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Objective. The Bayesian model plays an important role in diagnostic test evaluation in the absence of the gold standard, which
used the external prior distribution of a parameter combined with sample data to yield the posterior distribution of the test
characteristics. However, the correlation between diagnostic tests has always been a problem that cannot be ignored in the Bayesian
model evaluation. This study will discuss how different Bayesian model, correlation scenarios, and prior distribution affect the
outcome. Methods. The data analyzed in this study was gathered during studies of patients presenting to the Nanjing Chest Hospital
with suspected tuberculosis. The diagnostic character of T-SPOT.Tb and KD38 tuberculosis antibody test were evaluated in different
Bayesian model, and discharge diagnosis as a gold standard was used to verify the model results in the end. Result. The comparison
of four models under the conditional independence situation found that Bayesian probabilistic constraint model was consistent with
the Conditional Covariance Bayesian model. The results were mainly affected by prior information. The sensitivity and specificity
of the two tests in Conditional Covariance Bayesian model in prior constraint situation were considerably higher than the Bayesian
probabilistic constraint model in prior constraint situation. The results of the four models under the conditional dependence
situation were similar to the conditional independence situation; p, was also negative with no prior constraint situation in both
model Bayesian probabilistic constraint model and Conditional Covariance Bayesian model. The Deviance Information Criterion
of Bayesian probabilistic constraint model was close to model Conditional Covariance Bayesian model, but p;, of Conditional
Covariance Bayesian model in Prior constraint situation (p,=2.40) was higher than the Bayesian probabilistic constraint model
in Prior constraint situation (pp=1.66). Conclusion. The result of Conditional Covariance Bayesian model in prior constraint with
conditional independence situation was closest to the result of gold standard evaluation in our data. Both of the two Bayesian
methods are the feasible way for the evaluation of diagnostic test in the absence of the gold standard diagnostic. Prior source,
priority number, and conditional dependencies should be considered in the method selection, the accuracy of posterior estimation
mainly depending on the prior distribution.

1. Introduction

Sensitivity and specificity as the reference value of the ability
to detect sick and healthy patients are used in diagnostic
test evaluation with a gold standard test. However, in clinical
practice, the gold standard tests are not given in patients
due to expensive or invasive reasons [1]. The absence of a
gold standard is a common problem in clinical practice and
diagnostic research studies.

Some studies try to evaluate the diagnostic test character-
istics by combining multiple diagnostic tests in the absence
of a gold standard [2, 3]. Due to the fact that the sensitivity

and specificity of diagnostic tests in the estimation process are
unknown variables, the biggest difficulty is that the number
of parameters of estimation exceeds the number of degrees
of freedom provided by the data. For example, when two
nongold standard diagnostic tests are used, only three degrees
of freedom are provided, but the sensitivity and specificity
of the two tests and the prevalence of the disease need to
be estimated for at least five unknown parameters; if the
correlation between the two tests is considered, there are
more parameters to be estimated.

In classical statistical view, sensitivity and specificity are
regarded as fixed parameters and the population prevalence
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is calculated from them. However, it has been proved that
sensitivity and specificity are not fixed values, but change
with external factors [4, 5]. The sensitivity and specificity of
diagnostic tests in the estimation process are unknown, and
their values are often independent of the sample data [6].
According to the Bayesian view, any unknown parameter can
be regarded as a random variable, and its unknown state can
be described by a probability distribution. This probability
distribution is called a prior distribution; the prior constraints
on Bayesian methods can compensate for the lack of freedom.
Of course, prior information needs to be specified by external
data, which can be the expert opinion or historical research.

Bayesian methods have been increasingly used to evaluate
the true accuracy of diagnostic tests in the absence of a
gold standard [7-9] for two reasons. On the one hand,
prior information in the Bayesian framework about the
sensitivities and specificities of the tests can be obtained
from experimental results or other studies; if there is no data
source, it can be replaced by an expert prior [10]. The Bayesian
analysis allows us to combine external prior information
with the data likelihood to yield the posterior estimation of
unknown parameters such as the prevalence and diagnostic
test characteristics [11]. On the other hand, with the devel-
opment of computer technology and professional Bayesian
analysis software such as OpenBUGS, the computational
problems in the Bayesian method have been solved by the
efficient Markov chain Monte Carlo (MCMC) algorithms for
sampling and summarizing posterior distributions [10].

In the combined application of multiple diagnostic tests,
the interdependence between different tests also needs to
be considered in the Bayesian model. If two tests have the
same biological attribute, it is logical to believe that the tests
are conditionally dependent; if the result is positive in one
test, the result of another test is likely to be positive [12].
Several approaches try to take conditional interdependence
of different tests into account in Bayesian models. One
method is to calculate the correlation coefficient directly and
incorporate the covariance into the Bayesian model [13]. The
other method is to use probabilistic constraints to transform
the interdependence of different tests into conditional prob-
abilities and then to construct a Bayesian model based on
conditional probabilities [14]. Both approaches will have their
application scenarios.

Under the basic Bayesian framework, the Bayesian
method is very flexible when considering various influencing
factors. The correlation scenarios, prior distribution, and the
number of the prior parameters are the important factors that
cannot be ignored in the Bayesian estimation. The objective
of this study is to compare the two Bayesian methods
under different scenarios with tuberculosis (TB) data and to
explore the application scenarios for each of the two Bayesian
methods.

2. Methods

2.1. Study Patients and Diagnostic Tests. The data analyzed in
this study was gathered during studies of patients presenting
to the Nanjing Chest Hospital with suspected tuberculosis.
In brief, a case report of patients was collected between June
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and October 2015 at the Nanjing Chest Hospital. Informed
consent was completed for all participated in the study. T-
SPOT.Tb and KD38 tuberculosis antibody test was combined
as the nongold standard diagnostic test to estimate the
prevalence and diagnostic test characteristic. The discharge
diagnosis was used to verify the model results.

2.2. Conditional Covariance Bayesian Model

2.2.1. The Description of Conditional Covariance Bayesian
Model. Conditional covariance Bayesian model directly con-
siders the correlation between the two tests and estimates the
conditional correlation between two diagnostic tests using
the covariance between tests within the diseased and nondis-
eased populations. Two diagnostic test evaluation models
without a gold standard were shown in Table 1, and parameter
explanation was listed as follows: (1) a;;: i=0,1 represents
the negative and positive results of the Testl, respectively,
and j=0,1 represents the negative and positive results of the
Test2, correspondingly; (2) t represents the number of real
patients; (3) n represents the total number; (4) ;;: t; is the
positive potential true value corresponding to a;;; and (5)
a; — t;;: @; — t;; is the negative potential true value. Potential
true values are those that cannot be observed directly but
are close to the gold standard under certain conditions. In
the Conditional Covariance Bayesian model, the conditional
correlation between the two diagnostic tests was estimated by
calculating the covariance between tests within each disease
class [12, 15]. Bayesian conditional covariance models use the
method of Nandini Dendukuri et al. and the description of
the methods partly reproduces their wording [13]. Model
construction in both independent and dependent scenarios
was provided as supporting information (Text S1).

2.2.2. Likelihood Function of the Conditional Covariance
Bayesian Model. Vector A = (a,,a,9,ay;>dg,) represents
the actual result of two diagnostic tests (1 is positive, 0 is
negative); the probability value P corresponding to vector a
is equal to (P, Pyg, Py;> Pog)- The sensitivity of the first and
second tests is se; and se,, the specificity of the two tests is
sp; and sp,.

(a) The Covariance under Positive Conditions of the True
Result

cov (Dp) = se;; — Se;se,. )

(b) The Covariance under Negative Conditions of the True
Result

cov (D,) = spy; = sp,sp,.
sey; = P(Ty,, To, | D), )
spy, = P(T\_,T,- |1 D).

(c) The Correlation Coefficient under the True Disease Condi-
tion is Positive pp,

cov (DP)

+ =
\/Se1 (1-Se;) Se, (1 - Se,)

Pp (3)
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TaBLE 1: Two diagnostic test evaluation models without the gold standard.
True result(+) True result(-)
Test2 Total Test2 Total
+ - + -

Testl + t, o t_{1.} a, —t, aj, —ty a_{l.}—t_{1}
- to) to t {0} ay, — b, gy — too t {1} -t {0}

Total t_{.1} t_{.0} t a {1} —t_{.1} a_{.0} —t_{.0} n-t

TaBLE 2: The prior information of the Conditional Covariance Bayesian model.
Method Knot N Mean VAR SD CI a b

T-SPOT Se, 18 0.893 0.002 0.049 0.869-0.917 41.770 5.005
Sp, 18 0.848 0.010 0.098 0.799-0.896 10.082 1.807
KD38 Se, 9 0.572 0.018 0.132 0.47-0.674 7.207 5.393
Sp, 9 0.717 0.007 0.082 0.654-0.781 20.067 7.920
Prev p 1 0.417 0.023 0.153 0.315-0.52 3.991 5.579

Se; : sensitivity of T-SPOT; Sp, : specificity of T-SPOT; Se,: sensitivity of KD38; Sp,: specificity of KD38; p: prevalence within the patients in the study; N: the
number of published research; VAR: variance; SD: standard deviation; CI: credible interval; a and b were the parameters of the prior distribution.

(d) The Correlation Coefficient under the True Disease Condi-
tion is Negativepr,_

_ cov(D,)
\/SP1 (1 - Spl) Sp, (1 - sz)

(4)

(e) Likelihood Function. The likelihood function of the Condi-
tional Covariance Bayesian model is a multinomial likelihood
function.

L=P (au, Ay0, Ag15 oo | P> s€y, s€5, Py, Sp,, cOV (DP) ,
cov (Dn) st tlo’toptoo)

o (p (selse2 + cov (DP)))t”

tho

*(p(sel 1 - se,) —C0V< p)))
* (p(sez 1—561)—C0V(Dp))) (5)
* (p((l - sey) (1 - se;) + cov (Dp)))tm

( D,)))" ™

(

(

(

(D
1= p) (1= sp) spy = cov (D)™™
)™

*

1-p)((1=sp,) (1= sp;) +cov

*

1~to1

*

(
(
(1-p) (1= sp,) spy = cov(D,))
# (1= p) (spaspy + cov (D)) ™

2.2.3. Prior Information about the Conditional Covariance
Bayesian Method. According to the Bayesian principle, the
conjugate distribution of the binomial distribution is the beta
distribution. The prevalence, sensitivities, and specificities

are assumed to follow beta prior distribution, list like the
following:

(a,b;)
(a5, b)
Sp, ~ beta (as,bs), (6)
(as,b,)
(as, bs)

The prior information of the above parameters
(Sey, Se,, Spy, Sp,» p) was gathered from the previous study
in China. For example, the prior information of sensitivity
and specificity for the T-SPOT method was gathered from
18 previous similar published researches in a different area
of China. According to the data (mean, standard deviation)
calculated from the historical prior, the parameters (a and
b) of the prior beta distribution of unknown variables are
obtained (Table 2).

In practical application, there is a lack of available
prior information in covariance cov(Dp) and cov(D,,); the
covariance is random variables varying in a finite range as
follows:

(Se; — 1) (1-Se,) < cov(D,)

< (min (Se,, Se,) — Se;Se, )
(Sp, - 1) (1 - Sp,) < cov(D,)

< (min (Spy, Sp,) = Sp1Sp,)

Since the positive correlation between the two tests is the
actual consideration, but the lower limit value in the above
expression is always negative, the lower limit value was artifi-
cially fixed to zero. Only when the distribution is uniform,

7)



the entropy can reach the maximum value. So the prior
distribution is defined as follows:

cov (Dp) ~ Uniform (0, (min (Se;, Se,) — Se;Se,)),

cov(D,,) ~ Uniform (0, (min (Sp,, Sp,) — Sp,Sp,)) -

(8)

2.3. Bayesian Probabilistic Constraint Model

2.3.1. The Description of Bayesian Probabilistic Constraint
Model. The conditionally independent assumption is usually
made when two diagnostic tests were combined. However,
the conditionally independent assumption cannot easily be
made when the two diagnostics have a similar biologic mech-
anism; extra information will be required in the estimation
process [16]. When the number of estimable parameters
exceeds the number of parameters to estimate, the Bayesian
probabilistic constraint model is to add the constraint on
the parameters. These constraints usually come from external
information, such as historical study or expert opinion. In
the Bayesian method, we call it prior information, and it
is also the explanation for the constraint of the Bayesian
probabilistic constraint model.

However, in some cases, it is often difficult to directly
specify external prior information for some parameters, such
as the covariance in the Conditional Covariance Bayesian
model. The prior distributions for the covariance are quite
difficult to elicit from experts or other studies, because
they are not the indicator used in a real-life situation. In
Bayesian probabilistic constraint model, prior information
on conditional probabilities is easier to specify [14]. There-
fore, in the Bayesian probabilistic constraint model, the
correlation coeflicients between the two diagnostic tests are
not calculated directly, some restriction will be imposed on
the parameter estimates. We just elicited the information
from experts on the conditional performance on one test
given the results of another test. The Bayesian probabilistic
constraint model uses the method of Berkvens, D. et al.
and the description of the method partly reproduces their
wording [14]. Model construction in both independent and
correlated scenarios was provided as supporting information
(Text S2).

2.3.2. Likelihood Function of the Bayesian Probabilistic Con-
straint Model. The likelihood function was used to express

the cell probabilities of the collapsed 2"*, the table in terms
of the prevalence of the disease, D*(D~) indicated that the
subject was (was not) diseased; T*(T~) indicated a positive
(negative) result with test T. i, also indicated the test condition
(0 indicated a negative result, and 1 indicated the positive
result). An example was listed as follows:

(T} n'T3) = P(00)
=P(D')(1-P(T; | D")(1-P(T; | D' nTYy)
+(1-P(D"))P(T, |D)P(T, | D NT,)
=0,(1-6,)(1-065)+(1-6,)0,04
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Likelihood function listed as follows:

P(Tyn---nTy)=P(D")

-

h t-1
T (=i - <—1)"’P<T: D" [ T?’)

t=1 t't>1

i (10)

+[1-P(D")]

ho[ . -1
: i +(-1)" P<T; | D™ () T:','>

=1 | t'|t>1

2.3.3. Prior Information about the Bayesian Probabilistic
Constraint Model. The prior information about Bayesian
probabilistic constraints model was collected from four expe-
rienced tuberculosis physicians. The tuberculosis physician
answered the probability of the parameter under the defined
question. After obtaining the expert answer, the mean of each
parameter had been calculated, and the prior distribution
also had been specified. This study was a joint evaluation
of two diagnostic tests, 8, - 0, were used for conditional
probabilities, and the meaning of the specific reference to
each conditional probability was found in S2. In this article,
we assumed that the prior distribution of each conditional
probability obeyed the beta distribution with two parameters
(alpha and beta); specific information was listed in Table 3.

2.4. Model Evaluation and Verification. All parameters in
two Bayesian methods were estimated with 95% credible
intervals using OpenBUGS 3.2.3[17]. The OpenBUGS code
of this study was provided as an attachment file (Text S3).
Deviance information criteria (DIC) were used to evaluate
the models fit and to verify whether the prior information is
against data results [18]. During the model building process,
the DIC was minimized, it aims to find the simplest and
best-fit model, and the lower the DIC value, the simpler and
fitter the model [19]. The number of parameters (pp,) also
represented the complexity of the model and indicated the
final reduction in the number of parameters needs to be
estimated.

The prediction accuracy of the different models
was evaluated using clinical discharge diagnosis as the
gold standard. The clinical discharge diagnosis was a
comprehensive judgment made by doctors according to
various diagnostic tests, expert experience, and disease
progression.

3. Results

In total, 637 patients with suspected tuberculosis were
included in the study. The mean age was 50.12 years (range
15-90 years); 61.3% of the patients were male and 38.7%
were female. 130 patients (20.41%) were negative for T-
SPOT.TB test and KD38 tuberculosis antibody test, 235
patients (36.89%) were positive for both of them, the four
possible combinations of results for the two tests were listed
(Table 4).
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TABLE 3: The prior information about the Bayesian probabilistic constraint model.

Parameter Knot N D1 D2 D3 D4 Mean Alpha Beta

0, pP2.5 4 0.3 0.5 0.7 0.3 0.450 75.83 66.73
P97.5 4 0.55 0.7 0.8 0.4 0.613

6, pP2.5 4 0.9 0.7 0.8 0.6 0.572 70.84 35.86
P97.5 4 0.99 0.8 0.9 0.8 0.750

6, P25 4 0.7 0.7 0.7 0.8 0.417 21.90 16.21
P97.5 4 0.8 0.8 0.8 0.9 0.725

0, P25 4 0.7 0.4 0.4 0.75 0.563 99.74 56.18
P97.5 4 0.8 0.6 0.6 0.85 0.713

0, P25 4 0.3 0.3 0.4 0.1 0.275 53.43 100.05
P97.5 4 0.5 0.5 0.5 0.2 0.425

0, pP2.5 4 0.7 0.4 0.4 0.75 0.563 143.25 85.38
P97.5 4 0.8 0.6 0.5 0.85 0.688

6, p2.5 4 0.2 0.3 0.6 0.5 0.400 12.32 130.69
P975 4 0.3 0.5 0.7 0.6 0.525

D1: Doctor 1; D2: Doctor 2; D3: Doctor 3; D4: Doctor4. Alpha and Beta are two parameters of the beta distribution.

TABLE 4: The results of 637 persons subjected to 2 diagnostic tests.

T-SPOT KD38 Count
- - 130

- + 81

+ - 191
+ + 235

- indicates negative test result and + positive test result.

3.1. Conditional Independence Situation. Four models under
conditional independence situation were applied to the data
for the two tests, which assumed that the result of the
first test had no influence on the result of the second test.
Using the observed of the two tests as the sample data,
combined with prior information, we calculated the posterior
distribution of sensitivity and specificity of the two tests
(Table 5). Under the premise of the conditional independence
situation, the Bayesian probabilistic constraint model was
consistent with the Conditional Covariance Bayesian model.
Therefore, the results of the two models were the same with
no prior constraint. Under the condition of prior situation,
the results were affected by prior information. The sensitivity
and specificity of the two tests in model PC were considerably
higher than those predicted in the model PP. The tuberculosis
prevalence was estimated to be 63.6% (95% credible interval
43.5%-77.3%) in model PC, being considerably higher than
model PP (53.4%, 95% credible interval 45.2 %-61.4%). DIC
and pp, of the different model under conditional indepen-
dence situation were compared (Table 6). p, was negative
with no prior constraints in both NP and NC models, which
indicated all our parameters were estimable. The model PC
reduced the number of parameters (pp,) which was 2.26 and
had smaller DIC than the model PP.

3.2. Conditional Dependence Situation. Conditional depen-
dence situation assumed that the two diagnostic tests could

be correlated. The posterior distributions of sensitivity and
specificity of the two tests under conditional dependence
situation were evaluated by four models (Table 7). Whether
or not there was a prior constraint, the posterior estimation
results of five parameters in the Conditional Covariance
Bayesian models were higher than Bayesian probabilistic
constraint model. The result of the four models under con-
ditional dependence situation was similar to the conditional
independence situation, especially in the case of models
with prior constraint. The DIC of the different model under
conditional dependence were compared (Table 8), which
were also negative with no prior constraints in both model
NP and NT. The DIC of model PP were close to model PC,
but the pp, of the model PC (p,=2.40) was higher than model
PP (pp=1.66).

3.3. Impact of Prior Number. The Conditional Covariance
Bayesian model was chosen to explore the influence of the
prior number on the posterior estimation because it has only
five unknown parameters corresponding to only five prior
distributions, which was convenient for simulation studies.
When the number of priors was equal to n, it means that the
rest of the prior (5-n) was prior without information. From
the results of simulation under conditional independence,
when the prior number was three, the estimation result and
the model were stable (Table 9), which were very close to the
full prior estimation results. Similarly, models and the results
were stable when the number of prior information was three
in conditional dependence situation (Table 10).

3.4. Model Validation. The patient discharge diagnosis was
used as the gold standard to evaluate the sensitivity and
specificity of two diagnostic tests (Table 11), tuberculosis
prevalence in our population was estimated to be 82.9%
(95% confidence interval 79.7%-85.6%), the sensitivity and
specificity of T-SPOTTB test were 0.739 and 0.670, and
the sensitivity and specificity of KD38 tuberculosis antibody
test were 0.549 and 0.761. The result of the model PC in
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TABLE 5: The posterior estimation of four models using the TB data under conditional independence situation.
s ,
Situation Method Model Knot Mean SD Median 95% Bayesian C1
(P2.5-P97.5)
Se, 0.660 0.243 0.762 0.503-0.841
Bayesian Sp, 0.418 0.251 0.426 0.203-0.584
probabilistic NP
constraint Se, 0.511 0.251 0.568 0.302-0.688
model Sp, 0.569 0.249 0.631 0.377-0.759
No prior p 0.512 0.194 0515 0.361-0.667
constraints Se, 0.618 0.250 0.631 0.071-0.974
Conditional Sp, 0.377 0.250 0.295 0.025-0.929
Covariance NC Se, 0.468 0.255 0.435 0.036-0.947
Bayesian model Sp, 0.526 0.253 0.480 0.055-0.962
p 0.498 0194 0.497 0.148-0.850
Se, 0.738 0.036 0.739 0.714-0.762
Bayesian sp, 0.454 0.051 0.453 0.419-0.487
probabilistic PP
constraint Se, 0.585 0.031 0.585 0.563-0.606
model Sp, 0.525 0.028 0.525 0.506-0.544
Prior p 0.534 0.042 0.534 0.506-0.562
constraints Se, 0.898 0.039 0.910 0.814-0.963
Conditional Sp, 0.765 0.125 0.775 0.515-0.968
Covariance PC Se, 0.594 0.048 0.586 0.523-0.712
Bayesian model Sp, 0.679 0.048 0.676 0.592-0.780
P 0.636 0.086 0.650 0.435-0.773

Sey: sensitivity of T-SPOT; Sp;: specificity of T-SPOT; Se,: sensitivity of KD38; Sp,: specificity of KD38; p: prevalence within the patients in the study; SD:

standard deviation; CI: confidence interval.

TABLE 6: The results of fitting indicator between four models under the conditional independence situation.

Model DIC o : T-SPOT KD38

Se Sp Se Sp
Method NP 3.128 -19.05 0.512 0.660 0.418 0.511 0.569
Method NC 1.404 -20.80 0.498 0.660 0.418 0.511 0.569
Method PP 38.56 1.343 0.5334 0.738 0.454 0.585 0.525
Method PC 24.15 2.264 0.636 0.898 0.765 0.594 0.679

Se: sensitivity; Sp: specificity; p: prevalence within the patients in the study.

conditional independence situation was closest to the result
of the gold standard evaluation.

4. Discussion

With the development of computer technology and Bayesian
theory, Bayesian model has been widely used in the practice
of medical research. In the evaluation of diagnostic tests,
when the real disease status is unknown and there is no gold
standard, Bayesian method can be used to integrate external
prior information and sample data to evaluate diagnostic
test characteristics by combining two or more imperfect
tests [20, 21]. However, due to the flexibility of the Bayesian
model, its estimated results are affected by many factors.
The consideration of correlation and the choice of prior
distribution are the most important influencing factors for
the posterior estimation.

The result of the different model indicated that the
estimate of prevalence rate and diagnostic test characteristics
depends on the model chosen, prior selection, and depen-
dencies between tests. Compared with the gold standard
verification, the result of model PC in conditional indepen-
dence situation was closest to the result of the gold standard
evaluation. The reasons for the above phenomenon may be
as follows: firstly, the weak correlation between diagnostic
tests cannot have a significant effect on the result; secondly,
the prior constraint model can reflect the real situation of the
diagnostic test than the nonpriority constraint model; thirdly,
the objective prior information from previous studies is more
accurate than expert opinion.

The dependencies between diagnostic tests have always
been a key issue for Bayesian models. The results of the two
Bayesian models showed that the change for the possibility
of conditional dependence between diagnostic tests had a
certain impact on the posterior estimates of diagnostic test



BioMed Research International 7
TABLE 7: The posterior estimation of four models using the TB data under conditional dependence situation.
s ,
Situation Method Model Knot Mean SD Median 95% Bayesian C1
(P25-P75)
Se, 0.626 0.218 0.665 0.516-0.773
Bayesian Sp, 0.369 0.217 0.330 0.222-0.476
probabilistic NP
constraint Se, 0.490 0.167 0.495 0.391-0.585
model Sp, 0.508 0.167 0.503 0.414-0.616
No prior p 0.498 0.248 0.497 0.305-0.692
constraints Se, 0.690 0.183 0.708 0.622-0.807
Conditional Sp, 0.435 0.226 0.390 0.287-0.568
Covariance NC Se, 0.547 0.197 0.535 0.455-0.657
Bayesian model Sp, 0571 0.213 0.562 0.444-0.722
p 0.553 0.254 0.578 0.366-0.755
Se, 0.713 0.036 0.714 0.689-0.738
Bayesian Sp, 0.423 0.051 0.421 0.387-0.456
probabilistic PP
constraint Se, 0.535 0.025 0.535 0.518-0.552
model Sp, 0.537 0.022 0.537 0.522-0.552
Prior p 0.538 0.042 0.539 0.510-0.567
constraints Se, 0.904 0.037 0.907 0.881-0.931
Conditional Sp, 0.796 0.119 0.814 0.715-0.892
Covariance PC Se, 0.588 0.055 0.580 0.551-0.614
Bayesian model Sp, 0.677 0.068 0.677 0.631-0.723
p 0.649 0.076 0.662 0.608-0.701

Sey: sensitivity of T-SPOT; Sp;: specificity of T-SPOT; Se,: sensitivity of KD38; Sp,: specificity of KD38; p: prevalence within the patients in the study; SD:

standard deviation; CI: confidence interval.

TABLE 8: The results of fitting indicator between four models under the conditional dependence situation.

Model DIC PD p T-spOT KD38

Se Sp Se Sp
Method NP 19.01 -3.005 0.498 0.626 0.369 0.490 0.508
Method NC 14.32 -7.692 0.553 0.690 0.435 0.547 0.571
Method PP 24.26 1.657 0.538 0.713 0.423 0.535 0.537
Method PC 24.40 2.40 0.649 0.904 0.797 0.588 0.677

Se: sensitivity; Sp: specificity; p: prevalence within the patients in the study.

characteristics. The two Bayesian methods deal with the
conditional dependencies between tests in different ways.
Conditional covariance Bayesian method combined prior
information on covariance parameters with the test result
to calculate the posterior distribution of the correlation
coeflicients. However, obtaining the prior distribution of
covariance from experts or literature is pretty hard, because it
is not specific parameters in a real-life situation. In addition,
the complex correlation will be difficult to estimate with
multiple diagnostic tests. In order to overcome this problem,
the Bayesian probabilistic constraint model does not directly
calculate the correlation coeflicient, it just elicits prior infor-
mation for experts on the conditional performance on one
test given the results of another test, and this can be easier
to answer by experts in a real-life situation. However, such
prior information from this model is the expert subjective

opinion, and its credibility is not better than objective prior
information.

Our results showed that the likelihood functions of the
two Bayesian methods were consistent with the conditions
of independence situation, and the posterior estimation
strongly depended on the prior information. The results
of the two Bayesian methods both illustrated that poste-
rior estimation was mainly affected by the available prior
information. Hence, it is very important to elicit the prior
distribution accurately. On the one hand, the objectivity of
prior information is crucial. In the Conditional Covariance
Bayesian method, the prior distribution of unknown param-
eters can be gathered from previous studies, and objective
prior information is suggested to ensure the credibility of the
result. In the Bayesian probabilistic constraint model, it may
be easier to specify expert prior information for unknown
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TABLE 9: The impact of the number of prior information on the assessment result (conditional independence situation).
Number DIC 5 . T-SPOT KD38

Se Sp Se Sp

0 1.404 -20.8 0.5059 0.74 0.4078 0.5533 0.6127
1 18.12 -3.992 0.4524 0.8125 0.4462 0.6763 0.6624
2 24.03 2.0 0.4357 0.8935 0.4948 0.7144 0.6678
3 24.21 2174 0.6421 0.9056 0.7688 0.5856 0.6617
4 24.5 2.497 0.6482 0.9054 0.7788 0.5827 0.6612
Se: sensitivity; Sp: specificity; p: prevalence within the patients in the study.

TABLE 10: The impact of the number of prior information on the assessment result (conditional dependence situation).
Number DIC o . T-SPOT KD38

Se Sp Se Sp
0 14.32 -7.692 0.5776 0.7081 0.3903 0.5353 0.562
1 20.43 -1.594 0.4503 0.7325 0.3825 0.5814 0.5804
2 24.32 2.298 0.455 0.8941 0.5115 0.5963 0.6073
3 24.56 2.503 0.6526 0.9075 0.7941 0.5548 0.6185
4 24.69 2.652 0.6579 0.9081 0.8063 0.5575 0.6219
Se: sensitivity; Sp: specificity; p: prevalence within the patients in the study.
TaBLE 11: Post-hoc model validation with the gold standard.
Indicator T-SPOT KD38
No.x 95% CI No. 95% CI

Sensitivity 390/528 0.739 (0.699-0.776) 290/528 0.549 (0.507-0.591)
Specificity 73/109 0.670 (0.573-0.757) 83/109 0.761 (0.670-0.838)
Prevalence 528/637 0.829 (0.797-0.857) 528/637 0.829 (0.797-0.857)

* Patient discharge diagnosis was used as the gold standard.

parameters, but it is also significant to realize that the unstable
expert opinion may have a great impact on the result; if
you use the prior by different experts, you may end up with
distinctive conclusions. On the other hand, the number of
prior information as well has an important effect on the
stability of the results. As we all know, the more the number
of a prior, the more accurate the result, but it will increase
the burden of obtaining prior information. Our results show
that three prior distributions can achieve full prior results
in the Conditional Covariance Bayesian method. Therefore,
obtaining stable results based on minimal prior information
is the best choice.

In fact, the influences of prior information and depen-
dencies on the results are inseparable. Because the correlation
coefficient itself is an unknown parameter, it also requires
the prior distribution. In the evaluation of diagnostic tests
in the absence of the gold standard, many factors should
be considered in the method selection. DIC is also an
important index of the model selection. Both the Conditional
Covariance Bayesian method and the Bayesian probabilistic
constraint method have their specific applicable scenarios;
the users should choose the appropriate method according
to the needs of the actual situation. When there are only
two diagnostic tests and the correlation coefficient can be

objectively specified, the Conditional Covariance Bayesian
method is more applicable. The Conditional Covariance
Bayesian method could also be extended to include more than
two tests by adding more covariance in the model. At this
time, the calculation of covariance will become complex, and
the determination of prior distribution will be more difficult.
Hence, from the point of view of practical application, the
Bayesian probabilistic constraint method is more suitable
when there are more than two combined diagnostic tests
without gold standards. Finally, although these two methods
are not perfect, they provide a feasible way for the evalu-
ation of diagnostic test in the absence of a gold standard
diagnostic; at the same time, it is of great significance to
promote the application of Bayesian method in medical
research.

5. Conclusion

Both of the two Bayesian methods are the feasible way for the
evaluation of diagnostic test in the absence of a gold standard
diagnostic. Prior source, priority number, and conditional
dependencies should be considered in the method selection,
the accuracy of posterior estimation mainly depending on the
prior distribution.
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