a
can no longer activate LKB1, whereas mutant forms of STRADa
that retain the ability to bind either ATP or MO25a still activate

LKB1. Thus, the closed active-like conformation, rather than

catalytic phosphoryl transfer activity, is likely to be the key to the

mechanism by which STRADa activates the LKB1 tumour

suppressor. A model of how STRADa/MO25a might interact

and activate LKB1 based on known mutagenesis and structural

data is presented in Figure 9. Future work may establish other

examples of pseudokinases that, like STRADa, regulate signal

transduction networks through their conformational state alone.

Very recent reports have described the structures of VRK3 [39]

and ROP2 [40] pseudokinases, both incapable of binding ATP.

Both studies support the notion put forward in this paper that

pseudokinases may function by means of conformational state

rather than catalytic activity, although in an ATP-independent

manner.

Materials and Methods

General Methods and Buffers
Restriction enzyme digests, DNA ligations, and other recom-

binant DNA procedures were performed using standard protocols.

All mutagenesis were performed using the QuickChange site-

directed mutagenesis method (Stratagene) with the KOD

polymerase (Novagen). DNA constructs used for transfection were

purified from E. coli DH5a using Qiagen Plasmid kits according to

the manufacturer’s protocol. All DNA constructs were verified by

DNA sequencing, which was performed by the Sequencing

Service, College of Life Sciences, University of Dundee, United

Kingdom, using DYEnamic ET terminator chemistry (Amersham

Biosciences) on Applied Biosystems automated DNA sequencers.

Lysis buffer used for HEK 293 cells was 50 mM Tris-HCl

Figure 8. PMSE truncation and the stability of STRADa. (A) Structure of STRADa in which the region beyond Asn252 that is truncated in PMSE
patients is coloured in red. (B) A total of 293 cells were cotransfected with the constructs encoding wild-type GST-LKB1 and Myc-MO25a together
with constructs encoding wild-type or PMSE mutant Flag-STRADa. Cells at 36 h posttransfection were lysed, and GST-LKB1 was affinity purified and
assayed for ability to phosphorylate the LKBtide peptide. Kinase activities are representative of three independent assays carried out in triplicate
(error bars represent the SD for a single experiment carried out in triplicate). Affinity-purified GST-LKB1 preparation (upper panel), as well as cell
extracts (lower panel), was immunoblotted (IB) with the indicated antibodies.
doi:10.1371/journal.pbio.1000126.g008
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(pH 7.5), 1 mM EGTA, 1 mM EDTA, 1% (w/v) Nonidet P40

(substitute), 1 mM sodium orthovanadate, 50 mM sodium fluo-

ride, 5 mM sodium pyrophosphate, 0.27 M sucrose, 0.1% (v/v) 2-

mercaptoethanol, 1 mM benzamidine, and 0.1 mM PMSF. Buffer

A was 50 mM Tris-HCl (pH 7.5), 0.1 mM EGTA, and 0.1% (v/v)

2-mercaptoethanol. SDS sample buffer contained 50 mM Tris-

HCl (pH 6.8), 2% (w/v) SDS, 10% (v/v) glycerol, 0.005% (w/v)

bromophenol blue, and 1% (v/v) 2-mercaptoethanol. TBS-T

buffer was Tris-HCl (pH 7.5), 0.15 M NaCl, and 0.5% (v/v)

Tween. All protein concentrations were determined using the

Bradford reagent (Bio-Rad) and by measuring the absorbance at

595 nm, unless indicated otherwise.

Cloning, Protein Expression, and Purification
A bicistronic expression system was used to coexpress and purify

the STRADa/MO25a complex in E. coli. Expression vectors were

kindly donated by Dr. Roger Williams (University of Cambridge,

United Kingdom). The cloning procedure was followed as

described in [41]. Briefly, both STRADa and MO25a genes

were subcloned as separate cassettes from the pOPT single vectors

into a pOPCH polycistronic vector. Full-length MO25a (residues

1–341) was subcloned from a pOPT (no tag) vector as an NdeI/

BamH1 insert. STRADa (residues 59–431) with an N-terminal 6-

His tag followed by a Tobacco Etch Virus (TEV) protease site

(sequence MAHHHHHHMENLYFQG) was subcloned from a

POPTH vector as a BspE1/Mlu1 insert. For more information on

the expression and purification of STRADa for activity assays, see

Text S1.

N-terminally 6-His-tagged STRADa was coexpressed with

untagged full-length MO25a in E. coli BL21(DE3)pLysS cells. Cells

were grown in Luria Bertani medium to A600 = 0.7 at 37uC, before

protein expression was induced by the addition of 250 mM isopropyl-

b-D-thiogalactopyranoside (IPTG) and incubated for a further 16 h

at 26uC. Cells were harvested by centrifugation for 30 min at 3,500g

and resuspended in ice-cold lysis buffer (50 mM Tris-HCl [pH 7.8],

50 mM NaCl, 10% glycerol, 20 mM imidazole, 1 mM benzami-

dine, 0.2 mM EGTA, 0.2 mM EDTA, 0.1 mM PMSF, 0.075% (v/

v) b-mercaptoethanol, 0.5 mg/ml lysozyme, and 0.3 mg/ml

DNAse-I. Cells were lysed using a French Press cell disrupter

(18,000 psi), and the lysate was cleared by centrifugation at 26,000g

for 30 min. The supernatant was then passed through a 0.22-mm

filter before loading onto a 5-ml HiTrap IMAC HP column (GE

Healthcare) previously charged with Ni2+. The column was then

washed with ten volumes of wash buffer (lysis buffer without

lysozyme, DNAse-I, and PMSF), and the STRADa/MO25a
complex was eluted by applying a gradient of 20–300 mM imidazole

in wash buffer. The sample was then concentrated to 3 ml and

loaded onto a Superdex 75 26/60 gel filtration column, pre-

equilibrated in 25 mM Tris (pH 7.8) and 1 mM DTT. For the

methylated protein complex, the sample was dialyzed into 25 mM

Tris-HCl (pH 7.5), 50 mM NaCl, 10% glycerol, 1 mM benzami-

dine, and 0.075% (v/v) b-mercaptoethanol after imidazole elution,

and subjected to lysine methylation using formaldehyde and

dimethylamine-borane complex, as described elsewhere [21]. The

methylated STRADa/MO25a complex was then passed through a

desalting column prior to loading onto a gel filtration column as

explained above. The binary complex eluted as a single peak, and its

purity was assessed by SDS-PAGE.

Crystallization, Structure Solution, and Refinement
The STRADa/MO25a complex was concentrated to 7.5 mg/

ml, followed by addition of ATP to a final concentration of 10 mM

and MgCl2 (final concentration of 1 mM). The sitting drop vapour

diffusion method was used to grow crystals by mixing 1 ml of

protein solution, 1 ml of mother liquor. For the unmethylated

complex, the optimised mother liquor consisted of 20 mM

Li2SO4, 50 mM sodium citrate (pH 5.6), 6% (v/v) PEG4000.

For the methylated complex, the mother liquor was composed of

0.1 M MES (pH 6.4), 10% (v/v) PEG8000. For both conditions,

0.25 ml of 1 M NDSB-256 was added to the crystallisation drop.

Rod-shaped crystals of the unmethylated complex appeared after

3 h and grew to 0.05 mm (maximum dimension) after 24 h. The

methylated sample yielded bigger crystals that appeared after 24 h

and grew to a maximum length of 0.5 mm after 3 d. Crystals were

flash frozen in liquid nitrogen after cryoprotection with mother

liquor containing 20% (v/v) glycerol (unmethylated) and 25% (v/

v) PEG8000 and 10% (v/v) PEG300 (methylated).

Data were collected at 100 K on stations ID14-3, ID14-4, and

ID23-2 at the European Synchrotron Radiation Facility (ESRF)

and processed using the MOSFLM and SCALA programs from

the CCP4 package [42] (Table 1). The structures of the

unmethylated/methylated complexes were solved by a combina-

Figure 9. Model of how STRADa/MO25a might interact and activate LKB1. The model is based on known mutagenesis and structural data
discussed in this paper. Binding of either ATP and/or MO25a to STRADa induces STRADa to adopt a closed conformation, leading to the assembly of
a fully active LKB1 complex.
doi:10.1371/journal.pbio.1000126.g009
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tion of molecular replacement with MOLREP [43] and real-space

searches with FFFEAR [44]. An initial molecular replacement run

was carried out with MOLREP using the 1.85 Å structure (Protein

Data Bank ID [PDB ID] 1UPK) of MO25a [16] as a search

model. Using the resulting phases, the STRADa molecule was

then located by performing a real-space search with FFFEAR [44]

using the 2.1 Å structure (PDB ID 1U5R) of TAO2 [23]. Thus, a

solution with one complex in the asymmetric unit was found, and

the structure was refined by alternating rounds of refinement with

REFMAC5 [45] (including TLS refinement during the last

macrocycles) and manual model building with the program

COOT [46]. For the methylated complex, this resulted in a final

model with an R-factor of 0.206 (Rfree = 0.254) that was validated

using PROCHECK [47] and MOLPROBITY [48] (Table 1).

STRADa residues 292–347, 383–385, and 402–424, and MO25a
residues 337–341 were not associated with clear electron density

and were not included in the model.

Figures were prepared using the PyMOL molecular graphics

system available at http://www.pymol.org [49]. Secondary

structure was analysed using DSSP [50] and sequence alignments

were performed using MUSCLE [51], which were edited and

displayed using the program ALINE developed by Charlie Bond

and Alexander Schüttelkopf.

Cell Culture, Transfections, and Lysis
Two hundred ninety-three cells were cultured on 10-cm

diameter dishes in 10 ml of DMEM supplemented with 10% (v/

v) fetal bovine serum, 2 mM L-glutamine, 100 U/ml penicillin,

and 0.1 mg/ml streptomycin. For transfection experiments, 3–

9 mg of DNA were mixed with 20 ml of 1 mg/ml polyethylenimine

(Polysciences) in 1 ml of plain DMEM for each dish; the mixture

was left to stand for 30 min and added onto the cells. Cells were

lysed 36 h posttransfection in 1 ml of ice-cold lysis buffer per dish.

The cell lysates were clarified by centrifugation at 20,000g for

15 min at 4uC, and the supernatants divided into aliquots, frozen

in liquid nitrogen, and stored at 220uC.

Expression of Fusion Proteins in HEK293 Cells and Affinity
Purification

10-cm diameter dishes of 293 cells were transiently transfected

with 3 mg of the pEBG-2Tconstructs together with 3 mg of the

indicated pCMV5 constructs as described above. Cells were

harvested and lysed 36-h posttransfection, and the clarified lysates

were incubated for 1 h on a rotating platform with glutathione-

Sepharose (GE Healthcare; 20 ml/dish of lysate) previously

equilibrated in lysis buffer. The beads were washed twice with

lysis buffer containing 150 mM NaCl and twice with 50 mM Tris

HCl, pH 7.5. For immunoblotting analysis, the beads were

resuspended in SDS sample buffer after this step and the samples

immunoblotted as described above. For protein kinase assays and

gel electrophoresis, the beads were washed twice more with Buffer

A, and the proteins were eluted from the resin by incubation with

the same buffer containing 270 mM sucrose and 20 mM of

reduced glutathione. The beads were then removed by filtration

through a 0.44-mm filter, and the eluate was divided into aliquots

and stored at 280uC.

Assaying LKB1 by Measuring Phosphorylation of the
LKBtide Peptide

The activity of recombinant LKB1/STRADa/MO25a com-

plexes was assayed towards the LKBtide peptide substrate. All

assays were performed by using 0.35 mg of recombinant proteins

expressed and purified from HEK293 cells as described above.

Phosphotransferase activity towards the LKBtide peptide

(SNLYHQGKFLQTFCGSPLYRRR) [52] was measured in a

total assay volume of 50 ml consisting of 50 mM Tris-HCl

(pH 7.5), 0.1 mM EGTA, 0.1% (v/v) 2-mercaptoethanol,

10 mM magnesium acetate, 0.1 mM [c-32P]ATP (200 cpm/

pmol), and 0.2 mM LKBtide peptide. The assays were carried out

at 30uC and were terminated after 15 min by applying 40 ml of the

reaction mixture onto P81 membranes. These were washed in

phosphoric acid, and the incorporated radioactivity was measured

by scintillation counting as described previously for MAP kinase

[53]. One unit (U) of activity represents the incorporation to the

substrate of 1 nmol of c-32P per minute.

Assaying LKB1 by Measuring Activation of the
Heterotrimeric AMPK Kinase

The AMPK heterotrimeric complex was purified from E. coli,

and the AMPK activity was measured following its phosphoryla-

tion with LKB1 as reported by Lizcano et al. [52]; 10 mg of

AMPK complex (a1b2c1 subunits) was incubated with or without

0.3 ng of wild-type or mutant LKB1/STRADa/MO25a complex

in Buffer A containing 5 mM magnesium acetate and 0.1 mM

cold ATP, in a final volume of 20 ml. After incubation at 30uC for

30 min, the AMPK kinase activity was determined by adding

30 ml of 5 mM magnesium acetate, 0.1 mM [c-32P]ATP (300

cpm/pmol), and 0.2 mM AMARA peptide (AMARAASAAA-

LARRR) [54] as substrate. After incubation for 20 min at 30uC,

incorporation of c-32P into the peptide substrate was determined

by applying the reaction mixture onto P81 phosphocellulose paper

and scintillation counting as described in the previous section. One

unit (U) of activity represents the incorporation to the substrate of

1 nmol of c-32P per minute.

Immunoblotting
The indicated amounts of cell lysates or purified proteins were

subjected to SDS-PAGE and transferred to nitrocellulose mem-

branes. The membranes were blocked for 1 h in TBS-T buffer

containing 5% (w/v) skimmed milk. The anti-GST, anti-Flag, and

anti-Myc antibodies (Sigma) were diluted 1,000-fold before the

membranes were immunoblotted in the same buffer containing the

indicated antibodies, for 16 h at 4uC. Membranes were then

washed six times with TBS-T buffer and incubated with the

appropriate horseradish peroxidase-conjugated secondary anti-

bodies (Pierce) in TBS-T buffer containing 10% (w/v) skimmed

milk. After repeating the washing steps, detection was performed

using the enhanced chemiluminescence reagent (Amersham

Pharmacia Biotech), and the films were developed using a film

automatic processor (SRX-101; Konica Minolta Medical).

Protein Expression for Nucleotide Binding and SPR
Measurements

For nucleotide binding experiments, wild-type and mutant

forms of STRADa (residues 54–431) and MO25a (residues 1–341)

were expressed individually as GST fusion proteins in E. coli. Cells

were grown in Luria Bertani medium to A600 = 0.7 at 37uC, and

protein expression was induced by the addition of 250 mM IPTG

and incubated for a further 16 h at 26uC. Cells were harvested by

centrifugation for 30 min at 3,500g and resuspended in ice-cold

wash buffer (50 mM Tris-HCl (pH 7.8), 150 mM NaCl, 5% (v/v)

glycerol, 1 mM benzamidine, 1 mM EGTA, 1 mM EDTA,

0.1 mM PMSF, and 0.01% (v/v) b-mercaptoethanol, supplement-

ed with 0.5 mg/ml lysozyme and 0.3 mg/ml DNAse-I. Cells were

lysed by sonication (10 6 10 s pulses) and clarified lysates (by

centrifugation at 26,000g) were incubated for 1 h on a rotating
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platform with glutathione-Sepharose (GE Healthcare; 0.5 ml/l of

culture) pre-equilibrated in wash buffer. The beads were then

washed with ten column volumes of wash buffer and a further 50

column volumes of high-salt wash buffer containing 500 mM

NaCl. Beads were re-equilibrated in ten column volumes of wash

buffer, and the proteins were eluted by incubating with PreScission

protease for 16 h. Protein eluates were dialysed for 16 h against 5 l

of assay buffer containing 50 mM Tris-HCl (pH 7.8), 50 mM

NaCl, 270 mM sucrose, and 1 mM DTT, concentrated to 7 mg/

ml, divided into aliquots, and stored at 280uC.

For SPR measurements, wild-type and mutant forms of MO25a
were expressed and purified as above. His-STRADa (residues 59–

431) was isolated in complex with MO25a as described for

crystallisation. After gel filtration (GF) in GF buffer containing

50 mM Tris-HCl (pH 7.8), 50 mM NaCl, 270 mM sucrose, and

0.075% (v/v) b-mercaptoethanol, the STRADa/MO25a complex

(20 mg) was resuspended in 20 ml of binding buffer (BB),

consisting of GF buffer with increased NaCl concentration

(300 mM). This sample was passed through 2 ml of Ni2+-agarose

beads (Invitrogen), equilibrated in BB, and the beads were washed

with 50 column volumes of BB containing 500 mM NaCl and

were re-equilibrated with ten column volumes of BB. His-

STRADa was eluted in binding buffer supplemented with

150 mM imidazole. The eluted His-STRADa sample was equally

divided and dialyzed against the assay buffer mentioned above.

Untagged STRADa was obtained by incubation with TEV

protease for 16 h at 4uC. Uncleaved STRADa and the TEV

protease were removed by passing the postcleavage sample

through Ni2+-agarose beads. His-STRADa and untagged

STRADa were finally dialyzed into assay buffer, concentrated,

and stored as above. Protein concentrations were determined by

measuring the absorbance of the purified proteins at 280 nm in

assay buffer.

Nucleotide Binding Assays
Fluorescent measurements of TNP-ATP (Molecular Probes),

were obtained at 25uC in assay buffer (with the addition of 0.5–

1.0 mM MgCl2 where indicated) using 1-cm pathlength cuvettes

in a VARIAN Cary Eclipse Fluorescence spectrophotometer

(Varian). Fluorescence was recorded using a 410-nm/540-nm

excitation/emission wavelengths from 500 to 600 nm. In all cases,

signal from the TNP-ATP buffer control was subtracted as

background. For all binding studies, STRADa and STRADa
mutants were assayed at 2 mM. In cases where STRADa/MO25a
complexes were assayed, wild-type or mutant MO25a (2 mM)

were preincubated for at least 2 h at 4uC prior to a fluorescence

binding experiment. For saturation binding experiments, concen-

trated stocks of TNP-ATP were added stepwise, covering a range

of concentrations from 0.05 to 30 mM. For displacement

experiments, the concentration of TNP-ATP was fixed at 5 mM,

and ATP or ADP was titrated in, covering a range of

concentrations from 0.05 to 500 mM. In all assays, concentrated

stocks of nucleotides were added to 1 ml of reaction mixture in

steps of 0.5 to 1.0 ml, ensuring that the total added volume did not

exceed 1% of the total volume of the reaction.

All data were analysed using GraphPad-PRISM software

(http://www.graphpad.com). To calculate the Kd values for

TNP-ATP, data from saturation binding experiments were fitted

to the following quadratic equation suitable for tight binding

interactions with ligand depletion [55]:

RL½ �~ ½R�z½L�zKdð Þ{sqrt ½R�z½L�zKdð Þ2{4 R½ � L½ �
� �� �.

2;

where [RL] equals the concentration of receptor/ligand complex,

calculated as the fractional occupancy (Fx/Fmax)6[R]; [R] equals

the total binding capacity, fixed at 1.5 mM; and [L] equals the

concentration of added TNP-ATP. In the displacement studies,

equilibrium constant values for ATP and ADP were calculated by

first determining the logEC50 value, using a standard dose-

response equation: Fx/Fmax = minimum+(maximum2minimum)/

(1+10([N]2logEC
50

)), where [N] equals the concentration of added

nucleotide, and Fx/Fmax represents the fractional occupancy.

Equilibrium constants for the competing ATP and ADP (Kd
N),

were fitted using the equation: logEC50 = log(10logK
d

N 6
(1+[TNP2ATP]/Kd

TNP2ATP)).

SPR Measurements of STRADa Binding to MO25a
SPR measurements were performed using a BIAcore T100

instrument. Wild-type and mutant forms of MO25a were

immobilized on a CM5 sensor chip using standard amine-coupling

chemistry, and 10 mM HBS (pH 7.4) was used as the running

buffer. The carboxymethyl dextran surface was activated with a 7-

min injection of a 1:1 ratio of 0.4 M 1-ethyl-3-(3-dimethylamino-

propyl) carbodiimide hydrochloride (EDC)/0.1 M N-hydroxy

succinimide (NHS). MO25a (5–7 mM) was coupled to the surface

with a 1-min injection of protein diluted in 10 mM sodium acetate

(pH 5.5). Remaining activated groups were blocked with a 7-min

injection of 1 M ethanolamine (pH 8.5). MO25a was immobilised

on three flow cells of a CM5 chip at densities 1,700–2,500 RU

performed at 25uC, leaving one flow cell as a reference to subtract

any possible nonspecific binding.

STRADa was prepared in running buffer containing 50 mM

Tris (pH 7.8), 50 mM NaCl, 270 mM sucrose, 1 mM DTT,

0.005% P20, and 0.1 mg/ml BSA in the presence/absence of

100 mM ATP and 1 mM MgCl2, and injected over all four

surfaces at nine concentrations of a 3-fold concentration series

(5 mM to 0.3 nM). Each concentration was injected in duplicate

over all surfaces. Association was measured for 60 s at a flow rate

of 50 ml/min, and dissociation was measured for 3 min. STRADa
dissociated completely from the MO25a surfaces, thus eliminating

the need for a regeneration step.

Data were analysed using Scrubber 2 (BioLogic Software) and

CLAMP software. Data were double referenced to the reference

surface to subtract any possible nonspecific binding and to the

blank buffer injections to subtract drift of the target from surface.

Data were fitted to a 1:1 or 2:1 binding site model where

appropriate. Kinetic association (ka) and dissociation rate (kd)

constants were separately determined from the BIAcore sensor-

grams, and equilibrium dissociation constants (Kd) were calculated

as: Kd1 = kd1/ka1 and Kd2 = kd2/ka2. Equilibrium constants were

also independently calculated from a saturation binding curve, by

fitting the measured response (R) from specific binding to the

following equation: R = (Rmax1[STRAD]/([STRAD]+Kd1))+(Rmax2

[STRAD]/([STRAD]+Kd2)), where Rmax1 and Rmax2 are the

relative maximal changes in response for sites 1 and 2,

respectively, and Kd1 and Kd2 are the equilibrium dissociation

constants for sites 1 and 2, respectively. Dose-response curves for

calculating the Hill slope (H) of the data were fitted with the

following equation: R = minimum+(maximum2minimum)/

(1+10((logEC502[STRAD])6H)) using GraphPad-PRISM software.

Accession Numbers
Coordinates and observed structure factor amplitudes have

been deposited at the Worldwide Protein Data Bank (wwPDB,

http://www.wwpdb.org/), with accession code 3GNI.
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Supporting Information

Figure S1 Isolation of the heterodimeric STRADa/
MO25a complex. (A) Gel filtration profiles of His-STRADa/

MO25a coexpressed in E. coli and crystallised in this study. The

elution profile of separately expressed MO25a monomer as well as

the molecular mass standards aldolase (158 kDa), conalbumin

(75 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa), and

ribonuclease A (13.7 kDa) are also shown. (B) We analysed, by

SDS-PAGE, the fractions in which STRADa/MO25a dimer and

MO25a monomer were eluted and stained with Coomassie Blue.

There is no evidence for large molecular weight aggregates of His-

STRADa/MO25a. In the His-STRADa/MO25a purification, a

minor low molecular weight eluting shoulder to the main peak was

found to consist of mainly uncomplexed His-STRADa. Because

His-STRADa was the subunit used for nickel affinity purification

of the complex, it will be expected to be present in excess.

Found at: doi:10.1371/journal.pbio.1000067.s001 (1.99 MB TIF)

Figure S2 Attempts at reactivating the STRADa pseu-
dokinase. The indicated STRADa (residues 59–431) active site

mutants were expressed in E. coli and tested for kinase activity in

the presence of 0.2 mM c-32P-ATP and 10 mM magnesium

acetate, (A) alone or (B) in the presence of MO25a. Similarly, in

(C) and (D), the same mutations were tested in the absence of

magnesium acetate. (E–H) STRADa active site mutants were

combined with mutations/deletions from the P+1 site of the

kinase. (E and F) were tested in the presence of magnesium

acetate, whereas (G and H) were tested in the absence of Mg2+. In

all cases, PKA assayed in the presence of Mg2+ was included as a

positive control. (5X = T98A+R100K+G213D+L214F+R215G)

Found at: doi:10.1371/journal.pbio.1000067.s002 (3.73 MB TIF)

Figure S3 Characterisation of the MO25a PFPF motif,
the STRADa WEF motif, and effects on LKB1 binding. (A)

Comparison of STRADa WEF motif, binding to the MO25a WEF

pocket. WEF motifs from the STRADa/MO25a complex structure

and MO25a/peptide complex determined previously by Milburn et

al. [16], are superimposed (RMSD = 0.3 Å over 35 atoms) and

shown as stick models with green and yellow carbon atoms,

respectively. Electron density maps (Fo-Fc are shown for the WEF

motif determined in this study and contoured at 2.5s). (B) The

PFPF motif of MO25a binds to a STRADa hydrophobic pocket,

near the ATP binding site. Electron density maps are displayed as

described above. (C) The indicated constructs of GST-STRADa
and untagged MO25a were expressed in 293 cells. Cells were lysed

36 h posttransfection and GST-STRADa was affinity purified on

glutathione-Sepharose. The purified GST-STRADa preparation

(upper panels), as well as the cell extracts (lower panel), was

immunoblotted with the indicated antibodies. STRADa R227A

mutant, unable to bind MO25a, was used as a control. (D) Wild-

type GST-LKB1 and indicated forms of Flag-STRADa and

untagged MO25a were cotransfected in 293 cells. Cells 36 h

posttransfection were lysed, and GST-LKB1 was affinity purified on

glutathione-Sepharose. The purified GST-LKB1 preparations

(upper panels), as well as the cell extracts (lower panel), were

immunoblotted with the indicated antibodies. (E) Either 0.5 or

1.0 mg of the indicated cell lysates were incubated with 5 mg of the

indicated biotinylated peptides conjugated to Streptavidin-Sephar-

ose. Following isolation and washing of the beads, the samples were

subjected to SDS-polyacrylamide gel electrophoresis and immuno-

blotted with the indicated antibodies. (F) Activation of the

bacterially expressed AMPK complex using wild-type or mutant

LKB1/STRADa/MO25a complex. The purity of LKB1 com-

plexes was analyzed by SDS-PAGE and colloidal blue staining.

Found at: doi:10.1371/journal.pbio.1000067.s003 (3.82 MB TIF)

Figure S4 His-tagged STRADa and untagged STRADa
bind MO25a with similar affinity. His-STRADa was treated

in the presence or absence of His-TEV protease to remove the 6-

His purification tag and then repurified using nickel agarose to

remove His-TEV and any uncleaved His-STRADa (see Materials

and Methods). Binding was assessed by SPR analyses where (A)

MO25a(WT) (wild type), (B) MO25a(M260A), (C)

MO25a(R227A), and (D) MO25a(R227A/M260A) were immo-

bilised to a CM5 sensor chip. Equivalent concentrations of His-

STRADa or untagged STRADa, were allowed to bind over 50 s

by injecting different concentrations over a range of 0.4 nM to

5 mM, in the presence of 0.1 mM ATP and 1 mM MgCl2.

Response level for specific binding of STRADa to MO25a was

plotted against STRADa concentration (log scale), using a variable

slope model (where appropriate) to determine the Hill slope from

the data. (E). Reported Kd values were calculated by measuring

association (ka) and dissociation (kd) rates from the BIAcore

sensorgram data shown in Figure S7 and Table S1, using

Scrubber-2 software. Kd values reported here were calculated as

Kd = kd/ka (see Materials and Methods). Equilibrium binding

constants were also calculated from a saturation binding model,

and similar values were obtained. (see Figure S7 and Materials and

Methods).

Found at: doi:10.1371/journal.pbio.1000067.s004 (0.66 MB TIF)

Figure S5 Sequence conservation of STRADa and
MO25a. Sequence alignment (dark blue = conserved, white = not

conserved) of STRADa (A) and MO25a (B) of the indicated

species. Alignments were performed with MUSCLE and edited

and displayed using ALINE (Charlie Bond and Alex Schüttelkopf).

A graph of residues involved in STRADa/MO25a interaction

against their contact area (green bars), is displayed. Height of the

bar represents the contact area (atom pairs closer than 3.9 Å,

analysed by CONTACT from the CCP4 package), divided by the

molecular weight of the participating amino acid. Key STRADa
catalytic motifs and the WEF motif are boxed. The secondary

structure (analysed by DSSP) is shown in red. Dotted lines

represent residues missing in our structural model.

Found at: doi:10.1371/journal.pbio.1000067.s005 (1.93 MB TIF)

Figure S6 Binding of STRADa/MO25a complex to the
ATP fluorescent analog TNP-ATP6MgCl2. Saturation bind-

ing experiments for STRADa/MO25a complex to TNP-ATP in

the presence/absence of 0.5 mM and 1 mM MgCl2. Bound was

defined as (Fx/Fmax)[R], where Fmax and Fx are maximal and

fractional fluorescence (recorded at 540 nm), respectively, and [R]

equals the binding capacity, defined by the enzyme concentration,

fixed at 1.5 mM. Equilibrium binding curves were then fitted to the

quadratic equation suitable for tight binding interactions with ligand

depletion (see Materials and Methods). Kd values were calculated as:

0.0960.03 mM, 0.2360.06 mM, and 0.0960.04 mM for TNP-

ATP, TNP-ATP+0.5 mM MgCl2, and TNP-ATP+1.0 mM

MgCl2, respectively. Data shown are the average of two

independent experiments.

Found at: doi:10.1371/journal.pbio.1000067.s006 (0.30 MB TIF)

Figure S7 Primary BIAcore sensorgrams used to calcu-
late equilibrium rate constants in Figure S3 and Kd

values in Figure 6. Data analyses were undertaken as described

in Materials and Methods. Similar results were obtained in two

separate experiments carried out in duplicate. Kinetic fits in (A, C,

and E) correlate well with equilibrium fits in (B, D, and F),

respectively, as is expected for specific binding that follows the law

of mass action.

Structure of the STRADa/MO25a Complex

PLoS Biology | www.plosbiology.org 17 June 2009 | Volume 7 | Issue 6 | e1000126



Found at: doi:10.1371/journal.pbio.1000067.s007 (1.08 MB TIF)

Table S1 STRADa interaction rate constants for MO25a
(WT) and MO25a mutants. ka and kd values were calculated

from BIAcore sensorgrams in Figure S7. Error values are given in

parentheses.

Found at: doi:10.1371/journal.pbio.1000067.s008 (0.05 MB PDF)

Text S1 Purification and kinase activity assays of
STRADa.

Found at: doi:10.1371/journal.pbio.1000067.s009 (0.03 MB

DOC)
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