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Abstract: It is well-known that unusual exercise, especially eccentric contraction (ECC), could cause
delayed-onset muscle soreness. However, the factors related to the loss of muscle strength and range
of motion (ROM) caused by eccentrically damaged muscle, such as increases in muscle soreness,
tissue hardness, and pain threshold, have not been investigated in detail. Thus, this study was
conducted to investigate the factors related to the loss of muscle strength and ROM caused by
eccentrically damaged muscle in a large sample. Fifty-six sedentary healthy young male volunteers
were instructed to perform 60 repetitions of ECC exercise. The outcome variables were measured
before and 48 h after the ECC exercise. The results showed that a decrease in ROM was correlated to
an increase in tissue hardness, whereas a decrease in muscle strength was correlated to an increase
in muscle soreness. Our results suggested that tissue hardness must be controlled for ROM loss,
and muscle soreness must be controlled for muscle-strength loss.

Keywords: muscle strength; range of motion; muscle damage; pain-pressure threshold

1. Introduction

It is well-known that unusual exercise, especially eccentric contraction (ECC), could
cause muscle damage. It is a condition characterized by transient ultrastructural myofib-
rillar disruption, muscle-strength loss, delayed-onset muscle soreness (DOMS), swelling,
reduced range of motion (ROM), systemic efflux of myocellular enzymes, and proteins [1,2].
The time course of changes in muscle strength ROM, DOMS, swelling, and blood crea-
tine kinase (CK) in the day after intense eccentric exercise varies, and the loss of muscle
strength and ROM and increase in muscle soreness could peak 24–48 h after intense ECC
exercise [1]. Additionally, the ECC emphasized that resistance training could cause larger
muscle-strength increase and muscle hypertrophy [3–5]. Since such impairments after
intense ECC exercise could influence athletic performance, reduce training quality, reduce
adherence to resistance training, and result in a higher injury prevalence, it is necessary to
control the loss of muscle strength and ROM and increase muscle soreness after intense
ECC exercise.

Previous studies investigated the methods for estimating the degree of muscle damage.
For example, Nosaka et al. (2006) suggested that maximal voluntary isometric contraction
(MVC-ISO) loss after ECC exercise does not correlate strongly with changes in markers
of muscle damage (i.e., ROM, swelling, and muscle soreness) [6]. However, Dames et al.
(2016) investigated the response of markers (i.e., ROM, swelling, CK activity, and muscle
soreness) among a large number of young men (N = 286). They suggested that MVC-ISO
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loss could reflect the indirect maker for muscle damage [7]. Additionally, the rate of force
development (RFD) could be a more sensitive indirect marker of muscle damage [8,9].
Hence, the changes in MVC-ISO and RFD after ECC exercise are sensitive indirect markers
for muscle damage induced by ECC exercise.

The factors related to the loss of muscle strength and ROM caused by eccentrically
damaged muscle, such as increases in muscle soreness, tissue hardness, and pain threshold,
have not been investigated in detail. Specifically, the factors related to the loss of mus-
cle strength and ROM occurring in the 2 days after ECC exercise, when muscle soreness
reaches its peak, are unknown. Thus, this study was conducted to investigate the factors
related to the loss of muscle strength and ROM caused by eccentrically damaged mus-
cle. If muscle soreness is associated with ECC-exercise-induced loss in muscle function,
thermal agent intervention [10] and/or foam rolling intervention might be effective for
improvements [11–13]. Moreover, stretching intervention could be an effective approach
if tissue-hardness increase is associated with ECC-exercise-induced loss in muscle func-
tion [14]. Hence, this study was aimed to determine the factors associated with loss of
muscle strength and ROM after ECC exercise in a large sample. We hypothesized that
the loss of muscle strength and ROM after ECC exercise could be related to an increase in
muscle soreness.

2. Materials and Methods
2.1. Experimental Design

The outcome measurements consisted of knee flexion ROM, MVC-ISO, maximal
voluntary concentric contraction (MVC-CON) torque of knee extensor, tissue hardness, pain
pressure threshold (PPT), muscle soreness at MVC-ISO, MVC-CON, and stretching before
maximal eccentric contraction task (baseline) and 48 h after ECC exercises task (Figure 1).
Moreover, we calculated the changes (∆) from baseline to 48 h after the ECC exercise task.
All participants performed 60 repetitions of eccentric (ECC) exercise (10 repetitions * 6 sets)
of the knee extensors with the dominant leg (preferred leg for kicking a ball) after baseline
measurement. All measurements were taken for each participant at the same time between
days. Additionally, the participants became familiarized with all measurements and ECC
exercises before baseline measurement in the measurement leg (dominant leg).

Figure 1. Experimental protocol.

2.2. Participants

Fifty-six sedentary healthy young male volunteers (age, 21.0 ± 0.9 years; height,
172.1 ± 5.9 cm; body mass, 65.3 ± 8.5 kg) who had not performed habitual exercise activ-
ities or had not been involved in any regular resistance training or flexibility training at
least for the past 6 months before the measurements participated in the study. We excluded
participants who had a history of neuromuscular disease or musculoskeletal injury on
the lower extremity. All subjects were fully informed of the procedures and purpose of
the study, and all gave written informed consent. The study was approved by the Ethics
Committee at the Niigata University of Health and Welfare, Niigata, Japan.



Healthcare 2022, 10, 96 3 of 9

G*Power software (v 3.0.10; Dr. Franz Faul, Kiel University, Kiel, Germany) was used
to calculate the sample size on the effect size for correlation analysis (effect size = 0.5 (large),
α = 0.05 and power = 0.95), and the elicited results suggested that the minimum required
subjects’ number was 42 for this study.

2.3. Procedures
2.3.1. MVC-ISO and MVC-CON

Using a dynamometer, MVC-ISO was measured at two different angles, namely,
20◦ and 70◦ knee angles. After three submaximal isometric contractions as a warm-up,
the participants were instructed to perform maximal contraction of the knee extensors for
3 s at each angle, two times, with a 60 s rest between trials. The average value was adopted
for further analysis. MVC-CON was measured at an angular velocity of 60◦/s for the ROM
of 70◦ (20–90◦ knee angles) for three continuous MVC-CONs for the extension after two or
three submaximal isometric contractions as a warm-up. The highest value among the three
trials was adopted for further analysis. Verbal encouragement was provided consistently
during all tests.

2.3.2. Knee Flexion ROM

Each participant was placed in a side-lying position on a massage bed, and the hip
and knee of the nondominant leg were flexed at 90◦ to prevent pelvis movement during
ROM measurements [11]. Next, the investigator brought the dominant leg to full knee
flexion with the hip joint in a neutral position. Finally, a goniometer was used to measure
the knee flexion ROM three times, and the average value was used for further analysis.

2.3.3. Muscle Soreness

Using a visual analog scale that had a continuous line 100 mm with “not sore at
all” on one side (0 mm) and “very, very sore” on the other side (100 mm), the magni-
tude of knee-extensor muscle soreness was assessed by muscle contraction, stretching,
and palpation [11,15]. Both MVC-ISO and MVC-CON assessed muscle soreness on con-
traction, and the average value was adopted for further analysis. For muscle soreness
during palpation, participants lay supine on a massage bed, and the investigator palpated
the proximal, middle, and distal points of the vastus medialis, vastus lateralis, and rectus
femoris [11,16]. The muscle soreness at palpation was measured by a physical therapist
with more than 10 years of experience. Again, the average value of the knee extensor
palpation points was used for further analysis. As for muscle soreness during stretch-
ing, ROM measurement was measured three times, and the average value was used for
further analysis.

2.3.4. PPT

An algometer measured PPT measurements (NEUTONE TAM-22 (BT10); TRY ALL
Corp., Chiba, Japan) in the supine position. The measurement position was set at the
midway of the distance between the anterior superior iliac spine and the upper end of the
patella of the dominant side for the rectus femoris muscle. With continuously increasing
pressure, the metal rod of the algometer was used to compress the soft tissue in the
measurement area. Participants were instructed to immediately press a trigger when the
pain was experienced rather than just pressure. The value read from the device at this
time point (kilograms per square centimeter) corresponded to the PPT. Based on previous
studies [17,18], the mean value (kilograms per square centimeter) of the three repeated
measurements was taken with a 30 s interval for data analysis.

2.3.5. Tissue Hardness

Tissue hardness was measured by using a portable tissue hardness meter (NEUTONE
TDM-Z2; TRY-ALL Corp., Chiba, Japan). The measurement position and the posture of the
participant were similar to PPT measurement for the rectus femoris. All participants were
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instructed to relax during tissue hardness measurements. Tissue-hardness measurements
were repeated thrice, and the average value was used for further analysis.

2.3.6. ECC Exercise Task

All participants performed six sets out of 10 maximal ECC of the unilateral knee
extensors (dominant leg) on an isokinetic dynamometer (Biodex System 3.0, Biodex Medical
Systems Inc., Shirley, NY, USA) [11]. Participants sat on the dynamometer chair at an 80◦

hip flexion angle, with adjusted Velcro straps fixed over the trunk, pelvis, and thigh of
the exercised limb. The participants were instructed to perform the maximal ECC from a
slightly flexed position (20◦) to a flexed position (110◦) at an angular velocity of 60◦/s [11].
After each ECC, the lever arm passively returned the knee joint to the starting position at
10◦/s, which gave a 9 s rest between contractions. After 2 or 3 submaximal ECC contractions
as familiarization trials, each set was repeated 10 times, and a 100 s rest was given between
sets to complete the six sets. The participants received strong verbal encouragement during
each ECC to generate maximum force.

2.4. Test–Retest Reliability of the Measurements

Test–retest reliability was assessed by the coefficient variation (CV) and the intra-
class correlation coefficient (ICC), using 6 healthy men (23.8 ± 4.9 years, 169.4 ± 5.0 cm,
75.7 ± 15.4 kg), with 2 days between the two measures, without any intervention. The CV
and ICC of the measurements are shown in Table 1. The ICC ranged from 0.733 to 0.987,
and CV ranged from 0.6 to 7.9%.

Table 1. The test and retest reliability of knee flexion range of motion (DF ROM), maximal voluntary
isometric contraction torque of plantar flexors (MVC-ISO), maximal voluntary concentric contraction
torque (MVC-CON), muscle soreness at stretching, MVC-ISO, MVC-CON, palpation, pain-pressure
threshold (PPT), and tissue hardness.

ICC (1, 1) CV (%)

Knee flexion ROM (◦) 0.825 1.6 ± 1.3
MVC-ISO (Nm) 0.928 2.8 ± 1.6

MVC-CON (Nm) 0.958 2.3 ± 1.3
Muscle soreness

At stretching (mm) 0.987 4.9 ± 3.9
At MVC-ISO (mm) 0.946 5.5 ± 3.9

At MVC-CON (mm) 0.733 5.5 ± 3.3
At palpation (mm) 0.983 4.9 ± 1.8

PPT (kg) 0.966 7.9 ± 5.5
Tissue hardness (N) 0.838 5.3 ± 2.6

CV, coefficient variation; ICC, intraclass correlation coefficient.

2.5. Statistical Analysis

SPSS (version 24.0; SPSS Japan Inc., Tokyo, Japan) was used for statistical analysis.
The data distribution was assessed by using the Shapiro–Wilk test, and we confirmed that
the data followed a normal distribution. We calculated the changes (∆) from baseline to
48 h after the ECC exercise task, and Pearson’s product–moment correlation coefficient was
used to quantify the relationship between ∆knee flexion ROM, ∆MVC-ISO, ∆MVC-CON
and ∆muscle soreness, ∆PPT, and ∆tissue hardness. Data are presented as mean ± SD.

3. Results

All variables are at baseline and 48 h after ECC exercise, and Table 2 shows all the ∆
values. Moreover, Pearson’s product–moment correlation coefficient showed that there
was a significant correlation between ∆knee flexion ROM and ∆tissue hardness (r = −0.314,
p = 0.019, Figure 2A), but there were no significant correlations between ∆PPT (r = 0.131,
p = 0.341, Figure 2B), ∆muscle soreness at stretching (r = 0.104, p = 0.448, Figure 2C), and
muscle soreness at palpation (r = −0.21, p = 0.125, Figure 3D).
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Table 2. Changes (mean ± SD) in knee flexion range of motion (ROM), maximal voluntary iso-
metric contraction torque of knee extensor (MVC-ISO), maximal voluntary concentric contraction
torque (MVC-CON) at 60◦/s, muscle soreness at stretching, MVC-ISO, MVC-CON, palpation, pain-
pressure threshold (PPT), and tissue hardness before (baseline) and 48-h after maximal eccentric
contraction exercise.

Baseline 48 h after
ECC Exercise

∆ Change from Baseline to
48 h after ECC Exercise

Knee flexion ROM (◦) 136.9 ± 6.7 116.5 ± 16.9 −20.4 ± 16.1

MVC-ISO (Nm) 159.4 ± 26.0 104.5 ± 32.0 −54.8 ± 36.0

MVC-CON (Nm) 166.4 ± 27.1 107.9 ± 38.6 −58.5 ± 42.4

Muscle soreness

At stretching (mm) 5.5 ± 13.2 39.2 ± 22.1 33.7 ± 20.3

At MVC-ISO (mm) 6.6 ± 8.5 36.4 ± 20.9 29.7 ± 19.4

At MVC-CON (mm) 6.2 ± 8.5 35.6 ± 22.6 29.3 ± 22.2

At palpation (mm) 10.3 ± 9.8 42.6 ± 18.5 31.7 ± 18.8

PPT (kg) 2.6 ± 1.2 1.5 ± 1.0 −1.1 ± 1.0

Tissue hardness (N) 18.0 ± 4.0 20.5 ± 3.8 2.6 ± 3.1

Figure 2. Relationships (Pearson r and p-values) between ∆knee flexion range of motion (ROM)
and ∆tissue hardness (A), ∆pain pressure threshold (PPT) (B), muscle soreness at stretching (C),
and muscle soreness at palpation (D).

Additionally, there were significant collections between ∆MVC-ISO and ∆muscle
soreness at MVC-ISO (r = −0.455, p < 0.01, Figure 3A) or ∆muscle soreness at palpation
(r = −0.362, p = 0.007, Figure 3B), whereas there were no significant correlations between
∆MVC-ISO and ∆PPT (r = 0.238, p = 0.08, Figure 3C) or ∆tissue hardness (r = −0.182,
p = 0.183, Figure 3D).
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Figure 3. Relationships (Pearson r and p-values) between ∆maximal voluntary isometric contraction
(MVC-ISO) and ∆muscle soreness at MVC-ISO (A), ∆muscle soreness at palpation (B), ∆pain pressure
threshold (PPT) (C), and ∆tissue hardness (D).

Similarly, there were significant collections between ∆MVC-CON and ∆muscle sore-
ness at MVC-CON (r = −0.324, p = 0.016, Figure 4A) or ∆muscle soreness at palpation
(r = −0.388, p = 0.003, Figure 4B), whereas there were no significant correlations between
∆MVC-CON and ∆PPT (r = 0.209, p = 0.13, Figure 4C) or ∆tissue hardness (r = −0.232,
p = 0.088, Figure 4D).

Figure 4. Relationships (Pearson r and p-values) between ∆maximal voluntary concentric con-
traction (MVC-CON) and ∆muscle soreness at MVC-CON (A), ∆muscle soreness at palpation (B),
∆pain pressure threshold (PPT) (C), and ∆tissue hardness (D).
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4. Discussion

This study investigated the factors associated with decreases in muscle strength and
ROM 2 days after ECC exercise when loss of muscle function was assumed to be at the
peak. Our results showed a significant association between ROM decrease to the increase
in tissue hardness and the muscle strength decrease to muscle soreness. Previous studies
investigated the indirect marker of muscle damage after ECC exercise; nevertheless, to the
best of our knowledge, this study is the first to identify factors associated with loss of
muscle function 2 days after ECC exercise.

Our results showed a significant correlation between ∆ROM and ∆tissue hardness
(r = −0.314, p = 0.019). Previous studies showed that tissue hardness and the sensation
of the subject are related to ROM in nondamaged muscles [19,20]. Since the increase in
tissue hardness could decrease muscle extensibility, this increase in tissue hardness may
have led to the decrease in ROM caused by the ECC exercise. Conversely, there was no
significant correlation between the change in muscle soreness at stretching and the decrease
in ROM (r = 0.104, p = 0.448). Previous studies have reported that stretching perception
by the subject is related to ROM [21,22]. The discrepancy between the results of this
study and those of previous studies is thought to be related to the state of the muscle being
measured. In the previous studies, which stated that the sensation of the subject was related,
the target was a nondamaged muscle, whereas, in this study, the target was an eccentrically
damaged muscle. Additionally, since this study measured maximal knee flexion ROM,
the relationship with muscle soreness at stretching might not have been observed.

Muscle soreness at MVC-ISO or MVC-CON was a factor associated with both MVC-
ISO and MVC-CON decreases. However, a previous study reported that muscle soreness
did not correlate with CK activity (i.e., index of muscle damage) [23]. Moreover, another
study reported that muscle soreness caused by ECC exercises might decrease muscle power
output [24]. Thus, it is thought that the subjects who experienced a large amount of pain
caused by ECC exercises had severe inhibition of muscle power output. In the present
study, however, muscle soreness was associated with loss of muscle strength, which likely
cannot be explained by the CK activity rather by microdamage of the muscle [1,2].

This study showed that the decrease in ROM caused by ECC exercise was associated
with an increase in tissue hardness, and the decrease in muscle strength was associated with
muscle soreness. As described above, the ECC emphasized a larger muscle strength increase
and muscle hypertrophy when compared with other types of training [3–5]. Nevertheless,
acutely and up to the time that the muscle is fully recovered, ECC exercise could negatively
affect athletic performance, reduce training quality, adherence to resistance, and likely
cause higher injury prevalence. Thus, there is a need to speed up the recovery to overcome
these side effects. Specifically, static stretching and hold–relax stretching decrease passive
stiffness [25]. Additionally, foam rolling intervention decreases muscle pain, including pain
threshold [12,13]. Thus, a stretching intervention might effectively counteract the ROM
decrease caused by ECC exercise. Moreover, a foam rolling intervention might effectively
counteract muscle strength loss. Static stretching intervention for eccentrically damaged
muscles increased ROM and decreased passive stiffness [24], and foam rolling intervention
improved muscle strength [11]. Future studies should aim to combine stretching with
foam rolling [26] to investigate if both ROM and muscle strength can be increased in an
eccentrically damaged muscle.

This study did not measure muscle stiffness, but tissue hardness, using the portable
tissue hardness meter. The tissue hardness could be affected by the target muscle stiffness
(e.g., rectus femoris muscle), as well as the skin, subcutaneous fat, and even deeper muscle
stiffness (e.g., vastus intermedius). Thus, future studies should investigate the relationship
between ROM or muscle strength changes and changes in muscle stiffness by using,
for example, elastography.
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5. Conclusions

In conclusion, we investigated the factors associated with loss of muscle strength and
ROM 2 days after ECC exercise in a large sample (N = 56). Our results showed that the
ROM decrease could be related to increased tissue hardness, and MVC-ISO and MVC-CON
decreases could be related to a muscle soreness increase. Our results suggested that tissue
hardness must be controlled for ROM loss, and muscle soreness must be controlled for
muscle strength loss.
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