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 The lens is composed of two types of epithelial cells: A
sheet of cuboidal cells, the lens epithelium, covers its anterior
surface, and post-mitotic, elongated fiber cells comprise the
bulk of the lens (Figure 1). Stimulation by factors present in
the vitreous body causes epithelial cells near the lens equator
to withdraw from the cell cycle and differentiate into lens fi-
ber cells. Differentiating fiber cells elongate and initiate the
transcription of genes that encode a distinct array of abundant
membrane, cytoskeletal, and cytoplasmic proteins. The accu-
mulation of high concentrations of cytoplasmic proteins
(crystallins) in fiber cells is important for the transparency
and refractive power of the lens. Some crystallins, cytoskeletal,
and membrane proteins are found primarily in lens cells, or
are present only at very low levels in non-lens tissues [1-7].

Lens fiber cells undergo remarkable morphological
changes during their differentiation. Fiber cells first elongate
to many times their original length, extending to over 140 µm
per day in the chicken embryo [8]. As they elongate, the ante-
rior and posterior ends of the fiber cells extend beneath the
lens epithelium and along the posterior lens capsule toward
the optical axis. When the ends of these cells approach the
anterior and posterior poles of the lens, they meet elongating
fiber cells extending from the other side, resulting in the for-
mation of the anterior and posterior sutures (Figure 1). Once
the cells stop elongating, they become buried beneath the next
group of elongating fiber cells. Soon after the fiber cells de-
tach from the posterior capsule, the composition of their cell-
cell adhesion proteins changes [9], their lateral membranes
become interdigitated [8] and partially fuse with the mem-
branes of neighboring fiber cells [8,10], and all intracellular,
membrane-bound organelles are degraded [11-17]. Mature fi-
ber cells persist in this state for the life of the organism.
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Purpose: To identify transcripts expressed late in lens fiber cell maturation that might regulate fiber cell fusion, organelle
degradation, or other events associated with the maturation of lens fiber cells.
Methods: cDNA libraries were prepared from microdissected regions of chicken embryo lenses using a PCR-based
method. Subtractive hybridization was used to identify transcripts expressed exclusively in fiber cells that had detached
from the lens capsule. Database searches and PCR amplification with degenerate primers were used to identify human,
mouse, rat, rabbit, and bovine orthologs of one such sequence and to confirm its expression in the lenses of these animals.
The ability of in vitro-transcribed and translated protein to bind DNA was assessed by mobility shift assays. The locus
encoding this transcript and an area about 6 kb upstream of the translation start site were sequenced. The microscopic
morphology of lenses from mice in which the locus encoding this protein had been disrupted by the insertion of a nuclear-
targeted bacterial lacZ sequence were analyzed. Gene expression was analyzed by PCR, in situ hybridization, and by
staining for β-galactosidase activity in lenses expressing lacZ in place of the coding sequence. Knockout lenses express-
ing green fluorescent protein in a mosaic pattern were sectioned in the equatorial plane and viewed with a confocal
microscope to assess the presence of cell-cell fusions during fiber cell maturation.
Results: Subtractive hybridization identified transcripts encoding Hop, a short, atypical homeodomain-containing protein
that had previously been shown to be an important regulator of gene expression in the heart and lung. Chicken Hop did not
bind to known homeodomain-binding sequences in DNA. In chicken embryos, Hop transcripts were first detected at E6.
At all stages analyzed, Hop mRNA was only detected in cells that had detached from the lens capsule. Mice in which the
Hop coding sequence was replaced with nuclear-targeted β-galactosidase showed that Hop was expressed in the mouse
lens in a similar pattern to the chicken lens. Characterization of lenses from mice lacking Hop revealed no morphological
phenotype and no apparent defects in the degradation of nuclei or fiber cell fusion during fiber cell maturation.
Conclusions: The expression pattern of Hop provides the first evidence that new transcription is initiated in lens fiber
cells after they detach from the capsule. Hop may be the first of a class of genes with this pattern of expression. Although
lens abnormalities have yet to be identified in mice lacking Hop, the genomic sequences that regulate Hop expression in
the lens may be useful for expressing exogenous transcripts selectively in fiber cells just before they fuse with their
neighbors and degrade their organelles.
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Many of the genes that are preferentially expressed in lens
fiber cells have been identified, cloned, and sequenced, and
their promoters used to express foreign genes in the lenses of
transgenic animals [18,19]. The products of all these “fiber-
specific” genes are detected at or soon after the initiation of
fiber cell differentiation. To date, only a few transcripts have
been identified that are preferentially expressed late in fiber
cell differentiation [9,20], and no mRNAs have been identi-
fied that are expressed only at this stage.

To identify molecules that might regulate or be required
for the final stages of fiber cell differentiation, we used sub-
tractive hybridization between cDNA libraries created from
chicken embryo lens fiber cells before and after they detached
from the lens capsule. The open reading frame of one of the
transcripts that was selectively expressed after fiber cells de-
tached from the capsule consisted of 73 amino acids, 60 of
which had strong sequence similarity to the homeodomain
consensus. This gene was previously named Hop, for
“homeodomain-only protein” [21,22].

METHODS
Animals and surgical procedures:  Animals were treated in
accordance with the guidelines of the U.S. Public Health Ser-
vice under a protocol approved by the Washington University
Animal Studies Committee. Mice were maintained in an ani-
mal facility accredited by the Association for Assessment and
Accreditation of Laboratory Animal Care (AAALAC). Fer-
tile chicken eggs were obtained from CBT Farms
(Chestertown, MD) and incubated in a humidified, forced-draft
incubator at 38 °C. Embryos at different stages of develop-
ment were removed, their lensers were fixed, and sectioned at
500 µm with a tissue slicer (OTS-4000; Electron Microscopy
Sciences, Warrington, PA), and examined for the distribution
of Hop mRNA by in situ hybridization. Mice in which the

Hop coding sequence was replaced with DNA encoding a
nuclear-targeted form of E. coliβ-galactosidase [22] were
genotyped by PCR. Whole lenses were stained for β-galac-
tosidase activity according to directions described in refer-
ence [23], embedded in glycol methacrylate, and sectioned at
1 µm. Hop knockout mice were mated with TgN(GFPU)5Nagy
strain of mice, which express green fluorescent protein (GFP)
in a mosaic pattern, to determine whether lens cells lacking
Hop fused with their neighbors during fiber cell maturation
[24]. Lenses lacking Hop were fixed in 10% formalin and sec-
tioned perpendicular to the long axis of the fiber cells. GFP
fluorescence was viewed with a Zeiss LSM 510 confocal mi-
croscope.

Overview of the subtractive hybridization method:  The
procedures used were modified from previous reports [25,26].
RNA was prepared from microdissected regions of the lens
fiber cells and region-specific cDNA pools were synthesized.
The cDNAs were amplified by PCR, made single-stranded
(tester), and annealed with excess biotinylated, single-stranded
cDNA prepared from a different region of the lens (driver).
The biotinylated complex was removed with magnetic
streptavidin beads and the remaining cDNA was cloned into a
bacterial plasmid. Bacterial clones were screened with labeled
probes prepared from both regions of the lens to confirm the
effectiveness of the subtraction.

Preparation of region-specific libraries:  In chicken em-
bryos, organelle degradation in the central fiber cells begins
at E12 [11]. After this age, lenses contain elongating fiber cells,
fiber cells that have stopped elongating and detached from the
capsule but not yet degraded their organelles, and mature fi-
ber cells with no organelles (Figure 1). To isolate mRNA from
these populations, we removed E15-16 lenses from the eye,
embedded them in 4% agar, and cut 500 µm slices parallel to
the optic axis with a tissue slicer. Slices that included the cen-
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Figure 1. Diagram of lens regions.  Dia-
gram representing a section through the
center of a lens showing the regions of
the fiber mass that were dissected to pro-
duce region-specific cDNA libraries. Fi-
ber cells in the cortex region are still in
the process of elongation and are attached
at their basal ends to the lens capsule, the
lens basement membrane. Cells in the
middle region have completed the pro-
cess of elongation and have detached
from the capsule. The apical and basal
ends of these cells abut the ends of fiber
cells from the other side of the lens at the
anterior and posterior sutures. Cells in the
core region have degraded their nuclei
and other membrane-bound organelles.
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ter of the lens were dissected into three regions: “cortex,” which
contained elongating fiber cells, “middle,” which contained
fiber cells that had detached from the capsule yet still con-
tained organelles, and “core,” which contained the fiber cells
that had already lost their organelles (Figure 1). The follow-
ing primer sequences for PCR reactions were used: T primer:
5'-GTG CCT CTA GAT TTT TTT TTT-3'; TC primer: 5'-GTG
CCT CTA GAT TTT TTT TTT GGA TCC CCC CCC CC-3';
C primer: 5'-TTT TCA CGG ATC CCC CCC CCC-3'; X
primer: 5'-GTC CGG CCA ACG GTA TGG TG-3'; XT primer:
5'-GTC CGG CCA ACG GTA TGG TGC CTC TAG ATT TTT
TTT TT-3'; and XC primer: 5'-GTC CGG CCA ACG GTA
TGG TGC ACG GAT CCC CCC CCC C-3'.

Total RNA from these regions was extracted using the
standard guanidine thiocyanate procedure as described in ref-
erence [27]. Total RNA (0.25-1 µg) was heat-denatured at 65
°C for 5 min and annealed at room temperature for 5 min with
5 pM of T-primer in a total volume of 20 µl containing 1X RT
buffer (50 mM Tris-HCl, pH 8.3, 6 mM MgCl

2
, 75 mM KCl,

1 mM dithiothreitol, 1 mM of each dATP, dTTP, dCTP, and
dGTP), and 1 U RNase inhibitor (Promega, Madison, WI).
After addition of 200 units of Moloney murine leukemia virus
reverse transcriptase (SuperScript II; Life Technologies,
Gaithersburg, MD), incubation was continued at 42 °C for 1
h, followed by 94 °C for 5 min, using a programmable ther-
mal cycler (PTC-100TM; MJ Research, Watertown, MA). The
tube was spun briefly and the cDNA was purified from the T-
primer and dNTPs by ultrafiltration through a Microcon-100
concentrator (Millipore, Billerica, MA). Purified cDNA (5 µl
aliquots) was oligo-dG-tailed at 37 °C for 0.5-1.5 h in a total
reaction volume of 15 µl containing 1X terminal
deoxynucleotidyl transferase (TdT) buffer (50 mM sodium
cacodylate, pH 7.2, 0.1 mM 2-mercaptoethanol, 1 mM CoCl

2
),

400 mM dGTP and 2 U TdT. Higher TdT concentration (5-20
U) as well as longer time of incubation can significantly re-
duce the amount of DNA available for subsequent amplifica-
tion with TC- and T-primers. For this reason, 4 µl aliquots of
DNA were removed every 30 min of incubation and submit-
ted to 18 cycles of “hot-start” PCR in 50 µl of 1X PCR buffer
(40 mM Tricine-KOH, pH 9.2, at 20 °C; 10 mM potassium
acetate, 3 mM MgCl

2
; 50 mg/ml BSA, 200 mM of each dATP,

dTTP, dCTP, and dGTP), 5 pM TC primer, 20 pM T primer
and 1.5 U Taq Polymerase. The first cycle of PCR was 94 °C
for 30 s, 52 °C for 1 min, 72 °C for 1.5 min, followed by 16
cycles (94 °C for 10 s, 56 °C for 20 s, and 71 °C for 1.5 min).
The final cycle had 5 steps: 94 °C for 10 s, 56 °C for 20 s, 71
°C for 2 min, 56 °C for 20 s, and 71 °C for 2 min. The five-
step PCR was used during the last cycle for converting single-
stranded “pan-like” DNA to double-stranded products. Full-
length TC-T cDNA was prepared using the same conditions
and cycle parameters except the elongation time was extended
to 5 min and 0.05 U of Pfu polymerase was added to the PCR
mix [28].

Preparation of biotinylated T-C cDNA:  To obtain
biotinylated “middle” and “cortex” T-C cDNA, 10 ng of the
original TC-T cDNA was amplified through 10 cycles of PCR
with 5'-end biotinylated T- and C-primers (Integrated DNA

Technologies), the product purified from the primers and un-
incorporated nucleotides with a PCR purification kit
(Promega), ethanol precipitated and resuspended in 12 µl of
deionized water.

Driver preparation:  About 7 µg of sense and antisense
cDNA (driver) were prepared from 5 µl (2 µg) of biotinylated
T-C cDNA (Integrated DNA Technologies) by five cycles of
asymmetric amplification with 100 pM of biotinylated C-
primer (for sense) or biotinylated T-primer (for antisense) in
five tubes with a total volume 250 µl. The PCR reaction was
stopped by the addition of 2 µl of 0.5 M EDTA, pH 8.0, and
frozen at -20 °C.

Tester (tracer) preparation:  Sense and antisense tracer
cDNA were prepared from 1 µl of biotinylated T-C cDNA by
additional 5 cycles of asymmetric PCR with 20 pM of un-
biotinylated XC-primer (for sense) or XT-primer (for antisense)
in 50 ml of PCR buffer. The PCR reaction was stopped by
addition 1 µl of 0.5 M EDTA pH 8.0 and frozen at -20 °C.

Subtractive hybridization:  For each subtraction, two
samples were prepared: one containing 5 µg of sense driver
and 250 ng of antisense tracer and the second containing
antisense driver and sense tracer. After undergoing phenol-
chloroform extraction and precipitation with ethanol, each
cDNA sample was dissolved in 400 µl of deionized water and
purified from the primers by 5X filtration with Microcon-100
filters. Purified cDNA was precipitated with ethanol and re-
suspended in 4 µl of hybridization buffer (50 mM HEPES, pH
8.3; 0.5 M NaCl; 0.05 mM EDTA, pH 8.0), overlaid with min-
eral oil, heated 2 min at 95 °C and incubated overnight at 68
°C. The hybridization mix was diluted in 400 µl of NTE buffer
(10 mM Tris-HCl, pH 8.0, 0.5 M NaCl, and 1 mM EDTA) and
the aqueous phase was transferred to a fresh tube with 100 µl
of streptavidin-beads (Dynal Biotech, Lake Success, NY) in
NTE buffer (the beads were washed 3X in NTE buffer before
use). After 5 min incubation at room temperature, the beads
and bound DNA were removed with a magnet, and the re-
maining cDNAs were subjected to a second round of purifica-
tion with streptavidin beads. After purification, the two samples
were combined, mixed with 1 µg of each sense and antisense
driver, precipitated with ethanol, dissolved in 4 µl of hybrid-
ization buffer and used for second step of hybridization at 68
°C, overnight. The second hybridization mix was purified twice
with streptavidin beads. PCR was performed with 2 µl of the
remaining cDNA in 50 µl of PCR buffer containing 10 pM of
X-primer using the following parameters: 72 °C for 3 min,
then 25-30 cycles of 94 °C for 12 s; 56 °C for 20 s; 72 °C for
2 min. The PCR reaction mixture was diluted 500 times and
subjected to additional 15-17 rounds of PCR with T- and C-
primers. Purified product of this secondary PCR was digested
with Xba I and Bam HI endonuclease (Roche Applied Sci-
ence, Indianapolis, IN) and inserted into a pcDNA3.1(-) vec-
tor (Invitrogen, Carlsbad, CA). For differential screening, 96
individual clones from the subtracted “middle” library were
replicated and hybridized with DIG-labeled probes synthe-
sized by PCR from “cortex” and “middle” subtracted cDNA.
Plasmids from clones that reacted only or preferentially with
the “middle” library were sequenced.
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Genomic sequencing:  Sequencing of the region upstream
of the Hop translation start site was accomplished by genomic
walking. Chicken genomic DNA was extracted and digested
with one of several restriction enzymes that generate 5' over-
hangs. The genomic fragments were ligated to double-stranded
anchor primers with the appropriate 3' overhangs using the
Rapid DNA Ligation Kit (Roche Applied Science), and PCR
products were amplified with primers designed against the Hop
coding sequence and the sequence of the anchor primer. The
longest PCR fragments were cloned and sequenced using stan-
dard methods. Potential transcription factor binding sites in
the genomic sequence upstream of the translation start site
were identified with P-Match, a public version of Match
(Biologische Datenbanken GmbH, Wolfenbüttel, Germany),
using the stringency cutoff selection to minimize the identifi-
cation of false positive matches.

Tests of Hop DNA binding:  Electrophoretic mobility shift
assays (EMSA) were performed as described [29]. Radiola-
beled Hop protein was synthesized in vitro using TNT Quick
Coupled rabbit reticulocyte lysate reagents (Promega, Madi-
son, WI) and 35S-methionine (Amersham Pharmacia,
Piscataway, NJ). Substrate DNA was 0.5 mg of a plasmid con-
taining Hop cDNA. 32P-labeled oligonucleotides representing
binding sites for transcription factors were as follows: LHX3
LIM-class homeodomain site, 5'-GAT CCC AGA AAA TTA
ATT AAT TGT AA-3' (LBC) [29]; paired-class homeodomain
site, 5'-TCC GAC TAA TTG AAT TAG CGA GA-3' (PRD)
[30]; bicoid-class homeodomain site, 5'-GAT CCG CAC GGC
CCA TCT AAT CCC GTG GGA TC-3' (BIC) [31]; Pit-1 POU-
class homeodomain site, 5'-GAT CCT ATG TGC TCA AAG
TTC AGG TAT GAA TAT AAA GGA TC-3' (PIT) [32]; and a
MyoD basic helix-loop-helix site, 5'-GGG AAA GGA TCT
GAC AGG TGG CCC CAG CCC TCG G-3' (MD).

Amplification of Hop sequences using degenerate PCR
primers: cDNA prepared from the lenses of several species
was amplified with degenerate primers based on the sequence
of chicken Hop. The primers were: 5'-GAT TCC ACC ACG
CTG TGY CTN ATY GC-3' and 5'-CCA CTT BGC CAG NCG
YTG YTT-3' where Y is C or T, N is A,G,T or C and B is C, G,
or T. PCR products were cloned and sequenced by standard
methods.

Northern blotting:  Total RNA from E15 lens fiber masses
was separated by agarose gel electrophoresis, transferred to
nylon membranes (Roche Applied Science, Indianapolis, IN),
and probed with digoxigenin-labeled antisense riboprobes
derived from the chicken Hop sequence by following direc-
tions given in the manual provided with the riboprobe kit.
Bands were visualized with a peroxidase-labeled antibody to
digoxigenin and chemiluminescent detection (Roche Applied
Science).

In situ hybridization was performed using standard tech-
niques for whole mount staining [33] on whole lenses (E6-
E8) or about 500 µm-thick sections of formaldehyde fixed
lenses (>E8). Lenses were fixed for about 1 h, washed in PBS,
and stained whole or sectioned using an OTS-4000 tissue slicer.
Sections were stained with antisense or sense digoxigenin-
labeled riboprobes derived from the full length chicken Hop

cDNA sequence. An alkaline phosphatase-conjugated antibody
to digoxigenin and 5-bromo-4-chloro-3-indolyl phosphate/
Nitro blue tetrazolium were used for color development (Roche
Applied Science).

RESULTS
 To identify genes expressed late in fiber cell maturation we
used a PCR-based method to prepare cDNA libraries from
microdissected regions of E15-16 chicken lenses (Figure 1)
and performed subtractive hybridization to identify cDNAs
that are selectively expressed in fiber cells that had detached
from the lens capsule, yet still contained organelles. Several
clones were identified that were enriched or were expressed
exclusively in mature fiber cells. One of these cDNAs encoded
vinculin (GenBank NM_205441), a transcript that we had pre-
viously found to increase after fiber cells detach from the lens
capsule [9]. Most other clones from this library encoded genes
that were differentially, but not exclusively, expressed in ma-
ture fiber cells. One clone encoded a sequence that was ex-
pressed selectively in detached fiber cells but at low levels. A
few ESTs for this transcript have been identified, the longest
being GenBank accession number CN228064. Since this tran-
script was expressed at a low level in the lens, it was not ex-
amined further. Another transcript was expressed at high lev-
els only in fiber cells that had detached from the capsule. It
contained a short open reading frame encoding 73 amino ac-
ids with sequence similarity to the homeodomain transcrip-
tion factors (GenBank NM_204556). The mouse ortholog of
this gene (Hop) was recently shown to be expressed in heart
development and to modulate the activity of other transcrip-
tion factors [21,22,34].

Sequence analysis and database searches revealed that
chicken Hop differs at several locations from the homeodomain
consensus and is not sufficiently similar to any of the known
homeodomain sequences to be grouped in one of the
homeodomain “superclasses” [35]. The greatest similarity of
Hop to a characterized homeodomain is 47% amino acid iden-
tity with the Pitx homeoprotein of the cephalochordate
Branchiostoma belcheri [36], although it is nearly as closely
related to many other homeodomains of the “paired” super-
class. The Hop homeodomain is 61 amino acids, containing a
valine between the first and second helix, a characteristic some-
times present in diverged homeodomains [35].

Because amino acids thought to be critical for DNA bind-
ing are altered in the Hop sequence, Hop protein was tested
for its ability to bind DNA by electrophoretic mobility shift
assay (EMSA). 35S-radiolabeled Hop protein was synthesized
by in vitro transcription/translation and then incubated with
32P-radiolabeled DNA probes representing LIM-, paired-
bicoid-, and POU-class homeodomain binding sites, or a MyoD
basic helix-loop-helix protein binding site. In a parallel posi-
tive control, the LIM class site was bound by M2-LHX3 [37].
In agreement with other studies on mouse Hop [21,22], inter-
action between chicken Hop and DNA was not observed (Fig-
ure 2). DNA binding also was not observed in similar experi-
ments using bacterially expressed Hop protein (data not
shown).
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Sequencing Hop PCR products and over 6 kb of the
chicken Hop genomic locus identified a 226 bp intron in the 5'
untranslated region and a second intron of about 2,000 bp lo-
cated between the regions coding for the first and second al-
pha helical regions of the Hop homeodomain. This is consis-
tent with our northern blot analysis of lens RNA, which de-
tected two transcripts of about 1 and 1.2 kb (Figure 3A). Se-
quencing of several Hop clones revealed that some Hop tran-
scripts lack the first intron, while others may be initiated within
the first intron. However, it is possible that these clones repre-
sent unspliced transcripts that did not extend to the 5' end of
the cDNA. Alternative splicing of the first intron was later
confirmed by examination of the chicken genomic sequence
using the UCSC genome browser, which shows that some Hop
ESTs from the chicken genome initiative include the first in-
tron while others do not [38]. This analysis also demonstrates

that Hop maps to chicken chromosome 4 [38]. The structure
of the chicken Hop locus is shown in Figure 3B.

The genomic sequence of Hop was analyzed using a search
program that identifies putative transcription factor binding
sites (P-Match). The sites upstream of the translation start site
that were identified in this search are shown in Figure 4A.

To determine whether Hop was expressed in the lenses of
other species, we used specific or degenerate PCR primers to
amplify cDNA prepared from human, mouse, rat, rabbit, and
bovine lens fiber cells. The PCR products were sequenced to
confirm that Hop transcripts were detected in the lenses of
each of the species examined. Hop cDNA or genomic DNA
has not previously been sequenced from rabbits. The sequence
of partial Hop transcripts from the rabbit lens was submitted
to GenBank (accession number EF154428). An alignment of
all known Hop protein sequences is shown in Figure 4B.
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Figure 2. Hop does not bind to homeobox sequences.  Electrophoretic
mobility shift assay using radiolabeled oligonucleotide probes rep-
resenting transcription factor binding sites. Probes were incubated
with the indicated 35S-labeled in vitro translated proteins, and the
bound complexes (B) were separated from the free probe (F) by elec-
trophoresis. Unprogrammed lysate was used as a negative control
(lysate). Bacterially expressed M2-LHX3 was used as a positive con-
trol [37]. Abbreviations: LBC=LHX3 LIM-class homeodomain site,
PRD=paired-class homeodomain site, BIC=bicoid-class
homeodomain site, PIT=Pit-1 POU-class homeodomain site,
MD=MyoD basic helix-loop-helix site. The upper panel shows the
input Hop protein (35S-labeled); the lower panel shows the migration
of 32P-labeled DNA.

Figure 3. Splicing of Hop transcripts in the lens.  A: Northern blot of
total RNA extracted from E15-E16 lens fiber masses and probed with
a digoxigenin-labeled Hop riboprobe. Two bands were detected that
were the approximate predicted size of the Hop mRNA, with or with-
out the inclusion of the first intron. B: Diagram showing the chicken
Hop gene structure. The dimensions of the different regions of the
gene are not to scale. The numerals above the line diagram mark the
number of nucleotide pairs in each region. Introns are represented by
thin solid lines and exons by boxes. Filled boxes represent translated
regions of the mRNA and unfilled boxes are the untranslated regions.
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Figure 4. Analysis of the Hop gene and protein.  The upstream genomic sequence of Hop and alignment of the Hop protein sequences from
several species. A: About 6 kb of DNA sequence upstream of the Hop protein coding sequence, including the first intron (lower case, light blue
letters), was annotated with potential transcription factor binding sites, as determined using the P-Match search tool. Settings for the search
were adjusted to reveal only the most conservative matches (to minimize false positives). Because Nkx2.x factors regulate Hop expression in
the heart and lung, we also show potential Nkx2.x binding sequences (in red), although these motifs were not detected by P-Match when set
to minimize false positive matches. The transcription start site of the longest spliced form of Hop mRNA is marked by a vertical bar followed
by an arrow. The initial methionine codon is shown in green. B: Alignment of the Hop protein sequences from several species. GenBank
accession numbers are shown after each sequence. The chicken protein sequence obtained by conceptual translation of the cDNAs sequenced
in this study was identical to that in GenBank. The partial rabbit sequence was determined using degenerate PCR primers, since this sequence
was not determined previously.
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The expression and distribution of Hop transcripts in the
chicken embryo lens were examined using RT-PCR and in
situ hybridization. Hop sequences were first detected by PCR
in cDNA prepared from E6 (Hamburger-Hamilton Stage 28-
30) lenses and were readily detected in the fiber cells from
older lenses (Figure 5A). A previous study found that primary
fiber cells detach from the lens capsule between E5 and E6
[39]. Hop mRNA was first detected by situ hybridization at
E7.5 in the central fiber cells (Figure 5B). After E7, an in-
creasing number of cells in the central region of the fiber mass
expressed Hop mRNA. Examination of lens sections suggested
that, independent of the age of the lens, Hop transcripts were
first detected in fiber cells soon after they detached from the
lens capsule (Figure 5B).

Mouse lenses in which both alleles of Hop had been dis-
rupted by insertion of a nuclear-targeted lacZ sequence ap-
peared normal in size (Figure 6A) and were transparent
throughout adult life (not shown). When stained for β-galac-
tosidase activity, these lenses revealed a similar pattern of Hop
expression as seen in chicken embryo lenses. β-Galactosidase
staining was not present in superficial fiber cell nuclei, but
was detected in the nuclei of fiber cells that were deep in the
fiber mass (Figure 6B-D). β-Galactosidase continued to be
present in these nuclei until they were degraded during or-
ganelle deletion.

The TgN(GFPU)5Nagy strain of transgenic mice was used
to determine whether, during their maturation, fiber cells fused
with their neighbors. Mice of this strain express GFP in a
mosaic pattern in superficial, elongating fiber cells [24]. When
fiber cells fuse during maturation, all cells become uniformly
fluorescent, since GFP can now diffuse between neighboring
cells. Our results demonstrated that elongating fiber cells of
Hop knockout lenses showed mosaic expression of GFP, but
fiber cells deeper in the lens were uniformly fluorescent (Fig-
ure 7). This indicates that the maturing fiber cells of Hop null
lenses fused with their neighbors during their maturation in a
manner that closely resembled that seen in lenses that con-
tained both wild type Hop alleles (Figure 7) [24].

DISCUSSION
 We postulated that the proteins that are encoded by transcripts
that first appear after lens fiber cells detach from the capsule
might be important for fiber cell maturation as well as
denucleation. We and others identified transcripts that are dif-
ferentially accumulated late in fiber cell differentiation [9,20].
It is not known whether these transcripts change in abundance
due to increased rates of synthesis or decreased degradation.
Vinculin and paxillin mRNAs increase markedly in fiber cells
after they detach from the capsule, compared to fiber cells
that were still elongating and were attached to the capsule [9].
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Figure 5. Hop expression during
lens development.  A: PCR ampli-
fication of Hop sequences in RNA
extracted from chicken lenses from
E5 through E10. Hop transcripts
were first detectable at E6. Tran-
script levels increased at later stages.
B: Hop is expressed soon after pri-
mary and secondary fiber cells de-
tach from the capsule. In situ hybrid-
ization showing the distribution of
Hop transcripts during lens devel-
opment in chicken embryos. Sec-
tions are from lenses at E7.5, E8.5,
E12, and E19. The decreased stain-
ing in the center of lenses at E12 and
E19 probably reflects a decrease in
probe penetration, not a decrease in
Hop transcripts, because PCR
analysis of microdissected lens
cores from lenses at these stages re-
vealed no obvious decrease in Hop
sequences.
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However, the expression of vinculin and paxillin is not unique
to mature fiber cells; these transcripts are expressed at lower
levels in elongating fiber cells.

To identify transcripts that are expressed only in fiber cells
that have detached from the capsule, we prepared libraries from
microdissected lens regions and performed subtractive hybrid-
ization. One of the transcripts detected in this screen encoded
chicken Hop, an unusual homeodomain-containing protein.
Other labs found that Hop is prominently expressed in the
heart [21,22,34]. Based on its unusual coding sequence, these
groups named it “homeodomain only protein” (Hop) [21,22]
or “odd box” (OB1) [34]. Hop is the first gene to be identified
that is not expressed in elongating fiber cells but is transcribed
after fiber cells detach from the lens capsule. This pattern of
gene expression demonstrates that there are mechanisms to
initiate transcription at this critical stage of lens fiber cell dif-
ferentiation and raises the possibility that other genes may be
similarly regulated.

Hop transcripts appear in fiber cells soon after they de-
tach from their basal lamina, the lens capsule. There is ample
precedent for the activation of a new gene expression pro-
gram in other types of epithelial cells after they separate from
their basal laminae. For example, when keratinocytes detach
from the epidermal basal lamina and move out of the germi-
native layer of the epidermis, they initiate a complex program
of differentiation that is related to the ability of superficial
keratinocytes to protect the body surface from desiccation,
injury and infection [40]. Thus, Hop expression in maturing
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Figure 6. Appearance of Hop knockout lenses.  Hop is expressed in
maturing secondary fiber cells in the mouse lens. A: Hop wild type
and null lenses from P3 mice. Both lenses have cold cataracts, as
expected of lenses at this age. No consistent variations were detected
in the size of the wild type and knockout lenses or in the extent of the
cold cataracts. B: Polar view of a whole, Hop null lens stained for β-
galactosidase activity. The superficial zone of the lens has no stained
nuclei. The “trefoil” pattern of stained nuclei in the deeper fiber cells
is due to the displacement of the nuclei in a more anterior or poste-
rior direction as a result of differences in the extension of the fiber
cells toward the anterior and posterior sutures [58]. C: The displace-
ment of β-galactosidase-stained nuclei as viewed from the lens equa-
tor. D: A 1 µm plastic section of the equatorial region of a mouse lens
in which both Hop alleles were disrupted by the insertion of the se-
quence encoding nuclear-targeted β-galactosidase [22]. The lens was
stained for β-galactosidase activity, embedded in glycol methacry-
late, and sectioned. The section was viewed using differential inter-
ference contrast optics to show the location of the nuclei of the fiber
cells. Only the nuclei of the deeper fiber cells are stained blue, indi-
cating that Hop expression is initiated late in fiber cell maturation. β-
Galactosidase activity was still present in the fragments of nuclei
remaining after organelle loss. The morphology of the cells of the
Hop knockout lenses appears similar to wild type.

Figure 7. Fiber cell fusion in a Hop null lens.  During their matura-
tion in Hop knockout lenses, fiber cells fuse with their neighbors.
This section of a TgN(GFPU)5Nagy; Hop-/- lens is cut perpendicular
to the long axis of the fiber cells. GFP fluorescence is seen in a mo-
saic pattern in the peripheral fiber cells, similar to the pattern de-
scribed previously for TgN(GFPU)5Nagy lenses that are wild type
for Hop [24]. Deeper in the fiber mass, GFP fluorescence abruptly
spreads to all cells, an indication of fiber cell fusion. This result shows
that Hop is not required for the cell-cell fusion of fiber cells during
their maturation.
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fiber cells may be regulated by signals from integrins or other
matrix-binding proteins [41,42] that are altered following de-
tachment from the capsule.

Previous studies found that Hop positively and negatively
modulates gene expression in the heart and lung. In heart
muscle [34], Hop reduces transcriptional activation by serum
response factor by recruiting histone deacetylases (HDACs)
to the promoters of several heart muscle-specific genes
[21,22,43]. Hop also functions prominently in the atrium and
in the cardiac conduction system, where loss of Hop function
results in an abnormal electrocardiogram, associated with a
marked and selective reduction in the expression of connexin40
[44]. In the airway epithelium, Hop suppresses surfactant pro-
duction in type II pneumocytes, again by recruiting HDACs
to surfactant protein genes [45]. Hop may function in a simi-
lar manner in the lens, perhaps by regulating the expression of
crystallin or connexin genes.

In the heart and lung, the expression of Hop is regulated
by members of the Nkx2.x and GATA families of transcrip-
tion factors [21,22,45]. Of the several members of these fami-
lies, none was detectable in whole, adult mouse lens fibers by
microarray analysis (Vasiliev, Wang, and Beebe, unpublished).
Whether these proteins are expressed at sufficient levels to
contribute to Hop expression in the lens remains to be tested.

Analysis of the genomic sequence upstream of the Hop
coding sequence identified few potential binding sites for tran-
scription factors considered to be key for regulating gene ex-
pression during lens fiber cell differentiation (Pax6, c-maf, L-
maf, Prox1, Sox1-3, RAR/RXR) [46-49]. There is a potential
Pax6 binding element 3.4 kb upstream of the translation start
site. However, Pax6 levels decline sharply during fiber cell
differentiation [50,51], making it unlikely that Pax6 contrib-
utes to the regulation of Hop late in fiber cell differentiation.
Since Hop is the first gene known to be expressed exclusively
during the latest phase of fiber cell differentiation, it is not
surprising that it may not be regulated in the same manner as
genes expressed early in fiber cell formation.

In spite of the paucity of binding sites for these “core”
lens fiber cell transcription factors, a CP2 binding site is lo-
cated at position -2876. CP2 is a ubiquitous factor that was
shown to be essential for lens-specific expression of α-crys-
tallin in the chicken [52]. Similarly, USF1, which is expressed
in lens cells and regulates the expression of the chicken and
mouse αA-crystallin genes [53,54], may regulate Hop expres-
sion by binding the USF site at -2042. The HAND1/E47 E2
boxes at -559 and -2352 bind basic helix-loop-helix transcrip-
tion factors and might be negatively regulated by the δ-crys-
tallin enhancer-binding protein, δEF1, which competes for E2
sites [55]. In addition, there are two CHOP10 (C/EBP homolo-
gous protein 10) binding sites beginning at position -5184.
These are of interest because CHOP10 dimerizes with other
members of the C/EBP family of transcription factors to in-
hibit their activity. C/EBP family members can heterodimerize
with ATF4 (CREB2), which is required for the differentiation
of secondary lens fiber cells [56]. In a preliminary microarray
study, CHOP10 transcripts were decreased tenfold in Hop
knockout mice, compared to wild type (Vasiliev, Wang, and

Beebe, unpublished). This raises the possibility that CHOP10
and Hop are mutual regulators of their respective genes. Since
CHOP10 is most often a negative regulator of transcription, it
may serve as a feedback regulator of Hop expression. The
importance of these cis-binding elements in regulating Hop
expression in the lens and the basis of CHOP10 regulation by
Hop will have to be evaluated in future experiments.

Examination of EST databases and staining with specific
antibodies showed that, in addition to the cardiac and pulmo-
nary systems, Hop is expressed in many tissues [34,57]. How-
ever, other than in the heart and lungs, no defects have been
described in Hop knockout mice. We observed no obvious
phenotype in the lenses of Hop null mice. Hop null lenses
were clear and of normal size and their cellular morphology
appeared normal. Fiber cells lacking Hop fused with their
neighbors and degraded their nuclei in a manner that was
morphologically indistinguishable from wild-type lenses. Al-
though Hop does not appear to have an essential function in
maturing lens fiber cells, it may be possible to use Hop regu-
latory sequences to target the expression of exogenous genes
to fiber cells at the stage just before they fuse and degrade
their nuclei.

ACKNOWLEDGEMENTS
 The authors thank Dr. Eric Olson, Department of Molecular
Biology, University of Texas Southwestern Medical Center at
Dallas for providing the Hop knockout mice, Dr. Rashmi
Hegde, Department of Pediatrics, University of Cincinnati,
for confirmation that the secondary structure of Hop conformed
to that of the consensus homeodomain, Dr. Steven Bassnett
for the gift of the TgN(GFPU)5Nagy mice, and Cheryl Shomo
for generating Figure 1. The work described was supported in
part by grants from the National Science Foundation (IBN-
0131702 to S.J.R.), the National Institutes of Health (EY04853
and EY09179 to D.C.B. and HD42024 to S.J.R.), an unre-
stricted grant from Research to Prevent Blindness, and a core
grant (EY02687) to the Department of Ophthalmology and
Visual Sciences.

REFERENCES
 1. Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C,

Tardieu A. Ageing and vision: structure, stability and function
of lens crystallins. Prog Biophys Mol Biol 2004; 86:407-85.

2. Bok D, Dockstader J, Horwitz J. Immunocytochemical localiza-
tion of the lens main intrinsic polypeptide (MIP26) in commu-
nicating junctions. J Cell Biol 1982; 92:213-20.

3. Sawada K, Agata J, Eguchi G, Quinlan R, Maisel H. The predicted
structure of chick lens CP49 and a variant thereof, CP49ins, the
first vertebrate cytoplasmic intermediate filament protein with
a lamin-like insertion in helix 1B. Curr Eye Res 1995; 14:545-
53.

4. Kato K, Shinohara H, Kurobe N, Goto S, Inaguma Y, Ohshima K.
Immunoreactive alpha A crystallin in rat non-lenticular tissues
detected with a sensitive immunoassay method. Biochim
Biophys Acta 1991; 1080:173-80.

5. Sinha D, Esumi N, Jaworski C, Kozak CA, Pierce E, Wistow G.
Cloning and mapping the mouse Crygs gene and non-lens ex-
pression of [gamma]S-crystallin. Mol Vis 1998; 4:8.

©2007 Molecular VisionMolecular Vision 2007; 13:114-24 <http://www.molvis.org/molvis/v13/a14/>

122



6. Mulders JW, Voorter CE, Lamers C, de Haard-Hoekman WA,
Montecucco C, van de Ven WJ, Bloemendal H, de Jong WW.
MP17, a fiber-specific intrinsic membrane protein from mam-
malian eye lens. Curr Eye Res 1988; 7:207-19.

7. Wang X, Garcia CM, Shui YB, Beebe DC. Expression and regula-
tion of alpha-, beta-, and gamma-crystallins in mammalian lens
epithelial cells. Invest Ophthalmol Vis Sci 2004; 45:3608-19.

8. Bassnett S, Winzenburger PA. Morphometric analysis of fibre cell
growth in the developing chicken lens. Exp Eye Res 2003;
76:291-302.

9. Beebe DC, Vasiliev O, Guo J, Shui YB, Bassnett S. Changes in
adhesion complexes define stages in the differentiation of lens
fiber cells. Invest Ophthalmol Vis Sci 2001; 42:727-34.

10. Shestopalov VI, Bassnett S. Expression of autofluorescent pro-
teins reveals a novel protein permeable pathway between cells
in the lens core. J Cell Sci 2000; 113:1913-21.

11. Bassnett S, Beebe DC. Coincident loss of mitochondria and nu-
clei during lens fiber cell differentiation. Dev Dyn 1992; 194:85-
93.

12. Kuwabara T, Imaizumi M. Denucleation process of the lens. In-
vest Ophthalmol 1974; 13:973-81.

13. Vrensen GF, Graw J, De Wolf A. Nuclear breakdown during ter-
minal differentiation of primary lens fibres in mice: a transmis-
sion electron microscopic study. Exp Eye Res 1991; 52:647-59.

14. Bassnett S. The fate of the Golgi apparatus and the endoplasmic
reticulum during lens fiber cell differentiation. Invest
Ophthalmol Vis Sci 1995; 36:1793-803.

15. Bassnett S. Fiber cell denucleation in the primate lens. Invest
Ophthalmol Vis Sci 1997; 38:1678-87.

16. Bassnett S, Mataic D. Chromatin degradation in differentiating
fiber cells of the eye lens. J Cell Biol 1997; 137:37-49.

17. Bassnett S. Lens organelle degradation. Exp Eye Res 2002; 74:1-
6.

18. Overbeek PA, Chepelinsky AB, Khillan JS, Piatigorsky J,
Westphal H. Lens-specific expression and developmental regu-
lation of the bacterial chloramphenicol acetyltransferase gene
driven by the murine alpha A-crystallin promoter in transgenic
mice. Proc Natl Acad Sci U S A 1985; 82:7815-9.

19. Duncan MK, Li X, Ogino H, Yasuda K, Piatigorsky J. Develop-
mental regulation of the chicken beta B1-crystallin promoter in
transgenic mice. Mech Dev 1996; 57:79-89.

20. Ivanov D, Dvoriantchikova G, Pestova A, Nathanson L,
Shestopalov VI. Microarray analysis of fiber cell maturation in
the lens. FEBS Lett 2005; 579:1213-9.

21. Chen F, Kook H, Milewski R, Gitler AD, Lu MM, Li J, Nazarian
R, Schnepp R, Jen K, Biben C, Runke G, Mackay JP, Novotny
J, Schwartz RJ, Harvey RP, Mullins MC, Epstein JA. Hop is an
unusual homeobox gene that modulates cardiac development.
Cell 2002; 110:713-23.

22. Shin CH, Liu ZP, Passier R, Zhang CL, Wang DZ, Harris TM,
Yamagishi H, Richardson JA, Childs G, Olson EN. Modulation
of cardiac growth and development by HOP, an unusual
homeodomain protein. Cell 2002; 110:725-35.

23. Huang JX, Feldmeier M, Shui YB, Beebe DC. Evaluation of fi-
broblast growth factor signaling during lens fiber cell differen-
tiation. Invest Ophthalmol Vis Sci 2003; 44:680-90.

24. Shestopalov VI, Bassnett S. Development of a macromolecular
diffusion pathway in the lens. J Cell Sci 2003; 116:4191-9.

25. Vasiliev OL, Lukyanov SA, Belyavsky AV, Kazanskaya OV,
Zaraisky AG. A novel marker of early epidermal differentia-
tion: cDNA subtractive cloning starting on a single explant of
Xenopus laevis gastrula epidermis. Int J Dev Biol 1997; 41:877-
82.

26. Zaraisky AG, Lukyanov SA, Vasiliev OL, Smirnov YV, Belyavsky
AV, Kazanskaya OV. A novel homeobox gene expressed in the
anterior neural plate of the Xenopus embryo. Dev Biol 1992;
152:373-82.

27. Chomczynski P, Sacchi N. Single-step method of RNA isolation
by acid guanidinium thiocyanate-phenol-chloroform extraction.
Anal Biochem 1987; 162:156-9.

28. Barnes WM. PCR amplification of up to 35-kb DNA with high
fidelity and high yield from lambda bacteriophage templates.
Proc Natl Acad Sci U S A 1994; 91:2216-20.

29. Bridwell JA, Price JR, Parker GE, McCutchan Schiller A, Sloop
KW, Rhodes SJ. Role of the LIM domains in DNA recognition
by the Lhx3 neuroendocrine transcription factor. Gene 2001;
277:239-50.

30. Wilson D, Sheng G, Lecuit T, Dostatni N, Desplan C. Coopera-
tive dimerization of paired class homeo domains on DNA. Genes
Dev 1993; 7:2120-34.

31. Saadi I, Semina EV, Amendt BA, Harris DJ, Murphy KP, Murray
JC, Russo AF. Identification of a dominant negative
homeodomain mutation in Rieger syndrome. J Biol Chem 2001;
276:23034-41.

32. Rhodes SJ, Chen R, DiMattia GE, Scully KM, Kalla KA, Lin
SC, Yu VC, Rosenfeld MG. A tissue-specific enhancer confers
Pit-1-dependent morphogen inducibility and autoregulation on
the pit-1 gene. Genes Dev 1993; 7:913-32.

33. Harland R. In situ hybridization: an improved whole-mount
method for Xenopus embryos. In: Kay BK, Peng HB, editors.
Methods in Cell Biology. Vol. 36. San Diego: Academic Press;
1991. p. 685-695.

34. Adu J, Leong FT, Smith NR, Leek JP, Markham AF, Robinson
PA, Mighell AJ. Expression of mOb1, a novel atypical 73 amino
acid K50-homeodomain protein, during mouse development.
Gene Expr Patterns 2002; 2:39-43.

35. Burglin TR. A Comprehensive Classification of Homeobox Genes.
In: Duboule D, editor. Guidebook to the Homeobox Genes. New
York: Oxford University Press; 1994. p. 25-71.

36. Yasui K, Zhang S, Uemura M, Saiga H. Left-right asymmetric
expression of BbPtx, a Ptx-related gene, in a lancelet species
and the developmental left-sidedness in deuterostomes. Devel-
opment 2000; 127:187-95.

37. Sloop KW, Dwyer CJ, Rhodes SJ. An isoform-specific inhibitory
domain regulates the LHX3 LIM homeodomain factor
holoprotein and the production of a functional alternate transla-
tion form. J Biol Chem 2001; 276:36311-9.

38. International Chicken Genome Sequencing Consortium. Sequence
and comparative analysis of the chicken genome provide unique
perspectives on vertebrate evolution. Nature 2004; 432:695-716.
Erratum in: Nature. 2005; 433:777.

39. Shestopalov VI, Bassnett S. Three-dimensional organization of
primary lens fiber cells. Invest Ophthalmol Vis Sci 2000; 41:859-
63.

40. Presland RB, Dale BA. Epithelial structural proteins of the skin
and oral cavity: function in health and disease. Crit Rev Oral
Biol Med 2000; 11:383-408.

41. Menko S, Philp N, Veneziale B, Walker J. Integrins and develop-
ment: how might these receptors regulate differentiation of the
lens. Ann N Y Acad Sci 1998; 842:36-41.

42. Duncan MK, Kozmik Z, Cveklova K, Piatigorsky J, Cvekl A.
Overexpression of PAX6(5a) in lens fiber cells results in cata-
ract and upregulation of (alpha)5(beta)1 integrin expression. J
Cell Sci 2000; 113:3173-85.

43. Kook H, Lepore JJ, Gitler AD, Lu MM, Wing-Man Yung W,
Mackay J, Zhou R, Ferrari V, Gruber P, Epstein JA. Cardiac

©2007 Molecular VisionMolecular Vision 2007; 13:114-24 <http://www.molvis.org/molvis/v13/a14/>

123



hypertrophy and histone deacetylase-dependent transcriptional
repression mediated by the atypical homeodomain protein Hop.
J Clin Invest 2003; 112:863-71.

44. Ismat FA, Zhang M, Kook H, Huang B, Zhou R, Ferrari VA,
Epstein JA, Patel VV. Homeobox protein Hop functions in the
adult cardiac conduction system. Circ Res 2005; 96:898-903.

45. Yin Z, Gonzales L, Kolla V, Rath N, Zhang Y, Lu MM, Kimura S,
Ballard PL, Beers MF, Epstein JA, Morrisey EE. Hop functions
downstream of Nkx2.1 and GATA6 to mediate HDAC-depen-
dent negative regulation of pulmonary gene expression. Am J
Physiol Lung Cell Mol Physiol 2006; 291:L191-9.

46. Lang RA. Pathways regulating lens induction in the mouse. Int J
Dev Biol 2004; 48:783-91.

47. Gopal-Srivastava R, Cvekl A, Piatigorsky J. Involvement of
retinoic acid/retinoid receptors in the regulation of murine
alphaB-crystallin/small heat shock protein gene expression in
the lens. J Biol Chem 1998; 273:17954-61.

48. Yoshida T, Yasuda K. Characterization of the chicken L-Maf,
MafB and c-Maf in crystallin gene regulation and lens differen-
tiation. Genes Cells 2002; 7:693-706.

49. Wigle JT, Chowdhury K, Gruss P, Oliver G. Prox1 function is
crucial for mouse lens-fibre elongation. Nat Genet 1999; 21:318-
22.

50. Duncan MK, Xie L, David LL, Robinson ML, Taube JR, Cui W,
Reneker LW. Ectopic Pax6 expression disturbs lens fiber cell
differentiation. Invest Ophthalmol Vis Sci 2004; 45:3589-98.

©2007 Molecular VisionMolecular Vision 2007; 13:114-24 <http://www.molvis.org/molvis/v13/a14/>

51. Duncan MK, Haynes JI 2nd, Cvekl A, Piatigorsky J. Dual roles
for Pax-6: a transcriptional repressor of lens fiber cell-specific
beta-crystallin genes. Mol Cell Biol 1998; 18:5579-86.

52. Murata T, Nitta M, Yasuda K. Transcription factor CP2 is essen-
tial for lens-specific expression of the chicken alphaA-crystal-
lin gene. Genes Cells 1998; 3:443-57.

53. Cvekl A, Sax CM, Bresnick EH, Piatigorsky J. A complex array
of positive and negative elements regulates the chicken alpha
A-crystallin gene: involvement of Pax-6, USF, CREB and/or
CREM, and AP-1 proteins. Mol Cell Biol 1994; 14:7363-76.

54. Sax CM, Cvekl A, Piatigorsky J. Transcriptional regulation of
the mouse alpha A-crystallin gene: binding of USF to the -7/+5
region. Gene 1997; 185:209-16.

55. Sekido R, Murai K, Funahashi J, Kamachi Y, Fujisawa-Sehara A,
Nabeshima Y, Kondoh H. The delta-crystallin enhancer-bind-
ing protein delta EF1 is a repressor of E2-box-mediated gene
activation. Mol Cell Biol 1994; 14:5692-700.

56. Tanaka T, Tsujimura T, Takeda K, Sugihara A, Maekawa A, Terada
N, Yoshida N, Akira S. Targeted disruption of ATF4 discloses
its essential role in the formation of eye lens fibres. Genes Cells
1998; 3:801-10.

57. Muhlfriedel S, Kirsch F, Gruss P, Stoykova A, Chowdhury K. A
roof plate-dependent enhancer controls the expression of
Homeodomain only protein in the developing cerebral cortex.
Dev Biol 2005; 283:522-34.

58. Kuszak JR, Zoltoski RK, Tiedemann CE. Development of lens
sutures. Int J Dev Biol 2004; 48:889-902.

124

The print version of this article was created on 26 Jan 2007. This reflects all typographical corrections and errata to the article through that
date. Details of any changes may be found in the online version of the article. α


