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Abstract

Molecular and protein biomarker profiling are key to oncology drug development. Antibody-

drug conjugates (ADCs) directly deliver chemotherapeutic agents into tumor cells based on

unique cancer cell biomarkers. A pan-cancer tissue microarray (TMA) data set and gene panel

were validated and gene signature analyses were conducted on normal and cancer tissues to

refine selection of ADC targets. Correlation of mRNA and protein levels, and human epidermal

growth factor receptor (HER) expression patterns were assessed. An EdgeSeq biomarker

panel (2862 genes) was used across 8531 samples (23 solid cancer types/subtypes; 16 nor-

mal tissues) with an established TMA data set, and immune cell and cell cycle gene signatures

were analyzed. Discriminating gene expression signatures were defined based on pathological

classification of cancer subtypes. Correlative analyses of HER2 and HER3 mRNA (EdgeSeq)

and protein expression (immunohistochemistry [IHC]) were performed and compared with

publicly available data (The Cancer Genome Atlas [TCGA]; Cancer Cell Line Encyclopedia

[CCLE]). Gene expression patterns among cancer types in the TMA (EdgeSeq) and TCGA

(RNA-seq) were similar. EdgeSeq gene signature analyses aligned with the majority of patho-

logical cancer types/subtypes and identified cancer-specific gene expression patterns. TMA

IHC H-scores for HER3 varied across cancer types/subtypes. In a few cancer types, HER3

mRNA and protein expression did not align, including lower liver hepatocellular carcinoma IHC

H-score, compared with mRNA. Although all TNBC and ovarian cancer subtypes expressed

mRNA, some had lower protein expression. This was seen in TMA and TCGA data sets, but

not in CCLE. The EdgeSeq TMA data set can expand upon current biomarker data by including

cancers not currently in TCGA. The primary analysis of EdgeSeq and IHC comparison sug-

gested a unique protein-level regulation of HER3 in some tumor subtypes and highlights the

importance of investigating protein levels of ADC targets in both tumor and normal tissues.
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Introduction

Molecular profiling and biomarker assessment from patient tissue and blood samples can help

guide therapy selection, better define a patient’s prognosis and more accurately predict

responses to specific treatments [1]. In recent years, major therapeutic advances have been

made for cancer treatment, including biomarker-driven and targeted therapies for lung, colo-

rectal, gastric and several difficult-to-treat cancers [2]. Antibody drug conjugate (ADCs) tech-

nology is one of these advances that has greatly progressed, emerging as a promising directed

therapy for solid tumors [3]. ADCs are agents composed of a monoclonal antibody linked to a

chemotherapeutic agent designed to deliver the cytotoxic payload to tumor cells while mini-

mizing off-target toxicities. Targets of ADCs are plasma membrane proteins, ideally with

higher expression in cancer cells than normal tissues. Particular targets of interest for ADCs

are human epidermal growth factor receptor (EGFR/HER) family of genes (e.g., EGFR, HER2,

HER3) [4–7] with an alteration that is often associated with the initiation and maintenance of

tumor growth [8].

Pan-cancer gene and protein expression profile data are valuable in drug development,

including selection of ADC targets, overall drug target discovery and drug indication consider-

ation. Publicly available reference data of gene expression profiles, such as RNA-seq data from

The Cancer Genome Atlas (TCGA) Program [9], can be used to determine therapeutic genes-

of-interest. Although TCGA includes over 30 cancer types, several rare cancer types are not

included, and information of gene–protein expression associations is limited. There is a need

for additional and alternative resources to confirm and expand on that included in TCGA.

Here, we describe data from a pan-cancer reference data set of gene expression levels from

2376 tissue microarray (TMA) samples, including solid cancer types/subtypes and normal tis-

sues, using a custom panel (2862 genes) of HTG EdgeSeq Oncology Biomarker Panel (OBP)

platform, in which genes-of-interest were added to the original panel. The OBP has the sensi-

tivity and dynamic range of next-generation sequencing and includes 24 gene groups/path-

ways and 17 key drug targets (i.e., CTLA-4, HER2, HER3, MET, PD-1, PD-L1) [10]. The

EdgeSeq system has been used to identify cancer–related gene signatures in samples of lung

[11], breast [12], colorectal [13], and bladder cancers [14].

The first objective of this analysis was to validate the TMA EdgeSeq platform against RNA-

seq. Once validated, this platform was used to assess gene signature patterns based on patho-

logical cancer types/subtypes present within the TMA data set, including several cancers not

included in TCGA. Gene signatures related to immune cells, the cell cycle and other oncology-

related genes were analyzed across cancers within TMA. Comparison of mRNA and protein

expression of HER3 was also conducted to better understand the gene/protein regulation of

this therapeutic target. Overall, these TMA reference data are a new and extensive resource for

genes of interest for ADCs and targeted therapies.

Materials and methods

Data collection/ethical considerations

Clinical and histopathology data were collected retrospectively in a non-stratified manner.

Data included patient age, primary cancer site, TNM stage, disease-specific survival, histologi-

cal subtype, presence of vascular invasion and tumor diameter and grade. Approval for tissue

collection, use of samples and data for the construction of this data set was obtained from the

locally responsible ethics committees (Ethikkommission Norwest- und Zentralschweiz

[EKNZ] Permission 2017–00302). The majority of the patients donating surgical tissues for

the construction of the TMAs provided written informed consent approving research studies.
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For the one patient without a written informed consent, the ethics committee gave permission

for tissue use. Tissue samples were coded and all related clinical data were provided in an

anonymous manner to HTG molecular Diagnostic and Daiichi Sankyo.

Tissue microarray

A pan-cancer TMA data set was established from specimens at the Biobank at the Institute of

Pathology, University Hospital Basel, Switzerland. Thirty-one TMA blocks of non-consecutive

primary cancer specimens and ~30% paired non-malignant adjacent tissue specimens were

constructed by using TMA-Grand Master1 (3DHisteck; Sysmex AG, Switzerland). For TMA

construction, formalin-fixed, paraffin-embedded tissue blocks were prepared according to

standard protocols [15]. A total of 3017, 1-mm core specimens were processed. The percentage

of tumor cells within each core sample was>50% for all tumor specimens. The commercially

available Molar Chemicals KFT (Halàsztelek, àrpàd utca 1, H2314 Hungary) with quality cer-

tificate and melting point at 53˚C–62˚C was used. Overall, the 31 TMAs consisted of 2988

cores collected from 2492 patients. Two TMAs were dedicated to non-malignant tissues, the

remaining 29 TMAs were subdivided according to the cancer type/subtype. Lung cancer sub-

types were defined as described in Supporting Information.

Gene expression analysis (EdgeSeq) of TMA

From each TMA core, four slides (4 μm) and one hematoxylin and eosin (H&E) slide were sent

to HTG Molecular Diagnostics (Tucson, AZ, USA) for gene expression analysis termed as Edge-

Seq, based on probe-based RNA counting by next generation sequencing (https://www.htgmole

cular.com/assays/obp). A custom panel of 2867 probes, including 2560 HTG’s OBP genes, was

designed. The next generation sequencing data were processed at HTG and included count data

for all gene-specific probes and internal controls (Supporting Information).

EdgeSeq data processing

Quality filters were applied to exclude the following samples with<1.5 million total read

count or <0.1 of relative standard deviation of all probes (Supporting Information). Back-

ground signal from negative controls (e.g., insufficient digestion of non-hybridized probes)

was subtracted from all gene probes as well as undergoing upper-quartile (UQ) normalization

to reduce tissue-specific bias of the expression data (Supporting Information). Log trans-

formed values (log2 [adjCPM-UQ + 1]) were calculated and used for the analyses. An empiri-

cal parameter was set to reduce data of low-quality samples from the final data set using

house-keeping gene expression levels. Correlations (R) between each sample data and an aver-

age of universal RNA (uRNA) gene expression levels were calculated from 89 samples that

passed the sequencing filter. Samples with low correlations (R< 0.4) were considered low

quality and a sample quality filter was applied by empirically setting an exclusion parameter

based on average of expression values of nine housekeeping genes (Supporting Information).

Through these processes, we obtained 2479 data samples (2376 TMA, 88 uRNA controls and

15 multiple tissue controls) for 2867 probes. For the described analyses, five probes/genes

among 2867 were not used for comparison of the EdgeSeq data with the Human Genome

build 38 (hg38) data set used by TCGA and in-house RNA-seq (Supporting Information).

TCGA RNA-seq data and gene signature analysis

RNA-seq data for TCGA were downloaded from UCSC-Xena (https://xenabrowser.net/).

Some probes were not used in the comparison of EdgeSeq with TCGA or with in-house
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RNA-seq data because of circumstances described in Supporting Information. Comparisons

were based on gene symbol with Ensemble Gene-ID. Gene annotations for cell type gene sig-

nature analysis were provided by HTG and public data (i.e., cancer-associated fibroblast

[CAF] data from https://www.ncbi.nlm.nih.gov/pubmed/29198524) (S1 and S2 Files). Z-scores

were calculated for all samples of a given gene and an average of these was considered as the

gene signature score for each sample set. For cancer subtype gene signature analyses, subtype-

discriminating genes were defined based on pathological subtype annotation (S3–S7 Files) and

subtype scores, per sample (subtype gene average of Z-scores among all TMA samples). Each

gene expression subtype, per sample, was defined by taking a maximum of subtype scores.

Cell line culture and RNA analysis

Cancer cell lines (S1 File) were harvested at log phase growing points. RNA purification was

performed with the AllPrep DNA/RNA Mini Kit (QIAGEN, Hilden, Germany). RNA quality

was determined based on RNA integrity number, measured by Bioanalyzer or TapeStation

(Agilent Technologies, Santa Clara, CA, USA). The same aliquot of RNA was used for RNA-

seq analysis or was sent to HTG for EdgeSeq analysis.

For RNA-seq analysis, mRNA was purified from 1 μg of total RNA using NEBNext Poly(A)

mRNA Magnetic Isolation Module (New England Biolabs, Ipswich, MA, USA). Complemen-

tary DNA (cDNA) was generated using NEBNext Ultra RNA Library Prep Kit for Illumina

(New England Biolabs) (Supporting Information). EdgeSeq raw data (94 cell line samples)

were processed in the same manner as TMA data (sequence quality filter, followed by adjust-

ment of CPM, UQ-normalization and sample quality filter) and correlations, slopes and inter-

cepts between RNA-seq data (log2 [TPM-UQ + 1]) and EdgeSeq data (log2 [adjCPM-UQ + 1])

were calculated.

Results

Correlation of EdgeSeq and RNA-seq gene expression data using cancer cell

lines

RNA purified from 94 cancer cell lines was used to determine the degree of correlation

between the EdgeSeq OBP, including probes for 2862 genes, and RNA-seq. The average data

of these cell lines suggested an overall correlation (R> 0.4 and approaching 1.0) for most

genes, including HER2, HER3 and PD-L1 (Supporting Information [S1A Fig in S8 File]). A

biased expression pattern was observed with some genes/probes (see Supporting S1 File for

probe sequences), such as PPIA, PABPC1, RPL13, NPM1, HSP90AA1, DDX39B, XRCC6 and

BSG displaying lower signals for EdgeSeq than RNA-seq (Supporting Information [S1B Fig in

S8 File]). In contrast, other genes, such as HIST1H3H, INS, GNAI3, PTTG2, HNF1A, H3F3C
and CAMP, demonstrated higher signals in EdgeSeq. Other oncogenic markers also demon-

strated positive correlations between RNA-seq and EdgeSeq, with wide dynamic ranges (Sup-

porting Information [S1C Fig in S8 File]). Correlations and dynamic ranges of some genes

(e.g., immune-related genes) could not be accurately assessed because of low-expression levels

in the cancer cell lines analyzed.

Comparisons of TMA EdgeSeq and TCGA RNA-seq gene expression

profiles

Gene expression profiles of HER family genes, oncogenes and immune-oncology–related

markers from TMA EdgeSeq were compared with those from TCGA. High expression of

HER2 was observed in both data sets for HER2+ breast cancer, urothelial bladder carcinoma

PLOS ONE EdgeSeq tissue microarray oncology biomarker panel and HER2/HER3 IHC analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0274140 September 22, 2022 4 / 17

https://www.ncbi.nlm.nih.gov/pubmed/2919852
https://doi.org/10.1371/journal.pone.0274140


and kidney renal papillary cell carcinoma. HER3 was highly expressed in skin cutaneous mela-

noma, prostate adenocarcinoma, intestinal-stomach adenocarcinoma and estrogen receptor-

positive (ER+), progesterone receptor-positive (PR+), HER2− breast cancer (ER+/PR+/HER2

−), while generally lower in normal tissues (Fig 1A). HER4 and EGFR demonstrated similar

expression patterns among the two data sets. Oncogenes, such as MET, PLK1 and CCNE1,

demonstrated higher expression levels in cancer tissues than in normal tissues in the TMA and

TCGA data sets.

Expression patterns for TMA EdgeSeq and TCGA RNA-seq were compared for genes

related to the immune system, cell cycle and CAFs. Overall, there were similarities in expected

patterns (Fig 1B and 1C). EdgeSeq data identified that normal hematopoetic tissues (i.e.,

spleen, thymus, lymph nodes) not included in TCGA had high expression of T cells, B cells

and macrophage genes. Cancers with high tumor-infiltrating lymphocytes (e.g., lung cancers)

had high expression of immune-oncology markers, such as PD-L1, TIM3, FOXP3, PD-1,

CTLA4, and LAG3 in TMA EdgeSeq and TCGA RNA-seq; this was also observed in normal

hematopoietic tissues with TMA EdgeSeq (Fig 1B). Cell cycle gene signatures were highest in

normal thymus and lymph node tissue, followed by various cancer tissues (e.g., ovarian and

lung). The CAF gene signature was highest in pancreatic adenocarcinoma, cholangiocarci-

noma, squamous esophageal carcinoma and lung squamous cell carcinoma; it was also high in

normal reproductive tissues (e.g., myometrium, uterus and endometrium) (Fig 1C).

EdgeSeq TMA marker gene signature analyses within TMA cancer types/

subtypes

Clinical details were used to define cancer subtypes for breast cancer, esophageal cancer, stom-

ach cancer and thyroid cancer (Table 1 and Supporting Information). Marker genes were

selected to discriminate among cancer subtypes based on pathology. Gene signature analyses

were conducted to characterize molecular cancer subtypes defined by EdgeSeq gene expression

and to further refine the subtype. Several of the cancer types assessed were unique to the Edge-

Seq TMA platform and are not included in the current TCGA data set (i.e., large-cell lung car-

cinoma [LCC], including large cell neuroendocrine carcinoma [LCNEC], salivary cancer and

the clear cell, endometrioid and mucinous ovarian cancer subtypes) (Table 1). Genes identified

by TMA EdgeSeq to be differentially expressed by cancer type and subtype are listed in S2 File.

Fig 1. Gene expression patterns in tissue microarray (TMA; EdgeSeq) versus The Cancer Genome Atlas (TCGA; RNA-seq). Correlations in gene

expression (log2 [adjCPM-UQ + 1]) by cancer type/subtype or in normal tissue for TMA EdgeSeq and TCGA RNA-seq were made for (A) human epidermal

growth factor receptor (HER) family genes and immune-oncology markers of interest, (B) oncogenes of interest and (C) immune cell genes, cell cycle genes

and cancer-associated fibroblast (CAF)-associated gene signatures. Expression is color-coded based on whether counts are approaching maximum (red) or

minimum (blue) levels of detection. BC, breast cancer; EGFR, epidermal growth factor receptor; PD-L1, programmed death ligand-1. BLCA, bladder

carcinoma; COADREAD, colorectal adenocarcinoma; ER, estrogen receptor; ESCA, esophageal cancer; HNSC, head-neck squamous cell carcinoma; KIRC,

kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LCC, large cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung

adenocarcinoma; LUSC, lung squamous cell carcinoma; OC, ovarian cancer; PAAD, pancreatic adenocarcinoma; PD-1, programmed death protein 1; PD-L1,

programmed death-ligand 1; PR, progesterone receptor; PRAD, prostate adenocarcinoma; THCA, thyroid cancer; TNBC, triple-negative breast cancer; UCEC,

uterine corpus endometrial carcinoma.

https://doi.org/10.1371/journal.pone.0274140.g001
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Table 1. Samples for TMA EdgeSeq, TCGA RNA-seq and CCLE RNA-seq comparison.

TMA TCGA CCLE

EdgeSeq RNA-seq RNA-seq

Cancer type–subtype

Bladder carcinoma 96 411 24

Breast cancer, HER2+ 80 170 15

Breast cancer, ER+/PR+/HER2– 143 489 12

Breast cancer, TNBC 62 123 20

Cholangiocarcinoma 37 36 8

Colorectal adenocarcinoma 169 638 55

Endometrial carcinoma–uterine corpus 76 548 28

Esophageal carcinoma–adenocarcinoma 30 80 2

Esophageal carcinoma–squamous 43 82 24

Head-neck squamous cell carcinoma 69 502 30

Kidney–renal clear cell carcinoma 40 535 19

Kidney–renal papillary cell carcinoma 45 289 2

Liver hepatocellular carcinoma 104 374 23

Lung–adenocarcinoma 74 526 67

Lung–squamous cell carcinoma 73 501 21

Lung–large cell carcinoma 38 17

Skin cutaneous melanoma 33 471 49

Ovarian carcinoma–clear cell 8 9

Ovarian carcinoma–endometrioid 34 4

Ovarian carcinoma–mucinous 14 6

Ovarian carcinoma–serous 110 379 23

Pancreatic adenocarcinoma 61 178 40

Prostate adenocarcinoma 128 499 7

Salivary gland cancer 75 2

Sarcoma 66 263 30

Stomach adenocarcinoma–diffuse 40 73 19

Stomach adenocarcinoma–intestinal 64 167 18

Thyroid cancer–follicular 13 4

Thyroid cancer–papillary 23 504 2

Normal tissue

Biliary duct 5 9

Breast 43 113

Colon 58 51

Endometrium 15 35

Esophagus 40 11

Heart 3

Ileum 9

Kidney 26 104

Liver 56 50

Lung 63 108

Lymph node 11

Myometrium 8

Pancreas 26 4

Prostate 35 52

Salivary Gland 10 44

(Continued)
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The TMA includes four subtypes of ovarian cancer: clear cell (n = 8), endometrioid

(n = 34), mucinous (n = 14) and serous (n = 110); the first three are not a component of

TCGA. Genes selectively over- or under-expressed in each subtype among the ovarian cancer

samples were assessed (S3 File). The signature genes (highly expressing subtypes) included

known markers, such as CEACAM6 (mucinous), DKK1 (endometrioid), HNF1B (clear cell

and mucinous), PGR (endometrioid), TFF3 (mucinous) and WT1 (serous) [16–18]. Alignment

of the subtypes based on pathological versus gene expression profile was observed for clear

cell, mucinous and serous ovarian cancer. Approximately half of the pathological endome-

trioid subtypes were defined as one of the other three ovarian cancer subtypes by gene signa-

ture (S3 File).

Lung cancer subtypes assessed for gene signature analysis were lung adenocarcinoma

(LUAD; n = 74), lung squamous carcinoma (LUSC; n = 73), LCNEC (n = 15) and large-cell

lung carcinoma not otherwise specified (LC-NOS; n = 23); normal lung tissue (n = 63) was

also included. Marker genes were selected to differentiate LUSC versus LUAD (p< 0.005) and

LCNEC versus LUSC and LUAD combined (p< 0.05). One goal of this analysis was to anno-

tate LC-NOS samples into specific subtypes by gene signature. LC-NOS samples were rede-

fined into either LUAD (n = 8), LUSC (n = 5), or LCNEC (n = 10) (S4 File). However, signals

for these groups by gene signature were weaker than that observed based on pathological sub-

typing. Varied gene expression profiles were also observed in a principal component analysis

of the LC-NOS samples (Supporting Information [S2A Fig in S8 File] and S4 File). Normal

lung tissue displayed a gene expression profile most similar to the LUAD subtype.

The TMA data set includes two subtypes in thyroid cancer, papillary (n = 23) and follicular

(n = 13), as well as normal thyroid tissue (n = 20); the majority of thyroid cancers are classified

as papillary in TCGA. Marker genes for each subtype were selected based on higher and lower

expression over the other subtype and normal thyroid tissues (S5 File). There were two follicu-

lar subtype-high expressing genes, ESM1 (endothelial cell specific molecule 1) and THBS4
(thrombospondin 4). Fifty-four genes were highly expressed in the papillary subtype, including

HER3. Gene expression profiles and pathological cancer subtypes aligned. Two-thirds of nor-

mal thyroid tissue samples demonstrated a weak follicular gene expression profile, while the

others did not show similarities to either papillary or follicular profiles.

Table 1. (Continued)

TMA TCGA CCLE

EdgeSeq RNA-seq RNA-seq

Skeletal muscle 9

Skin 7 1

Smooth muscle 10 2

Spleen 8

Stomach 34 32

Testis 8

Thymus 9

Thyroid 20 58

Urinary bladder 9 19

Uterus 6

Total 2376 8531 580

CCLE, Cancer Cell Line Encyclopedia; ER, estrogen receptor; HER, human epidermal growth factor receptor; HR, hormone receptor; PR, progesterone receptor; TCGA,

The Cancer Genome Atlas; TMA, tissue microarray; TNBC, triple-negative breast cancer.

https://doi.org/10.1371/journal.pone.0274140.t001
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Gastric cancer was separated into two major subtypes, diffuse (n = 64) or intestinal

(n = 40), for the TMA data set. Marker genes for each subtype were selected based on higher

and lower expression over the other subtype and normal stomach tissues (S5 File). Diffuse-

high genes (n = 16) included three epithelial mesenchymal transition markers (HALLMARK

signature: DCN, FLNA and IGFBP4), while 36 intestinal-high genes included many cell cycle

and cytokine genes, such as AURKA, CDC25A and CXCL1. The gene signature analysis sug-

gests overall concordance between gene signature profiles and pathological cancer subtypes,

while normal gastric tissues displayed weak diffuse or intestinal gene expression profiles.

TNBC has previously been divided into subtypes (basal-like 1 and 2 [BL1 and BL2], luminal

androgen receptor [LAR] and mesenchymal [M]) based on gene expression profiles; the analy-

sis was applied to TNBC of TCGA [20]. TCGA data were used to select marker genes to dis-

criminate the four TNBC subtypes from EdgeSeq panel genes (S6 File). Selected gene signature

analysis was applied to TMA data and defined BL1 in 17 samples (27%), BL2 in 19 (31%), LAR

in 12 (19%) and M in 14 (23%). Similar proportions were observed with TCGA (29%, 27%,

19% and 25% among 113 samples, respectively) using the gene signature.

TMA has a unique rare cancer data set of salivary gland cancer, which is not included in

TCGA, including several malignant tumor subtypes (n = 75; acinic cell carcinoma [Ac], ade-

noid cystic carcinoma [Ad], basal cell adenoma [Ba] and mucoepidermoid carcinoma

[Mu]), benign epithelial tumor subtypes (pleomorphic adenoma [Pl] and warthin tumor

[Wa]) and normal salivary gland tissue (n = 10). Marker genes for each subtype were

selected based on higher and lower expression over other subtypes and normal salivary

gland tissues. Analysis suggested overall correspondence between pathological and gene sig-

nature subtypes for salivary gland cancer (S7 File). Similar gene expression profiles were

observed for Ba and Pl subtypes, and several Pl samples were annotated as Ba by the gene

signature analysis. Several genes were identified with high or low expression among salivary

cancer subtypes. Genes identified as highly expressed in Ba and Pl included FGF2, FGFR1,

HIF3A, SFRP1, TGFBR3 and WIF1, whereas expression of FGF2, FGFR1, HIF3A and WIF1
were low in the Ac subtype.

The Ad, Ba and Pl subtypes displayed low expression of immune markers such as CD27
and CD3G, which was the converse for the Wa subtype (S7 File). The gene expression pattern

in the Mu subtype differed from the aforementioned subtypes and had high expression of

integrin/extracellular matrix genes (i.e., COL1A1, FN1 and ITGB6) and cell cycle-related genes

(i.e., KIF2C and TOP2A). These patterns (complementary profiles in Ad and Bl and a unique

Mu profile) were reflected in principal component analysis (Supporting Information [S2B Fig

in S8 File] and S7 File).

Gene expression analysis for select genes/gene signatures in breast and

salivary gland cancer

Gene signature scores for immune cells (T cells, B cells and macrophages), housekeeping

genes, cell cycle genes and CAFs were determined for TNBC and salivary gland cancer sub-

types (S2 File). For TNBC, immune cells had the lowest gene signature in the M subtype,

which is in accordance with a previous report (Fig 2A and Supporting Information [S1

Table in S8 File]) [19]. The housekeeping gene signature was highest in the BL1 and M sub-

types, and the CAF signature was notably higher in the BL2 subtype. The cell cycle gene signa-

ture was much higher in BL1, which has been reported elsewhere [19]. In salivary gland cancer

subtypes, immune cell gene signatures were high (>0.6) in the Wa subtype, but lower (<0.0)

in Ad, Ba and Pl subtypes (Fig 2B and Supporting Information [S2 Table in S8 File]). The cell

cycle signature was generally higher in tumors than normal tissue.
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Fig 2. Gene signature analyses of breast and salivary gland cancer subtypes for genes and pathways for immune

cells, the cell cycle and cancer-associated fibroblasts. Gene signature scores were determined for (A) TNBC and (B)

salivary gland cancer subtypes for T cells, B cells, macrophages, cell cycle genes and CAF-related genes. (C) Expression

of HER family genes was also determined for salivary gland cancer subtypes. For the box-and-whisker plot, the line in

the box represents the median and whiskers indicate 5th and 95th percentiles. Ac, acinic cell; Ad, adenoid cystic; Ba,
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Investigation of HER gene family member expression in salivary gland cancer showed that

Mu and Wa subtypes had higher EGFR expression among the salivary gland cancer subtypes

(Fig 2C). HER2 was higher in Ba and Pl subtypes and lowest in Wa; HER3 was higher in the Ac

and Ad subtypes, and HER4 was higher in the Ac and Pl subtypes. Additional assessment of

specific immune-oncology marker expression revealed high expression levels for the Wa sub-

type and that the Ad subtype generally had the lowest expression of PD-L1, TIM3, FOXP3 and

CTLA-4 (Supporting Information [S3 Fig in S8 File]).

Correlative analyses of HER2 and HER3 mRNA and protein expression

Gene and protein expression patterns and correlations to the ADC targets, HER2 and HER3,

were investigated within TMA and CCLE data sets for all cancer samples. mRNA and protein

expression levels of HER2 and HER3, respectively, correlated in TMA (R = 0.778 and

R = 0.534) and CCLE (R = 0.834 and R = 0.844) (Fig 3A).

Comparison of HER2 mRNA (EdgeSeq) and protein levels by H-score (Supporting Infor-

mation [S4A Fig in S8 File] and Supporting Information) in the TMA data set defined simple

correlations whereas differences in median HER3 EdgeSeq mRNA and protein (IHC H-score)

levels varied by cancer type/subtype (Fig 3B). Cancers that demonstrated decreased HER3 pro-

tein versus mRNA expression included kidney renal clear cell carcinoma, liver hepatocellular

carcinoma and clear cell ovarian cancer, whereas those with increased HER3 protein expres-

sion included HER2+ breast cancer, bladder carcinoma and serous ovarian cancer. Although

liver hepatocellular carcinoma and clear cell ovarian cancer expressed HER3 mRNA (Fig 3B),

almost no HER3 protein expression was detected in these cancers in the TMA data set. Overall,

prevalence of HER3 positivity by IHC score (IHC 2+ and 3+) among the tumor types/subtypes

(Fig 3C) slightly differed from that by HER3 EdgeSeq mRNA level (Fig 3B, top). Protein and

mRNA correlations of HER3 were examined within the TMA and CCLE data sets for liver

hepatocellular carcinoma and ovarian clear cell carcinoma. Although high mRNA and low

protein expression of HER3 was detected for these cancer types in the TMA data set, this pat-

tern was not observed in the CCLE data set of cell lines (Supporting Information [S4B Fig in

S8 File]).

Additional assessments were conducted across the TMA, TCGA and CCLE data sets in

breast and ovarian cancer types/subtypes, based on the noted differences in HER3 mRNA and

protein expression between in vitro (CCLE) and in vivo (TMA) data, as well as those between

mRNA and protein expression. In TMA and TCGA data sets, expression levels of HER3

mRNA/protein in TNBC were higher in LAR and M than BL1 and BL2, with similar levels as

ER+/PR+/HER2− and HER2+ breast cancer subtypes. However, the same expression patterns

in TNBC were not observed in the CCLE data set (Fig 4A and Supporting Information [S3

Table in S8 File]). In ovarian cancer, HER3 mRNA levels were highest in the mucinous sub-

type; however, protein levels (IHC H-score) were highest in the serous subtype (Fig 4B). Cor-

relation of EdgeSeq and IHC H-score data suggests higher IHC scores relative to EdgeSeq

mRNA levels for serous ovarian cancer than other ovarian cancer subtypes. HER3 mRNA lev-

els among ovarian cancer subtypes demonstrated similar expression patterns among the TMA

and CCLE data sets. However, protein levels of HER3 were comparable among the ovarian

cancer subtypes in the CCLE data set (Fig 4B and Supporting Information [S4 Table in S8

File]).

basal cell adenoma; BL, basal-like; EGFR, epidermal growth factor receptor; LAR, luminal androgen receptor; M,

mesenchymal; Mu, mucoepidermoid; Pl, pleomorphic; Wa, Warthin tumor.

https://doi.org/10.1371/journal.pone.0274140.g002
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Analysis of HER2 and HER3 co-expression

Correlation of HER2 and HER3 mRNA co-expression was analyzed among the TMA, TCGA

and CCLE data sets (Fig 5A) to gain additional insight into the regulation of gene expression

of these gene family members among the TMA cancer types/subtypes. Across data set compar-

isons, correlation was observed for HER2 and HER3 in lower ranges, while a portion of sam-

ples show extremely high HER2 expression. In these HER2 high samples, concurrent

overexpression was observed in neighboring genes (termed the HER2 expression amplicon)

(Fig 5A top right, indicated in red). Correlation of co-overexpression of HER2 protein and

neighboring genes within the HER2 amplicon was also observed (R = 0.757; [S5 Fig in S8

File]). Analysis of HER2 and HER3 protein expression in CCLE RPPA data showed a similar

correlation pattern of HER2 and HER3 to that of mRNA level. However, in TMA IHC data,

high HER2 protein levels (H-score >100) were observed in a portion of samples (Fig 5B).

Although most of them showed an amplified gene expression pattern in genes within the

HER2 expression amplicon, there was almost no correlation outside of the HER2-amplified

range.

HER2 and HER3 mRNA co-expression also underwent correlation assessment in the vari-

ous cancer types/subtypes. Three breast cancer subtypes displayed distinct patterns, which

aligned with their known phenotypes: HER2+ breast cancer included HER2-genomic ampli-

fied samples; ER+/PR+/HER2− breast cancer included HER3 expression in a higher range;

and HER2 expression was in the lower range in TNBC (Fig 5C). Correlation of EdgeSeq HER2
and HER3 mRNA expression patterns in additional tumor types/subtypes revealed high HER2
expression in salivary gland tumors and thyroid carcinoma and high HER3 expression in

Fig 3. HER2 and HER3 mRNA and protein expression. (A) Correlation of mRNA and protein expression of HER2 and HER3 in TMA (via EdgeSeq and

immunohistochemistry [IHC] H-score) and CCLE (via RNA-seq and RPPA) data sets. Correlation coefficients were calculated with R> 0 and approaching

one signifying a positive correlation. No data were available for HER2-cancers using visual examination. (B) HER3 mRNA (EdgeSeq) and protein (IHC H-

score) expression from TMA data set. (C) TMA cancer types/subtypes sorted by HER3 IHC positivity (IHC 3+ and 2+). IHC scores of 3+ and 2+ were

considered signal intensity that was positive for HER3 expression. For the box-and-whisker plot, the line in the box represents the median and whiskers

indicate 5th and 95th percentiles. BC, breast cancer.

https://doi.org/10.1371/journal.pone.0274140.g003
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colorectal adenocarcinoma, liver hepatocellular carcinoma and skin cutaneous melanoma

(Supporting Information [S6A Fig in S8 File]). Although these expression patterns by subtype

were also observed for TCGA data, several CCLE cancer types showed different patterns from

TMA and TCGA, such as thyroid carcinoma and liver hepatocellular carcinoma (Supporting

Information [S6B Fig in S8 File]).

Discussion

These data validate that the EdgeSeq TMA data set provides an additional resource for bio-

marker information across multiple cancer types/subtypes, including several that are not cur-

rently included in publicly available data sets, such as TCGA. In addition, gene signature

analysis helped define expression of specific genes associated with certain pathologically

defined cancers, potentially facilitating treatment decisions and prognosis formulation.

The characterization of cancer subtypes by gene signature described here will add molecu-

lar insight into the current classification of cancers by pathological subtype. Although most

tumor types had alignment by known pathological type and EdgeSeq gene signature, there

were some noted variations. Specifically, half of the tumor tissue defined as ovarian endome-

trioid cancer were epigenetically aligned with other ovarian cancer subtypes. The rationale for

this outcome may be that fewer gene targets were used within the ovarian gene signature set

and/or because of heterogenous gene expression within the specimens. For lung cancer, the

identification of a LUAD gene expression profile in a majority of normal lung tissue may

Fig 4. HER3 mRNA and protein expression levels in breast and ovarian cancer. (A) HER3 expression in breast cancer in TMA (EdgeSeq and IHC H-score),

TCGA (RNA-seq and RPPA) and CCLE (RNA-seq and RPPA) data sets and in (B) ovarian cancer TMA (EdgeSeq and IHC H-score) and CCLE (RNA-seq and

RPPA) data sets. The rightmost graph in each panel displays the mRNA:protein correlation plot for each respective cancer type and data set. For the box-and-

whisker plot, the line in the box represents the median and whiskers indicate 5th and 95th percentiles.

https://doi.org/10.1371/journal.pone.0274140.g004
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afford some background into the cell lineage and characteristics of this tumor subtype. In addi-

tion, TMA EdgeSeq data allowed for a more detailed classification of several LC-NOS samples

into specific subtypes; however, these gene signature scores were low.

TMA EdgeSeq gene signature classification may also assist with improving targeted treat-

ment selection and cancer prognosis predictions. For example, several genes related to fibro-

blast growth factor and WNT signaling pathway were highly expressed in specific salivary

gland cancer subtypes, highlighting a potential therapeutic target. Furthermore, high CAF-

gene signatures were identified in the BL2 TNBC subtype, which may be related to a worse

prognosis in patients who are undergoing neoadjuvant chemotherapy.

Although the EdgeSeq-RNA-seq validation experiments demonstrated an overall correla-

tion, some degree of saturation was observed. Biased expression patterns occurring with Edge-

Seq may be related to the small probe size of 50 bp. A smaller probe may either result in lower

signals because of lack of variant detection that can be detected by RNA-seq, and/or higher sig-

nals from nonspecific probe hybridization. In addition, some of the lower and higher biased

expression may be due to EdgeSeq probe position among transcript variants and poly-A selec-

tion of the RNA-seq method, respectively.

HER2 and HER3 belong to the HER family of receptor tyrosine kinases and are commonly

overexpressed in multiple tumor types [20–22]; their overexpression has been linked to poor

clinical outcomes [23–25]. ADCs targeting HER2 and HER3, such as T-DXd and HER3-DXd,

Fig 5. HER2 and HER3 co-expression. (A) HER2 and HER3 mRNA coexpression was assessed among all TMA EdgeSeq cancer samples (n = 1848) and

matched samples for TCGA RNA-seq (n = 8301) and CCLE RNA-seq (n = 580); the HER2 expression amplicon (red dots) had an average Z-score>1.5 and

included the neighboring seven genes (+/- 51kb) of HER2; (B) HER2 and HER3 protein expression levels in TMA (IHC H-score) and CCLE (RPPA); (C) HER2
and HER3 mRNA in various tumor types from TMA EdgeSeq.

https://doi.org/10.1371/journal.pone.0274140.g005

PLOS ONE EdgeSeq tissue microarray oncology biomarker panel and HER2/HER3 IHC analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0274140 September 22, 2022 13 / 17

https://doi.org/10.1371/journal.pone.0274140.g005
https://doi.org/10.1371/journal.pone.0274140


have demonstrated antitumor activity through in vitro and in vivo tumor models [6, 7, 26] as

well as in patients with breast or lung cancer [27, 28]. As such, we investigated the gene and

protein expression of HER2 and HER3 within the TMA data set as well as their degree of co-

expression. Variations in expression of HER2 and HER3 among cancer types and subtypes

supports development of specific directed therapies and will play a role in refining indications

for approved agents. When comparing protein and mRNA expression of HER3 in cancer

types across platforms, similar correlations were observed in several cancer types in TMA and

TCGA, but not CCLE. As CCLE is an in vitro data set, these differences suggest in vivo and

gene specific epigenetic regulation. The comparison of data in tissue and cell line data sets

highlights the importance of examining protein levels as a component of ADC and other tar-

geted drug development.

Conclusions

Overall, the alignment of EdgeSeq and RNA-seq gene expression profiles for HER family

genes, oncogenes and immune-oncology markers and the inclusion of additional cancer sub-

types supports the use of the TMA EdgeSeq platform as a reference alternative and/or supple-

ment to TCGA and CCLE in oncology research. The correlative analysis of HER2 and HER3

mRNA and protein expression, and the immune signature scores described here, will facilitate

the development of ADCs directed to these proteins.
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