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Simple Summary: Advances in RNA sequencing (RNA-seq) have led to the identification of long
non-coding RNAs (lncRNAs). Molecular studies on these molecules have shown that lncRNAs act as
important regulators of gene expression at the transcriptional and post-transcriptional level, in both
physiological and pathological conditions, yet cell functions of many of identified lncRNAs remain
unknown. Here we summarize the achievements on lncRNAs studies including identification of
lncRNA interactomes, structural studies and creating reporters for lncRNA activity. We also collect
recent data on the involvement of lncRNAs in diseases, the clinical applications of these molecules
and discuss major problems remaining the area of lncRNAs pointing future challenges.

Abstract: Non-coding RNAs (ncRNAs) have been considered as unimportant additions to the
transcriptome. Yet, in light of numerous studies, it has become clear that ncRNAs play important
roles in development, health and disease. Long-ignored, long non-coding RNAs (lncRNAs), ncRNAs
made of more than 200 nucleotides have gained attention due to their involvement as drivers or
suppressors of a myriad of tumours. The detailed understanding of some of their functions, structures
and interactomes has been the result of interdisciplinary efforts, as in many cases, new methods
need to be created or adapted to characterise these molecules. Unlike most reviews on lncRNAs,
we summarize the achievements on lncRNA studies by taking into consideration the approaches
for identification of lncRNA functions, interactomes, and structural arrangements. We also provide
information about the recent data on the involvement of lncRNAs in diseases and present applications
of these molecules, especially in medicine.
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1. Introduction

Non-coding RNAs (ncRNAs) were considered as superfluous by-products due to
the lack of direct involvement in translation. It is now clear that these molecules play
important roles in fine-tuning cellular functions. NcRNA are generally classified into two
groups: those longer than 200 nucleotides, long non-coding RNAs (lncRNAs), and those
below—small non-coding RNAs (sncRNA) [1,2].

Despite their extraordinary numbers, there are more than 50,000 annotated lncRNA
genes in the human genome [3], lncRNAs were considered transcriptional noise until
rather recently. LncRNAs are expressed at very low levels and show more cell type- or
tissue-specific expression patterns than mRNAs. The biogenesis of lncRNAs is similar to
that of mRNAs, where transcription, splicing and polyadenylation are mediated through
RNA polymerase II [4]. The heterogenicity of lncRNAs is further enriched by the existence
of isoforms through post-transcriptional alternative cleavage, alternative (or absence of)
polyadenylation and/or alternative splicing [5–8]. Based on their genomic localisation,
lncRNAs can be classified into intronic (transcribed from an intron within a protein-
coding gene), intergenic (lincRNA; between two protein-coding genes) or enhancer (eRNA;
transcribed from genomic regions distant to gene transcription start site that positively
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regulate nearest genes’ expression), in addition of being sense, antisense or bidirectional in
reference to neighbouring genes [5,9].

In contrast to the small non-coding RNAs (sncRNAs), lncRNAs are poorly evolu-
tionarily conserved (sequence-wise) and their cell functions are highly heterogenous [9].
Some lncRNAs affect chromatin structure by dexterously interacting with both DNA and
chromatin-modifying proteins creating scaffolds for DNA-protein complexes [9], other
lncRNAs can bind neighbouring genomic loci from their place of transcription to initi-
ate genomic imprinting. Large lincRNA can also control gene expression by recruiting
enzymes participating in histone modifications [10]. Additionally, lncRNAs can regu-
late translation, splicing and RNA stability through interaction with mRNAs [9]. Some
lncRNAs seem to work as sponges inhibiting the activity of sncRNAs i.e., microRNAs
(miRNAs) [11,12], and some bind mRNA or proteins [13–15] what results in becoming
stabilisers/degrons, translocators or modulators of their activity [16–18]. The interaction
of lncRNAs with all other macromolecules is achieved through structural recognition
and/or base-pairing [5], making lncRNA either decoys, signals or guides [9]. Of note, some
lncRNAs have also been found to encode peptides within small ORFs (smORFs; containing
less than 100 codons) [19,20].

Furthermore, only around 1% of human known lncRNAs have been characterised to
date. Progress in this field is difficult due to their limited expression in the cell, low level of
lncRNA sequence conservation, and a large variety of mechanisms of action [21].

Furthermore, processes like regular co-transcriptional splicing [22] or post-transcriptional
back-splicing [23,24] can produce another class of lncRNAs—the circular RNAs (circR-
NAs). The back-splicing circRNA can be formed from within an intron (ciRNA, circular
intronic RNA), one or more exons and exon fragments with intron (elciRNA) [25]. The
differences in biogenesis of circRNA might be important for their localization and thus
functions, for example ciRNAs as well as elciRNAs mainly accumulate in the nucleus and
are thought to regulate transcription [26,27], while exonic circRNAs are mostly present
in the cytoplasm where they seem to act in post-transcriptional gene regulation e.g., as
miRNA-sponges [25,28].

LncRNAs can also be classified by the function they perform—imprinted lncRNAs,
disease-associated lncRNAs, pathogen-induced lncRNAs, miRNA sponges and bifunc-
tional RNAs [10]. Imprinted lncRNAs have an important role in reinforcing local chromatin
organisation, resulting in one of the autosomal alleles of a gene being epigenetically si-
lenced [29]. Disease-associated lncRNAs are those whose expression is postnatally silenced
in most tissues but re-activated during regeneration or pathophysiological conditions
such as tumorigenesis [30]. Pathogen-induced lncRNAs are modulated as a response to
invading microorganisms, such as Helicobacter pylori, and Salmonella enterica [31,32]. Bifunc-
tional lncRNAs can have more than one role in gene expression and, in some cases, have
smORFs [33].

This review outlines the available methods and tools currently used to study lncRNAs
biology in terms of structure, interactome, activity and function. We have also summarized
the mounting data on the potential applications of lncRNAs especially in medicine.

2. LncRNAs Structure-Functions

It is assumed that ncRNAs functions are “encoded” within their structure. In lncRNAs,
numbers of local and long-range pairing of nucleotides lead to folding the strand into
dynamic and flexible shapes. In this way, different structural motifs like helices, terminal or
internal loops, junctions, pseudoknots, triplexes or G-quadruplexes are formed. Depending
on such structural elements, RNAs are involved in cis- (within the same RNA molecule)
or trans-interactions (with other molecules: RNAs, DNAs, proteins, lipids) [15,34]. Most
structural analyses are based on in silico or biophysical techniques (like X-ray crystal-
lography, NMR spectroscopy or more recently, cryo-electron microscopy). However, 3D
analyses have a number of limitations for studying large molecules. First, as they require
isolated and purified molecules, their assessments are based on thermodynamically stable
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structures, and finally the dynamic shapeshifting nature of lncRNAs is lost. In fact, in vitro
or in silico studies show more lncRNA structural motifs for the same lncRNA molecule
than those observed in cells [35]. This is due to the lncRNAs’ interactions with cellular
factors (RNA binding proteins -RBPs, RNA helicases, ribosomes) that promote RNA confor-
mational changes [35], often resulting in the formation of multicomponent complexes [36].
In an elegant study, Uroda and collaborators mapped the tertiary structure motifs of MEG3
(human maternally expressed gene 3), a tumor suppressor lncRNA that modulates the p53
response, and associate such motifs with function. The pseudoknots, or “kissing loops”, of
MEG3 that are formed by the interaction between two distal complementary motifs, are
critical to the interaction and stimulation of the p53 signalling pathway [37].

In addition to cellular context and environmental conditions such as temperature, ATP
depletion, metabolite concentration and availability of partnering molecules, all known
to act on the structure of RNAs [38–40], lncRNAs undergo a series of post-transcriptional
modifications that also affect their affinity for binding partners. For example, unmethylated
and methylated MALAT1 exhibits different conformations in a hairpin stem [41] whereas
methylation of Xist reduces its interactions with protein partners [42].

Yet, predicting the structure-function of any RNA—this applies to lncRNAs as well—
purely based on their nucleotide sequence has proven challenging as some of these
molecules achieve incredible lengths and possess high plasticity. LncRNAs are diverse
class of RNA including molecules that do not exceed the arbitrary threshold of 200 nt and
‘macroRNAs’ extending beyond 90 kb. The first are BC1 and snaR, which are less than
or close to 200 nt but function either as primary or spliced transcripts, independent of
extant known classes of small ncRNAs [43], while the second refers to 108 kb Air, the 91 kb
kcnq1ot1 and enormous XACT (252 kb) [29,44,45]. These diversity is also reflected with
the stucture and function of lncRNAs. Similarly to sncRNAs, some lncRNAs act via their
primary structure, for example 1

2 sbsRNA containing Alu element necessary for binding
with mRNA in STAU1-mediated mRNA decay [46] or lncRNAs sequestering miRNAs
(see below).

On the other hand for some RNAs the secondary structure might be more important
than the sequence. This is reflected by analyses of internal ribosome entry sites (IRES),
RNA sequences responsible for cap-independent translation initiation, that show little se-
quence homology but similar secondary structures, supporting the idea that their plasticity
and the secondary structure stability are more important than sequence [47,48]. Further,
mutational analyses identified base pairs critical for IRES function, but also found that
compensatory mutations that regained secondary structures could partially rescue transla-
tional efficiency [49]. Although, to make things even more complex, some IRES have no
predictable secondary structure and despite that they remain functional [50,51].

The first experimentally derived secondary structure of an intact lncRNA was reported
by Novikova and collaborators for human steroid receptor RNA activator (SRA) [52]. This
0.87 kb lncRNA posses an intricate and highly structured two-dimensional architecture
organized into four major subdomains, 25 helices, 16 terminal loops, 15 internal loops and
5 junction regions. Generally, the longer the RNA sequence, the more alternative folding
choices are present what makes structural predictions more challenging. For example to
analyse partial of entire structure of XIST which is of 17 kb, an effort of many groups was
undertaken [53–56] (see below). Recently, the modular domain architecture of XIST in
complex with interacting proteins was revealed [57]. Interestingly, discrete XIST domains
are responsible for binding of distinct sets of effector proteins nonetheless the central role
of the A-repeat domain in this process is indisputable.

While the obvious and simplest manner of evaluation of lncRNAs by sequence sim-
ilarity comparison didn’t reveal features that survived through generations, comparing
lncRNAs’ genome locations, structure (exon-intron), the 3D structure of the resulting RNA,
and their expression patterns, support that probably over 70% of 5413 human lncRNA anal-
ysed are evolutionary conserved [58]. The comparison of the structure-function of these
many lncRNAs is an arduous task, yet, in one seminal study, Hezroni and collaborators
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analysed the most well-known human lncRNAs and concluded that more than 1000 lncR-
NAs have similar functions in other mammals [59]. Based on these facts, we suggest that
lncRNAs should be analysed with view of structure shifting in a landscape of biological
factors, similar to the way intrinsically disordered proteins are investigated [60,61].

For the above-mentioned reasons, new or adapted strategies to map the motifs and func-
tions of lncRNAs had to be developed. Today, the general rule in lncRNA structure analysis is
based on six stages: (1) in vivo/in vitro experimentation; (2) RNA denaturation/purification;
(3) probing—enzymatic/chemical; (4) sequencing (High-Throughput Sequencing -HTS/Next
Generation Sequencing -NGS), RNA-seq/capillary electrophoresis; (5) bioinformatic analysis;
(6) determination of nucleotide position and modification frequency.

3. Structural Analyses of lncRNAs

The preferred tool to study the structure of lncRNAs is enzymatic/chemical probing,
supported by computational RNA structure prediction methods (Figure 1) [62]. Although,
other methods exist (see Table 1). The use of chemical probes or nucleases is based on the
fact that RNA bases, whether they are free, pairing, or forming 3D structures, show different
accessibility and reactivity to different types of probes. Binding of small molecule probes
to RNAs leads to formation of adducts that cause reverse transcriptase (RT) to either create
errors recognized as ’mutations’ or ’stop’ events during reverse transcription. The first
results in modifications of newly synthesized cDNA while the latter causes the detachment
of RT from the RNA fragment and a truncated cDNA [63,64]. These modifications are
then positioned using capillary electrophoresis or sequencing techniques where cDNAs
are compared with probed and untreated RNAs.

Enzymatic probing utilises nucleases recognising and cleaving specific sequences or
structures e.g., single- or double-stranded regions (RNases such as P1 and V1, respectively),
A’s (RNase A) and U’s (RNase U2) [63], which were later subjected to reverse transcription
and sequencing. Both of these methods can be applied to purified lncRNA but only
chemical probing is used in living cells (in vivo) due to the difficulties with the identification
of lncRNAs secondary structures at the single-nucleotide level after nuclease digestion of
millions of RNAs present in the cell. In general, data obtained after digestion with one
nuclease shows only a structural trend (e.g., single- or double-stranded character), but in
most cases, additional analysis using other nucleases or chemical probes are necessary [63].

In contrast, small molecule probes easily penetrate into living cells and provide better
resolution [63,65]. In 2013, Novicova and collaborators described a new approach called 3S
(Shotgun Secondary Structure) that is especially useful for analysing long RNAs [66]. It
is based on parallel chemical probing of the entire lncRNA as well as multiple fragments
of the lncRNA overlapping with each other. LncRNA fragments are prepared by in vitro
transcription from dsDNA templates obtained from available cDNA clones or chemically
synthesized by custom gene services. The obtained probing profiles of fragments are
compared with the profile of the full RNA to estimate the identity/similarities. Regions
with profiles similar to the full-length transcript are considered to have the same secondary
structure. As the base-pairing partners within this region are not likely to occur outside
the region, this method enables to map the structure of RNA through hierarchical probing
of smaller and smaller fragments of the full RNA. 3S has been used for determination of
the secondary structures of the best known lncRNAs: SRA, HOTAIR, COOLAIR, RepA,
Braveheart and NEAT1 [66–71].

HTS is nevertheless considered the most specific technique to analyse lncRNA struc-
tures to date. The development of methodologies coupling HTS with ribonuclease cleavage
or chemical probing facilitate RNA structure mapping in the context of whole transcrip-
tome. For example, FragSeq (Fragmentation Sequencing) is based on P1 nuclease (which
specifically degrades single-stranded nucleic acids) probing followed by HTS and bioin-
formatic analysis. The degradation in a site between two adjacent bases is characterized
by a ‘cutting score’ reflecting the preference of P1 nuclease to digest comparing to other
sites in the same RNA; as P1 cuts 3′ of an unpaired base, the uncleaved nucleotide targets
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may be engaged in base pairing or tertiary interactions [72]. The ds-RNA fragments left
after nuclease-treatment are further separated according to size, cloned together with
5′ and 3′ specific adapters and sequenced. The obtained reads are used in mapping of
single-stranded of RNA regions by comparing the sequence with sequencing libraries of
multiple ncRNAs with known structure.
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Table 1. Comparison of commonly used methods for lncRNA structural studies.

Type of Experiment Limitations Methods Structure lncRNA References

In vitro
• Controlled conditions, lncRNA structure more stable than in

in vivo tests
• Requires sequencing

Enzymatic probing

• Only in vitro
• Fragmentation of RNA by nucleases makes difficult the

identification of secondary structures at single-nucleotide level
• Might require additional probing with nuclease or chemical

PARS/nuclease S1 and RNaseV1 double- and single-
stranded regions of RNA

Rox1
Rox2 [73]

Chemical probing

• Does not provide information concerning interactions between
base-pairing (at close- or long-range)

• Labour-intensive
SHAPE-seq 2′ -OH acylation

Braveheart RepA
Rox1
Rox2

SRA HOTAIR COOLAIR MALAT1 NEAT1

[66–69,71,73–75]

• DMS- nucleotide bias (only able to react with purines)
• DMS is corrosive and toxic,
• In some cases, using DMS is not sufficient to capture all

single-stranded regions
• Labour-intensive

DMS-seq (DMS) unpaired adenine and
cytosine residues

BraveheartRepA
SRA HOTAIR MALAT1 [66,67,69,74,75]

In vivo

• Requires sequencing
• Difficult task due to lncRNAs’ size and low abundance in cells
• lncRNAs are expressed in alternative isoforms and bound by a

variety of RNA binding proteins in vivo

Chemical Probing:

SHAPE-MaP (1M7,1M6,NMI1) 2′ -OH acylation Xist [55]

In silico
• lncRNA is more structured than in in vivo tests
• Only for prediction of secondary structure
• Has to be complemented by in vivo/in vitro tests

CROSS (Computational Recognition
of Secondary Structure)

RepA,
D2 domain Xist HOTAIR [76]

Biophysical

• Difficult for application of higher numbers of transcripts
• Difficult for long RNA strands
• Requires large quantities of robust, homogenous sample
• Crystallography is labour-intensive

X-ray A-rich 3′ -UTR MALAT1 [77]

NMR spectroscopy AUCG tetraloop Xist [56]
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4. Identification of lncRNAs’ Binding Partners

Recently, initiatives such as lncRNA interactome mapping, single-complex mapping,
and large-scale (network) mapping have been used for revealing the complexity of lncRNAs
partnerships with other RNAs, proteins and/or DNA and thus provided some information
about their potential functions.

4.1. RNA-RNA Interactions

Interactions between pairing RNAs, or duplexes within the same molecule, are most
commonly detected following one of two strategies: crosslinking of the two RNA strands
or employing known RBPs. The former approach is used in techniques such as PARIS
(Psoralen Analysis of RNA Interactions and Structures) [78], SPLASH (Sequencing of
Psoralen crosslinked, Ligated, and Selected Hybrids) [79], and LIGR-seq (LIGation of
interacting RNA followed by high-throughput sequencing) [80], where a photochemical
reagent—psoralen, or its derivates, is used to (Figure 2A) intercalate and crosslink double
stranded fragments of RNA (or DNA) molecules. Photoirradiation results in the formation
of covalent adducts between psoralen and pyrimidine bases. An advantage of psoralen is
that it is activated at higher wavelengths than standard UV light crosslinking (320–400 nm
for psoralen vs. 260 nm for UV), causing less damage to nucleic acids.
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Figure 2. Methods for detection of RNA-RNA interactions. (A) Crosslinking RNAs directly, (B) crosslinking RNAs in the
presence of RNA binding protein (RBP). PARIS, SPLASH, LIGR-seq include crosslinking RNAs with psoralen, digestion
with RNase, proximity ligation and sequencing. In hiCLIP after RNA digestion, adjacent RNAs ends are ligated using a
linker. In MARIO, RNA binding protein (RBP) is biotinylated, enabling immobilisation of RNA–RBP followed by digestion
of RNAs ends and their ligation with added biotinylated linker; the tagged RNA–protein complexes are then purified and
sequenced. This is an original figure.

Furthermore, the bridge formed between two RNA fragments is photoreversible
by short wavelength (264 nm) UV light [81,82]. Psoralen crosslinking is followed by
purification of RNA duplexes, ligation of adjacent nucleic acids termini (proximity ligation)
and identification of interacting RNAs in cis and in trans, by sequencing. For instance,



Cancers 2021, 13, 2643 8 of 31

PARIS was used for analysis of structural organization of XIST, a nuclear lncRNA that
triggers silencing of one of the X chromosomes in mammalian female cells, showing that
four major coherent domains are kept by local duplexes within XIST [78]. Additionally,
the authors reported the interactions between snRNA U1 and lncRNA MALAT1. The
main drawback of psoralen-dependent methods is the relatively low number of uniquely
mapped duplexes due to psoralen’s limited efficiency [35].

The second strategy includes pull-down of tagged RBP in complex with their inter-
acting RNA(s). Most commonly used RBPs are Argonaute proteins [83], PUM2 (human
Pumilio 2, a member of the Puf-protein family), QKI (Quaking homolog, START pro-
teins family) [84], and small nucleolar RBPs [85] (see also Table 2), that bind sequence or
structure-specific regions of RNA. The RBP-mediated methods (Figure 2B) such as CLASH
(Cross-linking, Ligation And Sequencing of Hybrids) [86] and hiCLIP (RNA hybrid and
individual-nucleotide resolution ultraviolet crosslinking and immunoprecipitation) [87],
follow a similar strategy starting by overexpressing a known RBP that binds to RNAs
duplexes. These methods have assisted the discovery of new snoRNA-rRNA interactions
in yeast, and miRNA–mRNA dimers recognised by Argonaute in human cells [88], re-
spectively. It is unknown whether overexpression of tagged-RBPs, although innovative,
influence RNA–RNA–RBP interactions. MARIO (MApping RNA Interactome In vivo) [89]
overcame such potential problem by UV light-crosslinking of any RNA–protein complexes,
followed by RBP labelling by covalent biotin binding to amino acids such as lysine or
tyrosine, or to carboxyl group on the C-terminal ends of proteins using biotin ligases. The
RNA is then fragmented by RNase I, and the RNA–RBPs are then immobilised on strep-
tavidin/avidin beads. The adjacent RNA ends are further joined by short biotin tagged
RNA linkers. Next, biotin labelled complexes are purified, and RNAs are extracted for
sequencing. MARIO has been used to capture the RNA interactome, including lincRNAs,
based on the whole proteome [89].

Table 2. Commonly used RNA binding proteins (RBPs). Abbreviations: H = A, C, or U; N = A or U; Y = U or C.

RBP RNA Sequence/Motif Interacting RNA Method References

λN Box B loop any fused with Box B loop Gal4-λN/BoxB reporter system [90,91]

MCP MS2 loop any fused with MS2 loop RNA-tethering [92]

IGF2BP1,2,3 CAUH mostly exons, i.e., eEF2 PAR-CLIP [84]

PUM2 UGUANAUA 3′ untranslated region (UTR) PAR-CLIP [84]

QKI ACUAAY mostly introns PAR-CLIP [84]

AGO
(most enriched 7
nucleotide- mers)

AUGCUGC miR-103,-107 PAR-CLIP [84]

GCUGCUA miR-15a/b,-16,196a PAR-CLIP [84]

UUUGCAC miR-19a/b PAR-CLIP [84]

UGCACUU miR-130a/b,-148a/b,-301a/b PAR-CLIP [84]

CACUUUA miR-106a/b,-20a/b PAR-CLIP [84]

UUGCUGC miR-424 PAR-CLIP [84]

UUGCACU miR-130a/b,181a,-301a/b,-454 PAR-CLIP [84]

GCACUUU miR-17,-20a/b,-93,-106a/b PAR-CLIP [84]

UGCUGCU miR-15a/b,-16,196a,-103,107,-424 PAR-CLIP [84]

STAU1 3′ UTRs (Alu, 858 nt duplex) XBP1 hiCLIP [87]

4.2. RNA-DNA Interactions

The first eukaryotic lncRNA (H19) was identified in the pre-genomic era during cDNA
library screens performed to study gene expression. Initially, it was considered an mRNA
due to the presence of small ORFs [93]. Despite the fact that H19 does not code any protein,
its dosage is important in embryonic development [94]. Shortly afterward, another lncRNA
participating in dosage compensation, Xist, was identified as X-inactive-specific transcript,
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during the pioneering studies on X-chromosome inactivation (XCI) in mice [95]. Further
studies on H19, Xist and newly identified lncRNAs revealed tight interplay between
lncRNAs and DNA.

Evidence suggested that one of the most prominent roles of, at least some, lncRNAs
was the regulation of chromatin structure [96], and several techniques were succesfully
applied to decipher the molecular mechanisms of lncRNAs action. For example, Chromatin
Isolation by RNA Purification (ChIRP), using hybridising biotinylated oligonucleotides,
showed that HOTAIR acts as an active recruiter of chromatin-modifying complexes and
is associated with relocalisation of PRC2 (Polycomb repressive complex 2)—a protein
complex with H3K27 histone methytransferase activity that causes chromatin condensation
and gene silencing. The lncRNA-dependent chromatin occupancy of PRC2 has been
further confirmed by Long and collaborators [97], who reutilised rChIP (RNA-dependent
Chromatin Immunoprecipitation) and coupled it with deep sequencing (rChIP-Seq).

Modifications of these techniques exist to improve specificity, for example by an initial
RNase-H mapping assay to determine the most accessible sequences for probing. To map
the chromatin interaction sites of lncRNAs, a ChIRP like, but more specific, method is
commonly used: capture hybridization analysis of RNA targets (CHART), which uses short
(22–28 nts) antisense biotinylated-oligonucleotides as probes to capture lncRNA-chromatin
complexes [98]. This approach revealed that roX2, a Drosophila lncRNA, binds across
gene bodies of X-linked genes exhibiting focal peaks of high occupancy at chromosomal
entry sites [99]. In addition, RNA Antisense Purification (RAP) [53] uses antisense RNA
probes (a bit longer than ChIRP: 120 nt for Xist), which improves specificity and minimizes
background noise. RAP analyses showed that during maintenance of XCI, Xist is localized
broadly across the entire X chromosome, lacking focal binding sites [53].

A significant limitation of all the above-mentioned methods is the need of knowing
the sequence of the targeted nuclear lncRNA (nlncRNA). To overcome this obstacle, three
new methods have been developed, namely: MARGI (MApping RNA-Genome Interac-
tions) [100], GRID-seq (Global RNA Interactions with DNA by deep Sequencing) [101], and
ChAR-seq (Chromatin-Associated RNA Sequencing) [102]. The common feature between
them is the crosslinking of nlncRNAs with their DNA targets, followed by proximal ligation,
fragmentation, and sequencing. The outcome is a detailed and comprehensive database of
genome-wide interactions, showing that most of the nlncRNAs act as cis-regulators, and
only a few notable nlncrNAs such as MALAT1, NEAT1, and roX2 are trans-regulators [101].

4.3. RNA-Protein Interactions

RNA–protein interactions can be studied either through the prism of RNA or that
of protein. RNA-centric methods employ probes in similar ways as in RNA-RNA anal-
yses [95], yet they differ in the downstream steps, usually involving mass spectrometry
(MS) to determine protein identities. One such method is ChIRP-MS (Comprehensive
Identification of RNA-binding Proteins by MS) [103], which captures lncRNA(s) by bi-
otinylated oligonucleotides together with their binding proteins, and are identified by MS.
The technique was successfully used to identify 81 Xist-interacting proteins, among them
HnrnpU and HnrnpK emerged as the most abundant Xist-associated factors, and both
functionally contribute to XCI [104]. The obvious goal of these methods is the identification
of proteins interacting with a given RNA, which means to distinguish between covalently
bounded RNA–protein and non-covalent interactions. In RAP-MS (RNA Antisense Pu-
rification coupled with quantitative MS) the purification of complexes is performed in
denaturing and reducing conditions to disrupt the non-covalent interactions. Therefore,
the mapping of specific RNA required long biotinylated probes, forming very stable RNA–
DNA hybrids. Another challenge has been the quantification of interacting proteins vs.
background proteins, what might be accomplished by isotopic labelling of amino acids
and quantitative comparison of purified proteins by MS. At the end a short list of high
confidence interactions is given, for example Xist interacts with SHARP and SMRT proteins,



Cancers 2021, 13, 2643 10 of 31

recruiting HDAC3 (Histone Deacetylase 3), and with PRC2 guiding the complex to the X
chromosome for transcriptional silencing [105].

On the other hand, pulling down a known RBP with its lncRNA in complex with
other proteins has been successfully carried out using two main approaches. The first
involves the modification of the lncRNA, inserting an RNA sequence that is known to
attract a specific RBP. The second option is to use a known RBP as a lure to pull down
lncRNA–protein complexes. For example, the MS2 bacteriophage coat protein (MCP)
tagged with the HB (histidine-biotin) tag, a peptide sequence that contains 6xHis and
the 75-amino acid sequence of Propionibacterium shermanii’s transcarboxylase—which is
efficiently biotinylated in eukaryotic cells by endogenous biotin ligases [106] has been used
to pull down MS2 loop-tagged lncRNAs together with their interacting RBPs, a technique
named MS2 in vivo Biotin Tagged RNA Affinity Purification (MS2-BioTRAP) [107]. The
application of HB-tag allows to purify authentic complexes of MS2-RNA–RBPs [107]. As in
all cases for protein identification, MS is the top choice.

In order to retain the RBP–lncRNA complexes, UV light cross-linking is most com-
monly used [108,109], followed by immunoprecipitation (CLIP) [110] and numerous de-
rived methods such as high-throughput sequencing HITS-CLIP [111] for comprehensive
identification of RBP target sequences at the transcriptome level, photoactivatable ribonu-
cleoside enhanced PAR-CLIP where alternative ribonucleosides are used during RT at
the position of cross-linking, which enables the detection of RNA–RBP interacting sites
with nucleotide resolution and reduces background reads [84], or enhanced CLIP (eCLIP)
where 3′ RNA linkers and further 3′ DNA linkers are ligated to increase the total number of
non-PCR reads that can be obtained after HTS, often decreased due to the RT termination
at the crosslink site [112]. For more information regarding the different variants of CLIP
methods, we suggest the following review [17].

5. Determination of lncRNA Function (Reporter Systems)

Studies on the function of lncRNA have been hindered by lack of relevant tools. Thus,
most lncRNA reporter systems have been created ab initio. As most of the known functions
of lncRNAs have been discovered in nlncRNAs, such as XIST and HOTAIR, their functions
have been assigned as gene or chromatin regulators. Such nlncRNAs often work as scaf-
folds of unsympathetic protein partners and/or guides of RNP complexes to particular
loci—what results in local changes in transcription, chromatin structure histone modifica-
tions (methylation, acetylation) and/or DNA methylation [113,114]. Therefore, targeting
nlncRNAs to synthetic promoter–reporter systems is currently the most common approach
to determine the function of these enigmatic nucleic acids as epigenetic modulators.

Here, we shall separate the assays into two types: those to study gene repression and
those to study gene activation (Figure 3). The practical difference between the two is that
for the first a constitutively active promoter is used and thus repression is measured as the
decrease of reporter signal, while for the latter a transcriptional complex must be delivered
to a minimal promoter for transcriptional activation and reporter expression. Either of
these promoters include a binding sequence, often in tandem repeats, for a DNA binding
protein (DBP). The DBP is then engineered as a fusion with the RNA binding domain
(RBD) of an RBP (Figure 3A), which might be an endogenous protein known to interact
with the specific lncRNA or an artificial (exogenous) protein that binds to a specific RNA
sequence/structure. As mentioned above, there are RBPs to natural or synthetic loops
e.g., MCP-MS2 loops, and novel proteins that are able to bind RNA by guiding RNAs (see
Table 2 for a list of the most commonly used RBPs).

As endogenous RBPs often bind to a plethora of RNAs, domesticated RBDs are far
more specific and thus more commonly used. Synthetic RBPs usually bind to RNA-specific
loops, these loops need to be artificially cloned in fusion with the lncRNA to be studied.
Two of the most common loop binding proteins are λN and MCP, that bind to the BoxB and
MS2 loops, respectively. By fusing a DBP, e.g., GAL4 or TtA, to either of these loop-binding
proteins, they will drag (guide) the lncRNA to either a constitutive or a minimal promoter,
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depending on the desired effect (repression or transcriptional activation, respectively).
Such promoters control the expression of a reporter gene (luciferase or fluorescent protein)
(Figure 3). These systems have been used to verify the functions of lncRNAs such as NALT,
LUNAR1, LINC00152 or HOTTIP as transcriptional activators [90,91,115,116], and HOTAIR
as a transcriptional repressor [92] (Figure 3B).
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It is of note that some lncRNAs bind directly to DNA sequences forming tertiary
structures (Figure 3C). In some cases, the interaction lncRNA–DNA does not seem to be
sequence-specific e.g., XIST or Ferre [53,117] who bind DNA in cis-, nearby its production
site [118,119]; while in other cases, lncRNAs have targeted sequences. For example, the
lncRNA CISAL contains a 22 nt DNA-recognition sequence (900 nts from its 3′-terminus) to
the promoter of BRCA1. Binding to the BRCA1 promoter results in a triple helix structure,
while another region of CISAL sequesters GABPA, a BRCA1-transcription factor, away from
downstream regulatory regions, all of which uncouples BRCA1 transcription [120]. This
study is of particular interest as the lncRNA-interacting sites for promoter and transcription
factor were elegantly mapped by truncations and mutagenesis of all three partners (DNA,
lncRNA and protein). Another example is lnc-MxA, a lncRNA that binds to the IFN-β
promoter forming a triplex with the DNA and leading to interference of gene expression—
as determined by a reporter bioassay (Figure 3C) [121].

LncRNAs as miRNA ‘sponges’ were first described in plants, where an Arabidopsis
thaliana non-protein coding gene IPS1 (Induced by Starvation 1) harbouring a miR-399
targeting sequence was reported to sequester that miRNA away from mRNA [122]. To
found more information about sponging miRNAs by lncRNAs we recommend the fol-
lowing article [123], here we will only focus on the development of an assay to analyse
the activity of lncRNAs being ‘sponges’ of miRNAs (Figure 3D). Since miRNAs target
mRNA for degradation, a miRNA sponge works by hijacking miRNAs and thus a positive
regulator of mRNAs. Using a luciferase reporter system, the target region of a miRNA,
often located in the 3′-untranslated region (3‘UTR) of the target’s mRNA, is cloned down-
stream of luciferase, thus upon miRNA expression luciferase expression is suppressed via
miRNA-mRNA destabilization. Therefore, if co-expression of a lncRNA results in miRNA
binding and regain expression of luciferase, it suggests that the lncRNA is a miRNA sponge.
Further verification includes mutagenesis of the miRNA-binding site in the lncRNA of
interest, to ensure direct effects [124].

Tools to unravel the impact of lncRNAs on chromatin condensation are still limited
due to the complexity of the process. Yet, there are some groundbreaking examples such as
a doxycycline (DOX)-inducible system regulating XIST that was integrated into multiple
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loci (different chromosomes) to investigate the effect of local XIST expression in the neigh-
bouring DNA and chromatin environment. After DOX induction, XIST expression and
localization was determined by RNA Fluorescence In-Situ Hybridization (FISH), showing
that local gene silencing could be achieved by this lncRNA without the participation of
other known, and thought to be essential, chromatin modifiers such as macroH2A, SM-
CHD1, and H3K27me3/H4K20me1. The analyses by allele-discriminating pyrosequencing
assays revealed the pattern of genes silenced flanking the integration sites, while ChIP-seq
showed that XIST –mediated silencing occurs at all sites tested, but the range of silencing
to flanking endogenous human genes is variable [118].

6. Mapping lncRNAs’ Functional Domains

LncRNAs, similarly to proteins, can acquire 3D structures, lncRNAs are often more
dynamic shapeshifters than their amino acid counterparts, as well as having intrinsically
disordered regions—similar to intrinsically disordered proteins [51]. This, turns out, allows
these nucleic acids to use sequence-specific-binding to other RNAs or to DNA, to form
docking structures for proteins, RNAs and DNA, and become magnets and guides for
multi-component complexes between all three macromolecules. The detailed biological
understanding of lncRNAs needs the identification of their functional domains in terms
of specific motifs, local architecture, and/or posttranslational modifications. Analysing
lncRNA is far more challenging than proteins because of the unique features of these
molecules. The initial approaches to reveal lncRNA functional domains were based on the
RNA sequence similarity but provided only limited useful information [125]. More infor-
mative data was obtained by analysing common structural RNA elements [126,127], which,
as mentioned earlier, in many cases are evolutionary conserved [3,128]. Since the prediction
of functionally relevant sequences requires careful verification by in vivo studies, a variety
of methods to systematically map lncRNA functional domains are under development.
Below, we summarize some of the previously used and most modern techniques.

Screening for functional molecules and/or functional domains has traditionally
been performed by loss-of-function (LoF) studies. LncRNAs have been knocked-down
by small interfering RNA (siRNA), endoribonuclease-prepared RNA (esiRNA) or short
hairpin RNAs (shRNA) sampling for biologically relevant phenotypes (Figure 4A) e.g.,
stemness [4,129–131]. However, some of the approaches induced a large number of side-off
effects, off-targeting on other transcripts, or detected only specific phenotypes in particular
cell lines and/or conditions [132].
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Similar to siRNA, ASOs (antisense oligonucleotides) have been applied to target
certain regions of lncRNAs (Figure 4B) [133]. ASOs can hybridize with complementary
RNA sequences and recruit endogenous RNase H to cleave the lncRNAs leading to either
knock-down lncRNA or sterically block the access of functional domains without degrada-
tion [133]. Chemical modifications on ASOs improve their stability and reduce unwanted
cell responses e.g., interferon response what makes them useful also for therapy of various
diseases [134]. Importantly, ASOs can also enter the nucleus and thus effectively modulate
activity of both cytoplasmic and nuclear lncRNAs [135].

Yet, the direct targeting of functional regions within a lncRNA was not done until
Beletskii and co-workers developed Peptide Nucleic Acid (PNA)-Interference Mapping
(P-IMP) (Figure 3C) [136]. PNAs mimic nucleic acids but having a peptide backbone,
composed of charge neutral and achiral N-(2-aminoethyl) glycine units, which, unlike
natural nucleic acids, protects them from nucleases [137]. Originally, this technique was
used for mapping the regions of the murine Xist, revealing that a distinct repeat in the first
exon is responsible for binding to genomic DNA [136].

Similarly, Sarma and collaborators used locked nucleic acid (LNA) technology to
target and block key regions of Xist (Figure 3D) [138]. LNAs are nucleic acid analogues
containing the ribose ring “locked” by a methylene bridge between the 2′ oxygen and the
4′ carbon, which results in higher stability and an increased affinity of LNAs to base pair
with complementary RNA vs. DNA. In this way several domains of Xist engaged in its
nuclear distribution were identified [138].

The advent of genome editing tools, in particular Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR)/Cas9, brought several additional possibilities to
the lncRNA field. First, it allowed for the permanent genetic modification of endoge-
nous lncRNAs genes by targeting Cas9 nuclease using guide RNAs (gRNAs) to specific
genetic sequences and introducing InDels (insertion or deletions) [139]. Indeed, system-
atic deletions of NEAT1 in a human haploid cell line resulted in the identification of a
modular domain architecture of this lncRNA [140,141]. The authors depicted three func-
tional NEAT1 domains playing distinct roles during formation of RNA–protein complexes
called paraspeckles. Moreover, this approach was also effective to show three subdomains
within the middle domain of NEAT1 responsible for paraspeckles assembly [140]. Since
CRISPR/Cas9 is amenable for high-throughput screening, by using libraries of gRNAs,
targeting unique genomic locations, single or multiple targets can be analysed downstream
phenotypical screens. These screens have been very effective to identify the functional
domains of proteins and recently have been adopted to non-coding genes too. For example,
Tiling CRISPR, where a set of gRNAs is used to direct Cas9 to sequences covering the entire
gene of interest (Figure 5), was successfully used to authenticate the region containing
A-repeats as XIST silencing domain [54].
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7. LncRNAs Databases and Bioinformatic Tools

The lncRNA databases and bioinformatic toolkit can greatly assist the research on
lncRNAs. Some of available online tools for in silico lncRNA analysis provide rather
general information, while others are more specific. The first includes ’meta-databases’ of
lncRNAs such as LNCipedia, representing the most comprehensive compendia of human
lncRNA [142]. It contains data from ten unique origins as of 2019, allowing embedded prog-
nostication of coding potential, yet there is no automatic forecast of subcellular localization,
correlation with disease or functional estimates. Contrary, LNCBook compiles lncRNAs
from both previously established databases and experimentally verified transcripts selected
by the community [143]. LNCBook tenders multi-omic data integration such as expression
profiles in normal and carcinogenic tissues, function annotation and disease association,
DNA methylation patterns in various gene regions, genome variability and forecasts of
microRNA (miRNA) synergies using miRanda [143,144] and TargetScan algorithms [145].
Both LNCipedia and LNCBook extend embedded coding potential foresight through pre-
dictor of lncRNAs and mRNAs based on specific pattern containing k nucleotides called
k-mer (PLEK) [146] and Coding Potential Alignment Tool (CPAT) [147]. As this field is
evolving rapidly and numerous new transcripts are steadily being distinguished, these
databases should be frequently updated to improve their potential.

The second group of tools is dedicated for analysing particular features of lncRNAs
and refers to targeted databases; for example, databases of lncRNA expression in human
tissues (GTEx) [148], cancers (TANRIC) [149], and plants (CANTATAdb) [150], or lncRNA
localization such as LncSLdb [151] or LncATLAS [152], and the most popular predictor
of subcellular localization- LncLocator [153]. In addition, essential in lncRNAs research
are tools designed to separate transcripts encoding micropeptides from authentic non-
coding RNAs, such as Coding Potential Prediction (CPPred) [154] as well as PhyloCSF [155]
and COME [156]. Recently, a freely available mobile-friendly web server- Coding-Non-
coding Identifying Tool (CNIT) [157] based on the Coding-Non-Coding Index (CNCI) [158]
database, was introduced for researchers.

At present, the only available tools for structure prediction of lncRNAs are those
dedicated to all RNA molecules. One of which is the RNA Mapping Database (RMDB)
that facilitate access and meta-analysis of the diverse structural mapping experiments
performed on ribonucleic acids [159]. To date the use of RMDB for lncRNA may be limited,
however the rapid development of high-throughput techniques may contribute to increas-
ing the functionality of this database [160]. Ultimately, RNAfold [161] or DMfold [162] can
be used to predict lncRNA structure. The RNAfold predicts minimum free energy (MFE)
folding for RNA secondary structure and equilibrium base-pairing probabilities, both
algorithms are considering also circRNA [163]. The limitation of RNAfold with predicting
pseudoknots can be solved using DMfold, which is based on deep learning [162]. Though
DMfold exhibits a high accuracy in predicting lncRNA structure, it may be less accessible
due to its command line utility [160].

Despite the growing demand, the availability of in silico methods and predictive
tools for mapping lncRNAs functional domains is still poor. Since single bioinformatics
tools are unable to truly estimate the structure: function of lncRNAs, a bioinformatic
tool—Predicting LncRNA Activity through Integrative Data-driven Omics and Heuristics
(PLAIDOH)—has been created to combine data from the transcriptome, subcellular local-
ization, enhancer landscape, genome architecture, chromatin interaction, and RNA-binding
(eCLIP) analyses, providing statistically defined output scores [164]. This approach also
provides the interactome between individual lncRNA, coding genes, and protein pairs
using enhancer, transcript cis-regulatory, and RBP data to enhance its predicting capacity.

In contrast, there are several databases for predicting lncRNA partnerships. Databases,
such as IntaRNA 2.0 [165] or LncRRIsearch [166] are dedicated to predict lncRNA—RNA
interactions, while TheLnChrom [167] and Triplexator [168] to predict lncRNA–DNA in-
teractions. For their detailed comparison we recommend the following article [160]. In
addition, many tools focus on lncRNA–protein interaction, such as NPInter [169,170], star-



Cancers 2021, 13, 2643 15 of 31

Base [171] and several others [172]. Additionally, RNA Interactome Repository-RNAInter
is more comprehensive tool collecting information from published data along with another
35 database resources [173].

Recently, to predict lncRNA function a new approach of sequence evaluation based
on comparison of short sequence elements (k-mer) representation (SEEKR), was devel-
oped [174]. As lncRNAs with similar k-mer content have been shown to exhibit related
functions despite their lack of linear homology, the SEEKR database provides very useful
information about some determinants of lncRNAs function. In addition, lnChrom [167]
and lncRNADisease [175] databases collect lncRNA-disease associations.

8. LncRNAs and Disease

Since multiple lncRNAs have been found playing roles as regulatory elements in
gene expression, it is of little surprise that they take part in physiological and disease
processes [5]. We summarize them in the section below, with the exception of their potential
role as biomarkers in cancers, which we describe in a separate chapter.

LncRNAs have rather clear and unique expression patterns, which makes them good
markers for health and disease conditions. Changes in expression of many lncRNAs are
specific to the tissue, developmental stage and/or conditions (see Table 3).

Table 3. Examples of tissue specific lncRNAs.

Tissue lncRNA References

Brain (frontal cortex’s white matter) OLMALINC
TUNA

[176]
[177]

Heart Braveheart [178]

Lung HSPC324
MALAT1

[179]
[180]

Pancreas MALAT1 [180]

Liver lncLSTR
LeXis

[181]
[182]

Testis THOR [183]

Muscle Linc-MD1 [184]

Skin ANCR
TINCR

[185]
[186]

Many reports describe the dysregulation of lncRNAs in multifactorial chronic dis-
eases [187]. Starting with neurodegenerative diseases such as Alzheimer [188–190], Parkin-
son’s [191] and Huntington’s [177]; through autism spectrum disorders [187,192,193];
and schizophrenia [194,195], cardiovascular diseases, such as during chronic heart fail-
ure [196,197], atherosclerosis [198,199], myocardial infarction [200], and diabetic cardiomy-
opathy [201]. Moreover, as lncRNAs are implicated at many levels of metabolism regulation,
perturbations in their expression serve as an important component for the occurrence of
metabolic diseases. In a comprehensive study, Morán and collaborators identified a series
of pancreatic islet lncRNAs (e.g., HI-LNC12, HI-LNC25, HI-LNC75, and HI-LNC78) dynami-
cally regulated during β-cell differentiation and maturation, two other (KCNQ1OT1 and
HILNC45) that are dysregulated in type 2 diabetes, and a set of lncRNAs that map to human
diabetes genetic susceptibility loci [202]. Among other lncRNAs having diagnostic value
are TUNA associated with the intensity of Huntington’s disease [177], MALAT1 upregu-
lated in myocardial infarction [203], and Mhrt downregulated in cardiac hypertrophy [204].

In addition, data gained from the studies on infectious diseases show that lncRNAs have
been associated with the regulation of both pro- and anti-inflammatory processes [205–208].
Moreover, lncRNAs seem to play critical roles in the regulation of pathways in autoimmune
diseases such as rheumatoid arthritis [209,210], psoriasis [7], and Chron’s disease [211]. Ex-
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pression of lncRNAs changes in response to various pathogens—likely due to deregulation
of host immune responses [212–214]. There seems to be a footprint pattern of lncRNAs ex-
pression depending of the pathogen, as has been shown by studies with Escherichia coli [215],
Salmonella typhimurium [216], Mycobacterium tuberculosis [217–220], Campylobacter oncisus [221],
or Helicobacter pylori [222,223], also after infection by the human immunodeficiency virus
(HIV) [224], ZIKA virus, Sendai virus, hepatitis C virus [205] and COVID-19 [225].

A recent report on Toxoplasmosa gondii infection, for the first time, suggests that
protozoan infections also alter lncRNA expression [226]. The molecular mechanisms at
play by these lncRNAs during infections are yet to be discovered. Virtually no information
is available on lncRNA effects during protozoan invasion, which might be an interesting
area of research, in particular if there are common patterns versus infectious agent or host
responses—beneficial or deleterious—as they could be potential drug targets. Considering
the poor sequence conservation along lncRNAs, it will be highly interesting to compare the
different species responses to infections, which might not only bring new information to
human medicine, but to zoonosis and veterinary medicine, as well.

9. Applications of lncRNAs
9.1. Diagnostic Biomarkers in Cancers and Targets for Therapy

It is widely known that early detection of tumorigenesis greatly increases the chances
for successful treatment and survival. Numerous studies have shown that several lncRNAs
are associated with the stage and prognosis of multiple tumour types [31,227–230] such as
breast [231–234], lung [235,236], gastric [75], colorectal [237,238], and prostate cancers [239].
Additionally, the overexpression of multiple lncRNAs e.g., AC006050.3-003 and ODRUL
in cancer cells increases their resistance to DNA damaging agents [240,241], suggesting
that these lncRNAs could be used as prognosis markers. To date, current cancer diagnosis
biomarkers are unreliable due to the high number of false positive and false negative
results. Yet, since lncRNAs have highly specific expression patterns, their background in
biological samples is virtually nonexistent and their presence can be detected in biological
fluids [189,242–246]: whole blood [247], urine [248,249], serum [250,251], saliva [252], and
gastric juice samples [253].

Their high specificity allows for the detection of cancer initiation (e.g., SPRY4-IT1) [254],
progression (e.g., ATB) [255], metastasis (e.g., LINC00461, CCAT2 and H19) [256–258] and
response to therapy (e.g., MALAT1 or HOTAIR) [77,259,260]. An additional important
group of lncRNAs is the exosomal lncRNAs—secreted by cancer cells. They might play
pivotal roles in tumorigenesis (e.g., H19 in cervical cancer and hepatocellular carcinoma,
ZFAS1 in gastric carcinoma) and might be excellent cancer biomarkers (e.g., MALAT1,
HOTAIR, both in cervical and bladder cancer). The functions, if any, of these exosomal
lncRNAs are yet to be unravelled [261–263].

As lncRNA can be easily amplified and quantitated, this equals high sensitivity and
specificity, easy and minimally invasive sample collection in contrast with conventional
biopsies, and inexpensive methods [264]. A future perspective is to make them suitable for
routine procedures in clinical practice and use for diagnostic purposes.

The therapeutic potential of lncRNAs is another crucial aspect. Recent reports have
highlighted the relationship between lncRNA dysregulation and resistance to chemother-
apy and targeted therapy [265–268], inhibition of signal transduction [15,269], and resis-
tance to anti-hormone therapies [265,268,270]. For instance, overexpression of HOTAIR
enhances the proliferation of breast cancer cells, while its depletion by shRNA consid-
erably reduces cell survival and decreases growth during anti-hormone therapy (tamox-
ifen) [74]. Similarly, Adriaens and collaborators [271] demonstrated that the sensitivity of
precancerous cells to DNA damaging or chemotherapy drugs was enhanced by knockout
lncRNA-Neat1 in mice and NEAT1 in MCF-7 cells. Furthermore, the depletion of potentially
oncogenic lncRNA SNHG15 by siRNA or CRISPR-Cas9, decreased cell proliferation and
invasion, and tumorigenic capacity of CRC cells while overexpression of this lncRNA
directed to opposite phenotype [272]. Similarly, deletion of LINC00538 (YIYA) in human
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breast cancer strongly inhibited the tumour growth and invasion in vitro and suppressed
tumour growth in a mouse xenograft model [273].

Therefore, many potential oncogenic lncRNAs are currently being tested as targets for
therapy (Figure 6). For example, targeting lncRNA MALAT1 with ASO induced differentia-
tion and inhibited metastasis breast cancer in the mouse mammary tumour virus-PyMT
(MMTV) carcinoma model [274,275]. The anti-metastatic effect of knocking down MALAT1
was also reported in a lung cancer xenograft model [276]. Silencing of a lncRNA called
Cancer Susceptibility Candidate 9 (CASC9), who is associated with various processes in
several cancer types, provided conflicting results, as it decreased the migration and inva-
sion potential of ESCC (Esophageal Squamous Cell Carcinoma) cells while promoted their
apoptotic potential of breast cancer cells MDA-MB-415 and MCF-7/DOX [277].
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Figure 6. Schematic of anti-tumour gene therapy approaches involving lncRNA. The altered expression of lncRNA is widely
observed in tumour tissues. The initial step for gene therapy includes collecting and growing tumour cells that are obtained
from the patient (or from commercial cell line collections). The next step is testing the function of lncRNA of interest in
tumour, which might be done with cell-editing assays using targeting lncRNA by RNAi, ASOs, PNAs or CRISPR/Cas9.
Resulted cell lines with altered expression of lncRNA are characterized in line with unmodified tumour cells. The cell-based
experiments include analysis of cell viability, proliferation, migratory potential, response to therapeutic compounds. The
obtained results need to be confirmed in vivo for example after injection of lncRNA expressing cells/lncRNA-silenced
cells to immunodeficient mouse (xenograft models). The tumour growing in xenografts mimics the patient’s tumour. The
characteristics of tumour mass, growth rate and specific aspects of its behavior, such as assessing metastatic growth, is
needed to validate the therapeutic potential of lncRNA. Additionally, xenografts might be subjected to anti-tumour therapy
to test response to drugs. The verified therapeutic lncRNA gene might be then encapsuled with the non-immunogenic
vectors like viruses and injected to the patient. Ultimately, stem cell lines such as MCSs (mesenchymal stem cells), HCSs
(haematopoietic stem cells) or iPCSs (induced pluripotent stem cells) might be transfected with the lncRNA to obtain cells
expressing lncRNA. The injection of these modified cells to the patient increases the ability to generate healthy cells. Several
lncRNAs tested for gene therapy are described within the text. This is an original figure.
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The comprehensive studies on lncRNAs associated with Notch oncogenic signalling
in T-cell acute lymphoblastic leukaemia (T-ALL) uncovered a novel target candidate for
treatment of this aggressive haematological disease, namely LUNAR1 (leukaemia-induced
non-coding activator RNA 1) [115]. Silencing LUNAR1 in T-ALL cells suppressed the
expression of IGF1R gene crucial for T-ALL tumour growth and caused significant cell
growth retardation. Recently, LUNAR1 was found expressed in colorectal cancer (CRC),
expanding the promise of LUNAR1 as a therapeutic target [278].

Targeting lncRNAs might not be straightforward; nevertheless, the removal of regula-
tory lncRNAs might cause complex changes in the cell. This was illustrated when the Colon
Cancer-Associated Transcript 1 (CCAT1) was erased by CRISPR/Cas9, which led to the
dysregulation of genes involved in several biological processes, including metabolism, cell
migration, proliferation; and CCAT1-null cells lost their ability to anchorage-independent
growth [279].

In addition to silencing a lncRNA, also adding or replacing it might have clinical ben-
efits. In chronic metabolic disease such as atherosclerosis, lncRNA LeXis (Liver-expressed
LXR-induced sequence) gene therapy resulted in positive outcomes. Studies on mice
showed significantly reduced atherosclerotic load in mice treated with a vector express-
ing LeXis compared to control (the vector expressing Green Fluorescent Protein) treated
mice [182]. Taking into account that there is an orthologue of LeXis in humans, such data
might have clinical implications.

9.2. Silencing of Single Chromosome/Trisomy Effects

As described above, XCI is the result of a lncRNA—XIST activity. With this in mind,
Yiang and collaborators developed a system to silence a single chromosome in a trisomy
with the use of XIST [280]. They introduced an inducible XIST transgene to one of the
three Chr21 in Down Syndrome (DS) patient-derived pluripotent stem cells using zinc
finger nucleases. Induction of XIST expression resulted in the repression of virtually all
genes across the autosome, and a total chromosome 21 transcriptional output near normal
disomic levels which also rescued the cells phenotype [281]. That was the pioneering
work on „chromosome therapy”, a technique that could have implications in many other
chromosomal disorders, some of which are fatal in the first 1–2 years of life (e.g., trisomy
Chr13 and Chr18).

9.3. Tissue/Muscle Regeneration

In a series of unexpected discoveries, lncRNAs have been found to modulate stem/pro-
genitor cells physiology, including cells for engineering tissues. Growing evidence supports
the importance of lncRNAs in different cellular lineages (neuronal, liver, skin, muscle and
vascular tissue) growth, maintenance, proliferation, migration, and differentiation (for
review see [282]), which suggests that lncRNAs can be applicable for tissue engineering.
For example, lncRNA Dum (Developmental pluripotency-associated 2 (Dppa2) Upstream
binding Muscle lncRNA) is induced during the early regeneration stage, when satellite cells
become activated, proliferate and start to differentiate [283]. Dum acts in cis by silencing
transcription of its upstream neighbour gene, Dppa2, encoding a pluripotency regulator,
promoting then early differentiation. Dum interacts with and recruit DNA methyltrans-
ferases (Dnmts) to Dppa2 promoter, leading to CpG site hypermethylation and Dppa2
gene silencing. Dum knockdown in vivo impaired the injury-induced muscle regeneration,
suggesting an important role of this lncRNA in the regulation of myogenesis [283]. There-
fore, the careful and coordinated regulation of expression of lncRNAs, might be essential
to engineer more physiologically relevant tissues for transplantation.

In terms of the bigger picture, extensive research on lncRNAs structure, partnerships
and function might provide powerful outcomes in the future for different branches of
medicine supporting therapeutic modalities for various pathogen infections, anticancer
therapy, “chromosome therapy” and transplantology.
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10. Discussion

Since their discovery, we have made great progress in our understanding of lncRNAs,
as numerous studies have documented the significant contribution of lncRNAs to multiple
regulatory mechanisms essential for mammalian homeostasis and development. However,
the detailed functions of lncRNAs remain largely unknown. ‘Decoding’ lncRNAs in terms
of revealing the key aspects determining their function is an ambitious goal due to their
low expression in the cell, flexible structure, weak sequence conservation and diversity
of functions.

The structural architecture of lncRNAs is still an unexplored field. With the rise of
sequencing techniques such as single-cell RNA-seq (scRNA-seq), many cell-type-specific
lncRNAs have been identified, and it is likely that many structural architectures and mech-
anisms will be revealed. Initially, the identification of common short sequence elements,
similar structural features and structure-function relationships in lncRNAs might be ap-
plied. The resolving of lncRNA structure will need a combination of high-resolution global
imaging techniques with secondary structural determinations. Moreover, the plasticity of
all RNA molecules dynamically responding to the presence of their interacting partners,
cellular context and environmental conditions are factors that cannot be ommited. While
it is notoriously difficult to crystallize RNA molecules, cryoEM seems to work very well
for RNA, and it negates the need for crystals, requires minimal sample and can differenti-
ate biochemical and conformational heterogeneities of the samples. Thus, applying this
powerful technique might enable the breakthrough in lncRNA studies similarly to the
revolutionizing the structural biology of macromolecular protein assemblies, in the future.
Structural maps can then be used to guide detailed biophysical explorations of lncRNAs
cell functions and study the effect of mutations on lncRNA activity as well as elucidating
their involvement in disease occurrence and designing lncRNA- targeting drugs.

Though the number of platforms for annotating lncRNA functions is growing, the
highly efficient methods with enhanced targeting, higher resolution and increased maneu-
verability at the molecular level still need to be developed. The assessment of lncRNAs
functions in cells requires a thorough analysis including gene perturbation experiments
such as overexpression and downregulation, followed by real-time quantitative PCRs
or deep sequencing, to observe any differential gene expressions. Importantly, not all
lncRNAs exhibit functions in cells and laboratory model animals or are difficult to knock
down or overexpress due to their enormous sizes and/or genomic architecture.

Understanding the structural biology and mechanism of action of lncRNAs will give
the necessary foundation of the identification of therapeutics targeting these molecules
with high specificity. Presently, the most popular method to target lncRNAs is through
oligonucleotide-based therapies, yet CRISPR-Cas9-based techniques are also of a great
potential. Importantly, the interactive network between lncRNAs and their partners,
including other noncoding RNAs, particularly miRNAs, is another research field that
should be explored in future studies. This complex relationship might also alter the
disease’s level occurrence, course, or response to therapy. As mechanisms of action, the
design of oligonucleotides and methods for targeting lncRNAs continue to be researched it
is expected that a number of compounds efficient for lncRNA-based treatment of a wide
variety of diseases will be obtained.

11. Conclusions

LncRNAs represent a new class of RNA that fine-tune complex physiological processes
and the onset of diseases. The detailed understanding of their functions, structures and
interactomes is challenging as the conventional methods used to study mRNA functions
are inefficient for lncRNAs. In this review we summarized the interdisciplinary efforts
undertaken to characterise lncRNAs. In many cases, a combination of several techniques
was successfully applied; for example, for predicting structure of these molecules the
bioinformatic predictions, followed by enzymatic or chemical probing of lncRNAs and
HTS. Moreover, the ability of lncRNAs to interact with DNA, RNA, and proteins to exert
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their functions, is raising their complexity to a higher level. To explore the interactome of
lncRNA techniques based on crosslinking RNAs with their partners, employing known
RBPs, labeling RNA–protein complexes or adapting chromatin IP with oligonucleotide
probing of RNA are coupled with sequencing or MS, depending on the target molecules.
Yet, the nature and dynamics of such interactions need to be elucidated in the future.
Functional studies on lncRNAs required new tools dedicated for their versatile activities in
the cell. For the determination of lncRNAs function and map functional elements currently
used methodologies target certain regions or whole lncRNAs gene through RNAi, ASOs,
PNAs or CRISPR/Cas9. The improvement of these methods is of great value, as lncRNAs
are connected with a wide spectrum of diseases. Exploring their biology, disease-related
lncRNAs will gain greater relevance as potential biomarkers in cancers and for personalized
medicine, especially for gene therapy.
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