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Neuromorphic engineering aims to build (autonomous) systems by mimicking biological

systems. It is motivated by the observation that biological organisms—from algae

to primates—excel in sensing their environment, reacting promptly to their perils

and opportunities. Furthermore, they do so more resiliently than our most advanced

machines, at a fraction of the power consumption. It follows that the performance

of neuromorphic systems should be evaluated in terms of real-time operation, power

consumption, and resiliency to real-world perturbations and noise using task-relevant

evaluation metrics. Yet, following in the footsteps of conventional machine learning,

most neuromorphic benchmarks rely on recorded datasets that foster sensing accuracy

as the primary measure for performance. Sensing accuracy is but an arbitrary proxy

for the actual system’s goal—taking a good decision in a timely manner. Moreover,

static datasets hinder our ability to study and compare closed-loop sensing and control

strategies that are central to survival for biological organisms. This article makes the

case for a renewed focus on closed-loop benchmarks involving real-world tasks. Such

benchmarks will be crucial in developing and progressing neuromorphic Intelligence.

The shift towards dynamic real-world benchmarking tasks should usher in richer, more

resilient, and robust artificially intelligent systems in the future.

Keywords: neuromorphic engineering, benchmarks, event-based systems, DAVIS, DVS, ATIS, audio, olfaction

1. INTRODUCTION

Despite the significant strides made in neuromorphic engineering in recent years, the field has not
yet seen widespread industrial or commercial adoption. There is clearly difficulty in translating
the research output of the field into real-world and commercially successful applications.
Neuromorphic engineering has individually demonstrated many significant and valuable concepts,
evidenced by dedicated large-scale neuromorphic processors (Davies et al., 2018), power-efficient
analogue neuron circuits (Chicca et al., 2014; Moradi et al., 2018), on-chip and local unsupervised
learning circuitry (Qiao et al., 2015), scalable parallel message-passing architectures (Furber, 2016),
and retina-inspired and compressed visual sensing (Lichtsteiner et al., 2008). There are also active
research and commercialisation efforts in applications of this research, including in Event-based
Space Situational Awareness (Cohen et al., 2019), autonomous vehicle sensors (Perot et al., 2020;
Gehrig et al., 2021), and for home security monitoring (Park et al., 2019; Samsung, 2020). However,
the field struggles to integrate, build upon, and convey these successes to the wider engineering and
scientific community.
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This article examines potential reasons for this slow
dissemination by assessing the role that datasets, benchmarking
problems, and comparative metrics play in presenting
neuromorphic engineering to existing scientific communities.
Adhering to existing benchmarking metrics, designed for
fundamentally different processing and sensing systems, may
limit our ability to report and, perhaps more importantly, to
describe the performance and advantages of neuromorphic
systems. Additionally, the ubiquity of such metrics complicates
the development of new approaches to tackling existing
problems with novel solutions. This is especially prevalent
when moving away from uniformly sampled sensing and
synchronised processors.

Progress in conventional computer vision and machine
learning has been built upon datasets and static problems. The
most significant strides in computer vision and deep neural
networks were spurred by the ImageNet moment (Krizhevsky
et al., 2017) and the rise of data-driven systems (Torralba
and Efros, 2011), leading to some truly astonishing capabilities,
from the ability to achieve human-like (and even super-human)
levels of performance under ideal viewing conditions on certain
vision tasks (He et al., 2016; Geirhos et al., 2017), to the
unsettling ability to realistically replace faces and people in high-
definition video (Wang et al., 2021). However, such cutting-
edge data-driven systems require unprecedentedly large datasets
that have only become feasible in terms of size and required
computation starting with the release of ImageNet in 2012 and
the advent of high-performance computing centres. These data-
driven approaches are unlikely to scale with increasing task
complexity. The corresponding networks ingesting this data have
grown vast in size and scale. Large datasets become difficult to
distribute and test against and even more difficult to collect.
Only a handful of organisations possess the resources required
to collect and generate the cutting-edge datasets used at the
forefront of deep learning. Furthermore, immunity to variable
and degraded viewing conditions are still a problem that static
datasets do not tackle efficiently and closed-loop benchmarks are
better suited to test these conditions.

Larger datasets have enabled researchers to train ever-
larger networks, but, importantly, have also provided
a meaningful way to compare different algorithms and
approaches. This has driven researchers to optimise and
push the limits of the technologies and algorithms through
a mutually understood and quantifiable way of measuring
success. Novel datasets and benchmarks will not only
push model and algorithmic complexity, but also implicitly
advance our understanding of distributed, parallel, and even
neural computation.

Neuromorphic engineering has naturally followed a similar
trajectory, both through the conversion of existing datasets to
a neuromorphic format (Orchard et al., 2015a) and through
the collection and creation of new datasets (Perot et al., 2020;
Gehrig et al., 2021). The growth of neuromorphic computing has
further driven the need for suitable neuromorphic benchmarks
to showcase the utility of its approaches to artificial intelligence.
Similar to conventional machine learning, this demand has led
to the rise and proliferation of static neuromorphic datasets and,

similarly, these have been instrumental in the field’s advancement
and growth.

However, our paper will detail how these approaches
may actually be constricting the ability of neuromorphic
engineering to tackle real-world problems in novel ways using
approaches that embody and showcase the unique benefits of a
fundamentally different way of operation. We discuss the history
of neuromorphic benchmarking (see Section 1.1) and highlight
the advantages and implications of sensing and processing in the
context of closed-loop control systems (see Section 2).We further
provide an overview of existing open-loop datasets, discuss in
greater detail their downsides (see Section 3), and then apply
the same analysis towards existing open-loop neuromorphic
benchmarks (see Section 3.1).

After a brief overview and discussion of existing closed-
loop conventional benchmarks (see Section 3.2) and simulation
environments available to create new closed-loop benchmarks
(see Section 3.3), we describe our efforts in designing and
developing a new generation of physically embedded, closed-
loop neuromorphic benchmarks (see Section 4). We finish with
concluding remarks for future developments of closed-loop
benchmarks to bootstrap the next generation of artificial and
neuromorphic intelligence.

1.1. History of the Analysis of
Neuromorphic Benchmarks
The neuromorphic community has long recognised the
importance of datasets and their potential limitations, which
led to a special research topic in Frontiers in Neuroscience:
Neuromorphic Engineering in 2015 devoted specifically to
neuromorphic benchmarking and challenges1. The proposal for
the topic describes a situation not dissimilar to the current state
of neuromorphic engineering in terms of the ability to make
meaningful and representative comparisons of neuromorphic
systems, both to one another and conventional systems. The
papers published in that research topic provided a thorough
overview of the existing efforts to create benchmarking
approaches and included papers focusing on domain-specific
and modality-specific sets of requirements and needs.

In fact, Stewart et al. (2015) directly addressed the need
for closed-loop benchmark tasks in neuromorphic engineering,
describing a closed-loop benchmark as a two-way interaction task
in which the “output of the neuromorphic hardware influences
its own future input” (Stewart et al., 2015). Highlighting the
challenges involved in providing closed-loop tasks in place
of static datasets, the authors suggested that this can only
be accomplished by either providing a fully-specified physical
system or providing a software simulation of the system.
Building upon these ideas, this article summarised the existing
simulators and related problems, highlighting the shortcomings
of simulators and the difficulty in translating these into real-
world applications and strongly motivating the need for real-
world physical systems.

In addition, Tan et al. (2015) provided a thorough summary
of the efforts to benchmark neuromorphic vision systems and

1https://www.frontiersin.org/research-topics/3448/
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outlines some of the lessons learned in creating and using the
available datasets. Core to the arguments, in this article, the
authors introduce the problems encountered when using static
images with neuromorphic vision sensors, highlighting that the
type of static object recognition problems found in conventional
computer vision has no direct parallel in biology and therefore
are not a task that biological systems have evolved to tackle (Tan
et al., 2015). Contributing to this point, this article also stresses
that neuromorphic vision datasets should be as representative
of the real-world as possible. As our paper seeks to motivate,
the move to real-world benchmarking tasks will inherently solve
this problem.

The discussion around the development of the Poker-
DVS and MNIST-DVS datasets by Serrano-Gotarredona and
Linares-Barranco (2015) also provides valuable insight into the
historical reasons contributing to the reliance on datasets in
the neuromorphic community. They point to the difficulty
in obtaining neuromorphic hardware as a driving factor in
the production of datasets that allow researchers to explore
neuromorphic techniques without having physical access to
scarce hardware resources. Whilst the supply and dissemination
of neuromorphic sensors has drastically improved, the point
remains a valid one, and there is still a strong need for
neuromorphic datasets to enable access to the technologies.

Beyond the historical perspective, the authors also point
out that the original poker dataset required manual curating
due to noise, card edges, and the numbers on the cards.
Their automated tracking method struggled with these factors,
requiring annotations by hand to produce correctly labelled data.
This highlights both the difficulty in acquiring large volumes
of labelled data, and the question of inadvertently injecting
additional context into the problem through factors such as
labelling bias.

1.2. Promises of Neuromorphic Systems
To overcome the limitations of existing neuromorphic
benchmarks, we argue that performance of neuromorphic
systems should directly be evaluated based on latency, power
consumption, and task-specific control metrics, rather than on a
plain and static accuracy metric. This move inherently requires
closed-loop sensing and processing, which in turn favours highly
recurrent and feedback-heavy algorithms and architectures.
Predictive algorithms naturally result, since for an agent to
make an informed decision and react appropriately in a given
environment, the past and present estimates of the state of said
environment hardly matter. What does matter is the agent’s
expectation of future states, i.e., how the environment is going to
change (Davies, 2019).

Closed-loop benchmarks require algorithms to holistically
optimise for real-world constraints and power consumption
while operating in real-time. Closed-loop benchmarks also
require the ability to respond appropriately to ambiguous
and partial inputs from an uncontrollable noisy and dynamic
environment. Hence, we anticipate that designing algorithms
for such tasks will lead to richer, more advanced, resilient, and
truly intelligent artificial systems inspired by their biological
counterparts. The physically embedded nature of biological

processing, and the associated physical size, weight, power,
and speed limitations that come with it, are fundamental
aspects of the operation of such systems and cannot be treated
as afterthoughts to be simulated or optimised in the final
development phase.

Inspired by biological sensory-processing systems, the
neuromorphic sensing and processing paradigm targets these
requirements by providing resilient, parallel, asynchronous,
and highly distributed sensory-processing solutions (Mead,
1990; Liu and Delbruck, 2010; Hamilton et al., 2014). The
resulting neuromorphic processors are non-Von Neumann
computing architectures that feature local learning mechanisms
and are capable, when combined with neuromorphic sensors,
of time-continuous, asynchronous and distributed information
processing, with high power efficiency than their conventional
clock-based counterparts (Thakur et al., 2019).

The gravitation of the neuromorphic community towards
machine learning-like datasets is understandable, since the
generation of alternative closed-loop datasets is at once
challenging and very resource-intensive while simultaneously
lacking the legitimacy of established large scale open-loop
machine learning-like benchmarks (Grother, 1995; Jia Deng et al.,
2009; Geiger et al., 2013; Xu et al., 2020). Novel embedded
closed-loop benchmarks, however, will spur the development of
closed-loop sensing, dynamic processing, and decision making
systems, which is where neuromorphic computing has the
greatest potential for providing advances in technology and
computational models.

2. DIFFERENT STYLES OF SENSING

Sensors, irrespective of their sensing modality, can be classified
into two distinct categories: passive sensors and active sensors.
Passive sensor strategies do not emit energy into the environment
when acquiring samples or data (see Figure 1, top row). A
common example is found in autonomous systems, in which
conventional image sensors employ a passive sensing approach
to detect and process stimuli scattered by the immediate
environment (Rees, 1990). In contrast, active sensors emit
energy directly into their environment to elicit data, sampling a
composition of the interactions of the actively emitted energy on
the environment and any scattered energy already present in the
environment (see Figure 1, bottom row). Autonomous systems
may also employ active sensing regimes, such as RADAR and
LiDAR, to parse their environment by instead varying sensor
characteristics based upon the global state or by acting upon the
immediate environment (Gini and Rangaswamy, 2008).

Sensor strategies can also be split by whether the control of
the sensor is influenced by the output of the sensor. Moving the
sensor in response to its output is also sometimes called active
sensing2, but here we adopt the term closed-loop sensing for this
mode of operation to avoid confusion, and open-loop sensing for
the mode where the sensor output has no impact on the sensor
itself. In open-loop systems, the sensor is simply a source of
data for the rest of the system, allowing for very simple sensor

2See https://www.frontiersin.org/research-topics/7663/active-sensing for example
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FIGURE 1 | Different modes of sensing. Sensing and consequently processing of sensory information can be divided into passive (top, A and B) vs. active (bottom,

C and D), as well as open- (left, A and C) vs. closed-loop (right, B and D) sensing. Open-loop passive sensing (A) is the most prevalent form of acquiring

information about the environment and subsequently using this information, e.g., to classify objects. Advantages of this approach include the one-to-one mapping of

inputs and outputs and the readily available optimisation schemes that obtain such a mapping. Examples for open-loop passive sensing include surveillance

applications, face recognition, object localisation, and most conventional computer vision applications. While the environment and/or the sensor could move, the

trajectory itself is independent of the acquired information. Open-loop active sensing (C) is characterised by injecting energy into the environment. The acquired data

is a combination of information emitted by the environment itself (black arrow) and the resulting interaction of the signal emitted by the sensor with the environment

(red arrow). Prime examples of this sensing approach are LiDAR, RADAR, or SONAR. In the open-loop setting, the acquired information is not used to change

parameters of the sensor itself. The closed-loop passive sensing strategy (B) is most commonly found in animals, including humans. While energy is solely emitted by

the environment, the acquired information is used to actively change the relative position of the sensor (e.g., saccadic eye movements) or alter the sensory parameters

(e.g., focus). This closed-loop approach utilises past information to make informed decisions in the future. The last sensing category is active closed-loop sensing (D)

where the acquired information is used to alter the positioning and configuration of the sensor. Bats (Griffin, 1958; Fenton, 1984) and weakly electric fish (Flock and

Wersäll, 1962; Hofmann et al., 2013) are prime examples from the animal kingdom that exploit this sensing style, but also artificial systems, such as adaptive LiDAR,

use acquired information about the environment to perform more focused and dense information collection from subsequent measurements.

designs (see Figure 1, left column). Closed-loop systems integrate
the sensor far more deeply into the system, and aspects of the
sensor are actively modified as a function of its output to increase
the relevant information in the sensor’s output (see Figure 1,
right column). Closed-loop systems are more complicated to
design but offer the potential to extract far more task-relevant
information from the sensor.

These two ways to categorise sensors are not mutually
exclusive, and indeed there exist closed- and open-loop strategies
for both active and passive systems (see Figure 2). The passive
and active sensing strategies can both benefit greatly from a
closed-loop methodology, especially when an internal model of

the system is used to produce informed decisions to update
sensor settings and model parameters. Practical examples of such
systems include the closed-loop passive sensing techniques of
stimulating contrast detection in event-based vision sensors with
ego-motion, trading temporal resolution for spatial resolution
(Yousefzadeh et al., 2018; D’Angelo et al., 2020).

Open-loop systems have the advantage of simplicity, in terms
of their design and in terms of the data that they produce.
By definition, open-loop sensing does not feature a feedback
mechanism and therefore acquired samples have no effect on
the next sample acquired by the sensor. As the sensor can
be treated solely as a static source of information, recorded

Frontiers in Neuroscience | www.frontiersin.org 4 February 2022 | Volume 16 | Article 813555

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Milde et al. Neuromorphic Closed-Loop Benchmarks

FIGURE 2 | Existing datasets and benchmarks fall into two categories:

open-loop benchmarks, or datasets, and closed-loop benchmarks.

Supervised machine learning relies mostly on the first category, whereas

reinforcement learning requires the second. Most existing neuromorphic

engineering benchmarks fall in the first category. This article pleads in favour of

closed-loop neuromorphic benchmarks.

datasets can easily be shared with the research community,
allowing different algorithms to be compared without the need
to replicate the interactions between the system and the sensor.
This greatly simplifies the creation and the use of open-loop
datasets, as no sensor state information needs to be known or
stored. This simplicity, however, imposes limits on the nature of
the problems being tackled. Problems are often carefully chosen,
or restricted, to enable the use of an open-loop sensor (for a
non-exhaustive list of existing open-loop datasets see Section 3).
Such open-loop sensing approaches and their resulting datasets,
however, limit the real-world applicability of an algorithm as
information that could be beneficial to adjust to the environment
is irreversible lost.

Systems for real-world problem solving such as autonomous
driving (Bojarski et al., 2016) and process control (Firoozian,
2014) generally require algorithms with feedback mechanisms
to proactively sample the environment and act accordingly.
Potential feedback actions include changing the sensor position,
the sensor configuration, or some aspect of the interface between
the sensor and the environment. Adding a mechanism of
feedback allows a system to observe the result of its interaction
with the environment when solving compound real-world
problems (Åström and Murray, 2010). With the inclusion of
some element of (dynamic) memory capacity, these systems
can be extended to achieve a degree of statefulness, using the
recurrent nature of the system feedback to build an internal
model of the surrounding environment (Rao and Ballard, 1999;

Friston, 2010; Rasmussen et al., 2017; Hogendoorn and Burkitt,
2018; Keller and Mrsic-Flogel, 2018).

The stateful memory capacity inherent in closed-loop systems
is partially determined by the dimensionality of the feedforward
signal, but primarily determined by the dimensionality of both
feedback and recurrent pathways. Here, neuromorphic sensory-
processing systems are of special interest due to their continuous
and implicit representation of time in sensing and processing,
thus increasing the resolution of their temporal dimension
for all three information pathways (feedforward, feedback, and
recurrent). This has the consequence, especially in closed-loop
systems, that signals can be asynchronously distributed without
the need for a centralised clock.

The path going forward towards machine intelligence,
especially for neuromorphic technology, is not merely a
substitution of neuromorphic sensors for conventional sensors,
but instead, the creation of complete embedded systems that
emulate the performance and constraints of their biologically
inspired origins. To address this gap and to progress with closed-
loop benchmarking, we propose to build benchmarks that are
physically embedded and require models operating in biological
real-time. This approach provides the benchmark with an
objective that inherently includes some form of decision making
and action selection. These benchmarks would additionally
feature sensory-motor systems that are subject to real-world
fluctuations and noise, which themodels would need to deal with.

3. EXISTING BENCHMARKS

The development of engineering systems, whether neuromorphic
or otherwise, is driven by empirical studies on specific tasks
or problems. The quality of a solution is measured with
a benchmark—that is, a well-defined task associated with a
test. The test yields a numerical score which can be used to
compare solutions.

Complex problems in science and engineering are usually
split into smaller ones; the so-called divide-and-conquer
approach (Dustdar et al., 2020). Accordingly, benchmarks are
generally designed for specific sub-problems rather than real-
world tasks, with the underlying assumption that solving sub-
problems is integral to tackling real-world tasks. Datasets are
a simple yet effective way to implement this strategy. Labelled
real-world data makes for a reasonably neutral ground truth,
which can be used to estimate an algorithm’s accuracy, i.e.,
the distance to the ground truth, with respect to an agreed
upon metric. This approach yields well-defined evaluation
standards that facilitate comparison between methods, and
encourage competition between researchers. For example, the
NIST database (Grother, 1995) provides an objective measure of
individual character recognition as ameans to tackle handwriting
recognition. It also serves as a good entry point for more complex
machine learning problems (LeCun et al., 1998). Being valid
representatives of a broader class of useful problems is a sought
after feature for sub-problems (Davies, 2019).

Unfortunately, the divide-and-conquer approach has several
shortcomings hindering our ability to design neuromorphic
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systems that tackle real-world tasks. First, tackling sub-
problems marginalises concerns that are only meaningful when
considering real-world systems, notably power consumption and
latency. It also encourages accuracy maximisation in arbitrary
parts of the system, even if that accuracy may not be needed to
solve the associated real-world task.

As far as neuromorphic engineering is concerned, the vast
majority of existing benchmarks are open-loop (see Section 3.1
for critical review). Thus, there is no standard way to evaluate
a closed-loop neuromorphic system’s performance, latency or
power consumption, even though neuromorphic engineering is
well-suited to the design of such systems (Stewart et al., 2015).

Datasets are not the only type of benchmark. The
Reinforcement Learning (RL) community relies on (simple)
tasks that encompass both perception and action, such as
Chess (Silver et al., 2018), Atari games (Mnih et al., 2013), or
Go (Silver et al., 2017). The task itself is used as benchmark,
therefore, the score is directly related to the intended outcome
of the system, rather than being an arbitrary proxy (see
Section 3.2 for short review). Much like conventional open-
loop benchmarks, existing closed-loop benchmarks cannot
be used directly by neuromorphic engineering. The sensing
modalities are fundamentally incompatible, and noise-free
data is not representative of the output of neuromorphic
sensors. Nevertheless, using simple yet complete problems as
benchmarks is an idea that can be translated to neuromorphic
engineering. Figure 3 illustrates our view of the current situation
and shows that closed-loop neuromorphic benchmarks are
heavily underrepresented.

3.1. Neuromorphic Open-Loop Datasets
The fundamental difference between conventional sensors and
neuromorphic event-based sensors is in the way the signal
of interest is sampled. While the former sampling approach
uses discrete and fixed time intervals to synchronously sample
the signal of interest, i.e., Riemann sampling (Åström and
Bernhardsson, 2002), the latter approach uses only the relative
change in signal amplitude to trigger the asynchronously
reporting of events, i.e., Lebesque sampling (Åström and
Bernhardsson, 2002).

To still be able to utilise the tremendous effort invested by
the machine learning and machine intelligence community to
construct open-loop datasets, they would need to be converted
to comply with neuromorphic sensory-processing systems. In
order to convert existing frame-based open-loop datasets into a
spike- or event-based one, the pixel intensities, in case of a vision
dataset, are used to calculate a Poisson distributed spike train
(Orchard et al., 2015b; Cohen et al., 2018), or to calculate the
time-to-first spike (Masquelier, 2012).

Alternatively, event-based sensors have been used directly
to recreate existing open-loop datasets for handwritten digit
recognition (Diehl and Cook, 2015; Orchard et al., 2015a;
Cohen et al., 2018), object classification (Orchard et al., 2015a;
Serrano-Gotarredona and Linares-Barranco, 2015; Cohen et al.,
2018), autonomous driving (Binas et al., 2017; Hu et al.,
2020), pedestrian detection (Miao et al., 2019), pose estimation
(Mueggler et al., 2017; Calabrese et al., 2019), spoken digit

classification (Anumula et al., 2018), or speaker identification
(Ceolini et al., 2020) (please refer to Figure 3 or Tables 1, 2 for
a more complete listing of existing datasets and benchmarks).

3.2. Conventional Closed-Loop
Benchmarks
In closed-loop systems, contrary to open-loop ones, a sensor
or agent is continuously receiving sensory stimuli from the
environment (either time-varying or time-continuous). This
sensory information is processed and ultimately used to either
select an action or provide motor command signals that
manipulate the environment or move the agent/sensor within
it. Closed-loop interaction with the environment, as used in RL,
alleviates the need to collect and hand-annotate large amount of
data, as the agent learns online and based on partial information
(Shalev-Shwartz, 2011) to maximise a reward.

The OpenAI gym environments (Brockman et al., 2016)
provide a rich collection of curated closed-loop environments
such as Atari games3, and continuous control tasks for robotic
applications4. The OpenSim-RL environment provides the user
with a biomechanics environment 5 (Akimov, 2020), with
the goal being to control a human body to accomplish
diverse locomotion tasks such as arm movements or different
gait patterns.

Simulated closed-loop systems have, however, witnessed their
biggest and maybe most popular breakthrough with the release
of alphaGo (Silver et al., 2017), which beat the leading world
champion in the game of Go. This was followed by alphaZero
(Silver et al., 2018) and alphaStar (Vinyals et al., 2019) beating
their respective leading world champion in chess, shogi, and
most impressively Starcraft. The game of Go is known for its
untraceable decision tree while Starcraft is a competitive online
multi-player real-time strategy computer game, making the RL
capabilities of these Deepmind engines truly impressive. What
needs to be considered here, though, is that these engines
were operating directly on machine-level code rather than
through a layer of visual or motor abstraction, enabling them
to operate far faster than biological real-time, without any added
sensory-motor noise.

Similar approaches have been used to artificially master other
games such as Mario, Quake III (Jaderberg et al., 2019), Dota 2
(OpenAI: et al., 2019), or a host of Atari games (Badia et al., 2020).

3.3. Simulators
Simulators play an important role in lowering the barriers to
interaction with otherwise expensive or complicated hardware
and can greatly aid the exploration and prototyping of
new and novel neuromorphic hardware. Simulation can be
applied directly to neuromorphic sensors and computing
hardware, which can in turn be used to develop, test, and
even characterise neuromorphic algorithms and approaches.
Simulation also allows for the exploration of situations, scenarios,

3https://gym.openai.com/envs/#atari
4https://gym.openai.com/envs/#mujoco
5http://osim-rl.stanford.edu/
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FIGURE 3 | Overview of existing open- and closed-loop datasets and benchmarks for conventional time-varying and neuromorphic time-continuous approaches to

machine intelligence. Distribution of high-end challenges according to the research field (neuromorphic/conventional), their interactions with the environment (open-

and closed-loop), and the sensing modality. Downward triangle: conventional frame-based cameras; Diamond: neuromorphic event-based cameras; Star:

Combination of conventional frame- and neuromorphic event-based cameras; Pentagon: auditory sensors; Square: olfactory sensors; Triangle: LiDAR sensors;

Circles: abstract games operating directly on machine code. Further details are provided in Tables 1, 2. While not being completely exhaustive, this figure underlines

the gravitation of both machine and neuromorphic intelligence community towards open-loop datasets. In order to showcase and truly contribute to the advancement

of machine intelligence, the neuromorphic community needs to focus their efforts on creating closed-loop neuromorphic benchmarks that are physically embedded in

their environment and thus dictate a hard power and execution time constraint. While the physical set-ups in Moeys et al. (2016) and Conradt et al. (2009) could have

formed the basis of closed-loop benchmarks, they were not developed as such. In Moeys et al. (2016), the set-up was used to generate an open loop static dataset

and in Conradt et al. (2009), no dataset was generated. In contrast, the benchmarks advocated here would be available as physical experimental set-ups that can be

accessed by the community for algorithm testing.

Frontiers in Neuroscience | www.frontiersin.org 7 February 2022 | Volume 16 | Article 813555

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Milde et al. Neuromorphic Closed-Loop Benchmarks

TABLE 1 | Conventional Benchmark Datasets for various sensor modalities.

Name Sensor Source

O
p
e
n
-L
o
o
p

IMDB-Wiki Frames (-) Rothe et al. (2018)

Kinetics-700 Frames (-) Kay et al. (2017), Smaira et al. (2020)

MS Coco Frames (-) Lin et al. (2014)

Pascal VOC Frames (-) Everingham et al. (2015)

MPII Human Pose Frames (-) Andriluka et al. (2014)

YouTube-8M Frames (-) Abu-El-Haija et al. (2016)

MNIST Frames (28x28) LeCun et al. (1998)

Fashion-MNIST Frames (28x28) Xiao et al. (2017)

CIFAR-10 & -100 Frames (32x32) Torralba et al. (2008)

Caltech-101 & -256 Frames (32x32) Fei-Fei et al. (2004, 2006), Griffin et al.

(2007)

ImageNet Frames (482x418) Jia Deng et al. (2009)

Cityscapes Frames (1600x1200) & HDR Cordts et al. (2016)

KITTI Frames (1382x512) & LiDAR Geiger et al. (2013)

BDD100K Frames (720x1280) Yu et al. (2020)

Oxford RobotCar Frames (1280x960) & LiDAR Maddern et al. (2017)

LiDAR-Video Driving Frames (1920x1080) & LiDAR Chen et al. (2018b)

FSDD Microphone (1 Ch. @ 8kHz) Jackson et al. (2018)

AudioSet Microphone (-) Gemmeke et al. (2017)

TIDIGITS Microphone (1 Ch. @ 20 kHz) Leonard and Doddington (1993)

TIMIT Microphone (1 Ch. @ 16 kHz) Garofolo et al. (1993)

VoxCeleb Microphone (1 Ch. @ 16 kHz) Nagrani et al. (2020)

DCASE 2020 Microphone (Mult. Ch. @ 24 kHz) Politis et al. (2020), Heittola et al. (2020)

ToyADMOS Microphone (4 Ch. @ 48 kHz) Koizumi et al. (2019)

Mivia Audio Events Microphone (1 Ch. @ 32 kHz) Foggia et al. (2015)

Million Song Microphone (1-2 Ch. @ 22-44 kHz) Bertin-Mahieux et al. (2011)

MOx Open Sampling Olfaction (9x8 Ch. @ 100 Hz) Vergara et al. (2013)

MOx Turbulent Mixture Olfaction (8 Ch. @ 50 Hz) Fonollosa et al. (2014)

MOx Temperature Modulation Olfaction (14 Ch. @ 3.5 Hz) Burgués et al. (2018)

MOx Flow Modulation Olfaction (16 Ch. @ 25 Hz) Ziyatdinov et al. (2015)

C
lo
se

d
-L
o
o
p

Atari57 Game (-) Badia et al. (2020)

Atari 2600 Game (210x160) Bellemare et al. (2015)

AlphaGo Zero Game (-) Silver et al. (2017)

AlphaZero Game (-) Silver et al. (2018)

AlphaStar Game (-) Vinyals et al. (2019)

Autonomous Agent Simulation (-) Jordan et al. (2019)

Driving simulator Simulation (160x320) Santana and Hotz (2016)

Grasping Robot Frames (-) Stewart et al. (2015)

and environments that may be prohibitively difficult or pose
technical challenges for real-world hardware.

Simulation techniques are already widely used in
neuromorphic engineering. For example, simulation has
been used to optimise existing event-based pixel designs (Remy,
2019) and to analyse and predict bottle-neck effects (Yang et al.,
2017). Simulation can also allow for the rapid exploration of
a vast number of potential scenarios, such as those found in
real-world environments, and which would be impossible to
physically test individually. Complex and hazardous scenarios
are also expensive to emulate: for example, the pre-crash scenario
used in designing of automotive vehicles can be tested with fake

targets, but this restrains the evaluation to a single, very specific
scenario, making the optimisation easy and leading to the issue
of over-fitting (Segata and Cigno, 2019). Simulations enable
us to explore a broader range of configurations in which there
is direct access to the ground truth. This can also be used to
augment and extend real-world datasets, such as for example
Virtual KITTI (Gaidon et al., 2016) which extends the KITTI
dataset (Geiger et al., 2013) to include simulated data for extreme
driving conditions.

Simulators also enable the rapid exploration of the
benefits offered by neuromorphic sensing when compared
to conventional strategies, especially in cutting-edge challenges
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TABLE 2 | Neuromorphic Benchmark Datasets for various sensor modalities.

Name Sensor Source

C
lo
se

d
-L
o
o
p

Pedestrian detection DAVIS 346 (346x240) Miao et al. (2019)

Space Dataset DAVIS 240 (240x180) & ATIS (304x240) Cohen et al. (2019)

DVSFLOW16 DAVIS 240 (240x180) Rueckauer and Delbruck (2016)

Visual navigation DAVIS 240 C (240x180) Barranco et al. (2016)

Action recognition DAVIS 346 (346x240) Miao et al. (2019)

Multi-vehicle detection DAVIS 346 (346x240) Chen et al. (2018a)

DHP19 DAVIS 346 (346x240) Calabrese et al. (2019)

Fall detection DAVIS 346 (346x240) Miao et al. (2019)

DDD17 DAVIS 346 B (346x240) Binas et al. (2017)

DDD20 DAVIS 346 B (346x240) Hu et al. (2020)

ColorEvents ColorDAVIS 346 (346x240) Scheerlinck et al. (2019)

1Mpx Automotive Detection Dataset High-resolution EBC (Finateu et al., 2020) (1280–720) Perot et al. (2020)

DSEC PPS3MVCD (640x480) Gehrig et al. (2021)

RaShamBo DVS (64x64) Lungu et al. (2017)

36Characters DVS (128x128) Orchard et al. (2015b)

MNIST-DVS DVS (128x128) Serrano-Gotarredona and

Linares-Barranco (2015)

Poker-DVS DVS (128x128) Serrano-Gotarredona and

Linares-Barranco (2015)

VOT2015 DVS (128x128) Hu et al. (2016)

Tracking Dataset DVS (128x128) Hu et al. (2016)

UCF-50 DVS (128x128) Hu et al. (2016)

CALTECH256 DVS (128x128) Hu et al. (2016)

Human silhouette DVS (128x128) Pérez-Carrasco et al. (2013)

Human posture DVS (128x128) Zhao et al. (2015)

N-Caltech101 ATIS (304x240) Orchard et al. (2015a)

N-MNIST ATIS (304x240) Orchard et al. (2015a)

Human activity recognition ATIS (346x240) Pradhan et al. (2019)

N-TIDIGITS18 DAS (64x2x4) Anumula et al. (2018)

WHISPER Microphone (16) Ceolini et al. (2020)

COBRA Olfaction (-) Schneider and Schneider (2003),

Schmuker and Schneider (2007)

C
lo
se

d
-L
o
o
p

PRED18 DAVIS240C (240x180) Moeys et al. (2016)

Pencil Balancing Robot DVS (128x128) Conradt et al. (2009)

such as drone racing (Madaan et al., 2020) or pose estimation
(Mueggler et al., 2017). Simulation further eliminates the need
to calibrate several real sensors, which is itself a challenging and
open question. Uncalibrated and uncharacterised sensors can
add temporal and spatial errors through different acquisition
speeds and unsynchronised clocks (Zhu et al., 2018).

Some simulators, such as Carla (Dosovitskiy et al., 2017), take
advantage of highly sophisticated rendering engines developed
and optimised for the gaming industry. These tools have been
extended and adapted to emulate neuromorphic vision sensors
and have been successfully used to simulate data for a number of
challenging tasks. An early example of such an application was
a simulated driving task in which the algorithm must control

a robotic car and keep it on the road (Kaiser et al., 2017). As
part of the Neurobotics project 6 it allows for the development
of bio-inspired robots through simulations (Falotico et al., 2017).
The project was built upon the Robotics Operation System (ROS)
tool-chain (Quigley et al., 2009) and used a simulator known as
Gazebo (Koenig and Howard, 2004), which emulates an event-
driven pixel using rendered images discretised in time. This was
followed by Event SIMulator (ESIM), which is perhaps the most
widely used event-based vision simulator in the neuromorphic
community (Mueggler et al., 2017; Rebecq et al., 2018). It
provides a simulation of a more realistic pixel behaviour and

6https://neurorobotics.net
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implements a novel method to adapt the time resolution of the
rendering as a function of the dynamics of the scene. It has
been used to create annotated datasets (Rebecq et al., 2019), or
to simulate novel pixel designs with multi-spectral sensitivities
(Scheerlinck et al., 2019). More recently, we have developed an
even more realistic event based vision sensor simulator (Joubert
et al., 2021), which has been used to simulate characterising
the materials on resident space objects with event based sensors
(Jolley et al., 2021).

In the past, simulation models of event-based sensors have
been used to extend computer vision open-loop datasets like
classification (Gehrig et al., 2020) and as a means of converting
conventional datasets to event-based ones (Gehrig et al., 2020).
Whilst this approach has merits, it faces inherent limitations
when applied for event-based vision systems as the high temporal
resolution, a hallmark of event-based sensing, is artificially
interpolated and subject to quantisation errors. The different
sources of noise are also neglected, and this loss of information
might be detrimental to building fully real-world applicable
systems. Finally, some limitations remain as no simulator
perfectly replicates the real world, and the quantity-quality trade-
off of generated data, e.g., with respect to the level of detail
in the simulation of the laws of physics, remains one of many
unresolved limitations (Hu et al., 2021).

One of the most significant problems encountered with
simulations relates to the often vast difference in difficulty
between controlling a simulation and a physical system (Jakobi
et al., 1995), with the main differences arising from the degree
and nature of noise in the real-world system. We argue that this
noise is not only inherent in neuromorphic systems, but perhaps
even necessary to build functioning and robust algorithms and
systems (Liang and Indiveri, 2019; Milde, 2019). The nature of
noise in neuromorphic (and potentially biological systems) may
be fundamentally different to how it is treated in conventional
sensors and processing. Our efforts to mitigate this noise, either
through post-processing or by designing systems that better
approximate our idealised simulations, may have hindered our
ability to deliver on the promises of neuromorphic algorithms
and systems.

4. NOVEL NEUROMORPHIC
CLOSED-LOOP BENCHMARKS

To close the gap between perfect simulations of the world
and the imperfect reality we need to explore novel ways
of building physically embedded closed-loop benchmarks
and thus generate realistic training environments. This step
towards closed-loop benchmarks will also spur and require the
development of novel models of, and approaches to, machine and
neuromorphic intelligence.

4.1. Looking Beyond Accuracy as a Single
Benchmarking Metric
Accuracy is generally evaluated by calculating the difference
between a desired high-level concept target (i.e., true object
category) and the output of the model (i.e., the inferred

object category). Accuracy alone does not encapsulate all
performance metrics important in a real-world system. For
example, closed-loop systems can have hard limitations
placed on their response time, but the latency required
to operate successfully is not captured by measures of
performance accuracy. In order to address these restrictions
we need to evaluate models beyond accuracy as a single
benchmarking metric.

The majority of approaches to formulating an evaluation
metric exclude training and execution time from the loss function
and thus from the performance evaluation (Torralba and Efros,
2011). Similarly, power consumption, throughput and operations
performed per unit time are not considered (Torralba and Efros,
2011). In addition there are other system evaluationmetrics, such
as racial or gender recognition biases or resiliency to adversarial
attacks (Stock and Cisse, 2018).

Here, we propose to include these constraints implicitly
in the benchmark’s evaluation metric. Thus, the objective of
a model competing on a physically embedded benchmark
becomes to achieve the highest score with limited power
consumption, unbiased data collection, limited throughput and
a hard time constraint to react in biological or task-dependent
real-time. This paradigm shift will spur the development of
models which focus on closed-loop and predictive sensing
and processing (Rao and Ballard, 1999; Moeys et al., 2016;
Keller and Mrsic-Flogel, 2018), exploit spatio-temporal sparsity
(Aimar et al., 2019) and are suited for novel real-time
performing neuromorphic processing systems (Milde et al.,
2017).

4.2. A Case Study for Event-Based
Closed-Loop Benchmarks
Building on the needs and requirements identified for
neuromorphic benchmarking systems, we have developed a
set of required characteristics that are essential for creating
benchmarking tasks that properly assess and quantify the
performance of neuromorphic systems. These are:

Evaluation Metrics: The experimental setup should be
capable of collecting critical information, such as power
consumption and task performance, which is needed to evaluate
the models.

Closed-loop embodiment: The benchmarking task should
require at least one level of feedback. Therefore, the output,
whether originating from early, intermediate, or late processing
stages of the model should affect the input to the model, for
example, by altering either perceptual parameters of the sensor,
or the relative positioning of the agent and its sensors with respect
to the environment.

Complexity: The environments should reflect the complexity
that an agent can encounter in real-world scenarios and
therefore include multiple possible states. The presence of noise,
occlusions, and background clutter (or the equivalent noise
and distractors in non-visual tasks) needs to be part of the
environment if we desire to develop processing algorithms
that are resilient to such effects. It is also important that the
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same environment be available for both the training and the
testing environment.

Accessibility and Latency: The benchmarking task needs to
be remotely accessible and have a clearly defined Application
Programming Interface (API) to enable testing of different
algorithms. The API should be capable of relaying and recording
all the essential information from the experimental setup
to the model and vice versa. The API needs to be open-
source for transparency and needs to support different existing
conventional and neuromorphic architectures. The API needs to
operate at high-speed, with low latency, to allow algorithms to
take full advantage of neuromorphic sensory-processing systems.

Replicability: The dynamics of the environment need to
be able to be replicated. The experimental setup should be
reliable enough to handle long trials and multiple runs with
minimal deviation in performance. The setup has to sustain
its behaviour over very long periods and produce reliable and
repeatable results. As closed-loop benchmarks must evaluate
applied algorithms in a consistent unbiased manner, they must,
by necessity, exclude non-reproducible physical systems with
non-ergodic behaviour.

The final point in this list implies that ideal closed-loop
benchmarks cannot contain humans in the loop. However, a
system which supports both, robot vs. robot and robot vs. human
interaction, can be very interesting as the human opponent
represents a source of noise which is informed but neither
unbiased nor consistent. The introduction of a human opponent
will also help in engaging non-experts in the discussion on the
implications of research for the general public and will make
it easier to convey the scientific efforts similarly to DeepMind’s
efforts with alphaGo.

To better define what such a novel, physically embedded
closed-loop benchmark could look like, we will describe in the
remainder of this article our efforts towards building a robotic
foosball table. We started the design and development of the
first iteration of a robotic foosball table for the 2019 Telluride
Neuromorphic Engineering Workshop 7. The idea was simply
that, if a human or algorithm can beat another human or artificial
opponent, i.e., score more goals in a game, the winner is better at
the task of table foosball, giving us a straightforward performance
metric (see Figure 4).

The setup was a standard foosball table with one side
controlled by the machine and the other side open for human
play. A strip of non-flickering LEDs illuminated the surface
of the table. The ball had no special markers on its surface,
to help in differentiating it from other movements on the
table. A neuromorphic event-based camera (Brandli et al.,
2014) was mounted on top of the table looking directly down
towards the table surface providing both regular sampled
frames and asynchronously sampled events. Neuromorphic
vision sensors are exquisite at picking up fast-moving objects
against a stationary background, but the dynamic motion of the
player rods by both contestants provides many distractions by
obstructing the ball below them.

7http://tellurideneuromorphic.org

The machine had eight degrees of freedom to control the
translational and rotational movements of the four rods on the
machine side. The mechanics were developed to ensure fast
movement of the players with low latency to match the speed of
the ball. One way to interact with the environment was through
direct access to the eight motors controlling the rods via a micro-
controller, but a more abstract and simple level of control was
provided by controlling the position of the players on the table.

The problem of building a table foosball controller can be
approached in multiple ways; it can be treated as a compound
task of tracking and decision making, or as an end-to-end
reinforcement learning task. The fast and dynamic environment
demands algorithms which are capable of real-time processing
of the events from the (neuromorphic) vision sensor. Thus, the
benchmark intrinsically requires real-time predictive inference
for successful gameplay and greatly benefits from non-batched,
online and continuous learning approaches. The reason for this
is simple: if one wants to hit a ball it is of negligible importance
where the ball has been in the past, it hardly matters where the
ball is right now, but it truly matters where the ball is going to be
when one wants to hit it.

In this system, the performance evaluation can mainly be the
game score and power consumption. On the foosball system we
propose, the power consumption is constraint by the hardware
we make available, but the computational demands of different
algorithms will still impact the effective power consumption
of the system. Also, the robotic foosball table as a benchmark
could be copied in different locations and could use different
hardware with different power consumption limitations. Such
game score driven evaluation has been sufficient for developing
systems such as alphaGo (Silver et al., 2018), but for human
designed algorithm development, additional feedback will be
required. For this purpose, recordings of the system made with
the neuromorphic event-based camera will be made available to
the researcher.

The current prototype iteration of the robotic foosball table is
not yet ideal as a benchmark for neuromorphic algorithms. In an
ideal scenario, both sides should be controlled by an algorithm or
network and the winner remains and can be contested by another
algorithm or network. We are currently developing such a table,
where both sides can be controlled by a robotic system as well
as a software stack for allowing remote access of the benchmark
through a web-based API. We expect this foosball setup will
pose a good first benchmark for conventional and neuromorphic
algorithms to test their capabilities in a closed-loop setting.

5. CONCLUDING REMARKS

In this article, we discussed the understandable reasons
why the research community, whether neuromorphic or not,
gravitates towards open-loop datasets to train and evaluate
their artificially intelligent algorithms or networks. While
models and hardware accelerators are being developed to
ensure operational real-time performance during inference
on such open-loop datasets, online training within a limited
time and power budget is being neglected in these solutions.
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FIGURE 4 | Schematic of the closed-loop robotic foosball setup.

Alternatively, the closed-loop nature of Reinforcement Learning
(RL) introduces a notion of online learning and decision
making in models of machine intelligence. Conventional
RL approaches introduce the requirement for operational
real-time performance in inference, but not in training,
nor do they address the issue of power consumption in
their evaluation metrics. It appears that in most cases,
the power consumption and real-time performance of both
training and inference in models of machine intelligence
are treated as afterthoughts, to be optimised afterwards
using dedicated hardware accelerators or application-specific
integrated circuit solutions.

The neuromorphic community has greatly benefited from the
vast number of open-loop datasets and has often recreated and
converted them for use in training neuromorphic algorithms and
neural networks. However, the same is not true for closed-loop
benchmarks, even though such benchmarks would play to the
strengths of neuromorphic sensory-processing systems, i.e., low
power consumption, high temporal resolution, distributed and
local learning, robustness to noise, resilient processing due to
parallel and redundant information processing pathways, and
online unsupervised learning. The very essence of the event-
based sensing and computing paradigm, that time represents
itself, should enable neuromorphic algorithms and spiking

neural networks to naturally implement feedback control loops
in which time and its continuous representation can act as
the unifying entity for perception, learning, and action. The
neuromorphic community is, however, missing benchmark tasks
that require recurrent and feedback heavy algorithms and
networks. To enable testing this assumption, we described
our efforts in building a closed-loop, physically embedded
robotic foosball system to function as a benchmark. We expect
that robotic foosball, or similar physically embedded closed-
loop benchmarks, will be a crucial ingredient in advancing
machine and neuromorphic intelligence to include the ability to
perform time critical, informed decisions in noisy, ambiguous
environments based on often partial information.
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