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Abstract: Microflora is actively used to produce value-added materials in industry, and each cell
density should be controlled for stable microflora use. In this study, a simple system evaluating the
cell density was constructed with artificial intelligence (AI) using the absorbance spectra data of
microflora. To set up the system, the prediction system for cell density based on machine learning
was constructed using the spectra data as the feature from the mixture of Saccharomyces cerevisiae
and Chlamydomonas reinhardtii. As the results of predicting cell density by extremely randomized
trees, when the cell densities of S. cerevisiae and C. reinhardtii were shifted and fixed, the coefficient
of determination (R2) was 0.8495; on the other hand, when the cell densities of S. cerevisiae and
C. reinhardtii were fixed and shifted, the R2 was 0.9232. To explain the prediction system, the
randomized trees regressor of the decision tree-based ensemble learning method as the machine
learning algorithm and Shapley additive explanations (SHAPs) as the explainable AI (XAI) to interpret
the features contributing to the prediction results were used. As a result of the SHAP analyses, not
only the optical density, but also the absorbance of the Soret and Q bands derived from the chloroplasts
of C. reinhardtii could contribute to the prediction as the features. The simple cell density evaluating
system could have an industrial impact.

Keywords: microflora; explainable artificial intelligence (XAI); extremely randomized trees regressor;
Shapley additive explanations (SHAPs)

1. Introduction

The production of value-added materials such as alcohol and amino acids has been
performed by using microorganisms for a long time [1,2]. Improving the material produc-
tivity by these microorganisms is a major industrial challenge [3], and the productivity
improvement has been attempted based on knowledge and experiences regarding the
culturing conditions such as the microbial strains and media [4]. However, the improve-
ments derived from the knowledge and experiences are limited and have been attempted
with comprehensive analyses of the culture conditions [5]. Recently, regarding the mi-
croorganisms’ condition in the culture, comprehensive analyses focusing on omics such as
metabolomics and transcriptomics have been performed with artificial intelligence (AI) [6].
AI technology, more specifically machine learning, recently has been applied to the analysis
tools in microbiology research for microbial classification and the interaction between mi-
croorganisms and the surrounding environment [7,8]. By using machine learning models
that have learned patterns in known data, tedious, time-consuming, and error-prone tasks
can be performed more quickly and accurately. Therefore, this research proposes a cell
density prediction method using absorbance spectrum information as a large amount of
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data and machine learning for the advancement of biotechnology. Deep-learning- [9] or
tree-based ensemble learning methods, such as XGBoost [10], LightGBM [11], and Cat-
Boost [12] as the boosting methods, and random forest [13] and extremely randomized
trees [14] as the bagging methods have been widely used as the high-performance machine
learning algorithms. Deep learning has strengths with respect to unstructured data such
as images, audio, and text data, while the tree-based ensemble learning methods have
strengths with respect to table-style numerical data. In this study, an ensemble learning
method, specifically extremely randomized trees, was used because the input data were
table-style numerical data. In recent years, machine learning has achieved significant
performance gains due to the increasing complexity of models. With increasing complexity,
these models have become black boxes, introducing uncertainty about the final outcome.
Deep-learning- [9] or tree-based ensemble learning methods [10–14] have been classified as
black box models. The awareness of this issue has led to a great deal of scientific interest
in the field of explainable artificial intelligence (XAI) [15], which is studied to develop
methods to explain and interpret machine learning models. Various XAI methods are
available for different types of machine learning models and different types of data formats,
but the technology is still in the developmental stages. Among these, Shapley additive
explanations (SHAPs) [16] comprise a more complete method, which can be applied to any
machine learning model and any type of data and be useful to interpret the contributions of
the features to the prediction results at both the global and local level. SHAPs are based on
the game theoretical optimal Shapley values [17], which represent the contribution of each
player in a multi-player game when players cooperate. In SHAPs, the multiple players are
equivalent to the features used in the machine learning model, and the contributions of the
features to individual predictions are calculated to enhance the interpretability. So far, al-
though omics analyses with AI have been performed on the cultures of single microorganisms
such as Escherichia coli [18] and Saccharomyces cerevisiae [19], the analyses of more complicated
microbial flora including meta-omics have not been sufficient. Therefore, the XAI method
has been required to understand the microbial condition from the viewpoint of meta-omics.
Additionally, in the field of microbiology, there are few reports of research revealing microbial
phenomena using AI [20,21]; therefore, our study has an impact on this field.

In this study, the research purpose was to exhibit a method easily predicting the cell
density in the mixture of C. reinhardtii and S. cerevisiae using machine learning with the
absorbance spectrum, to explain the reason why the method to predict the cell density of
the mixture works with the absorbance spectrum as XAI using SHAPs. To develop the
cell density prediction method, (i) the Extra Trees algorithm to predict the cell density
using the absorbance spectra data and (ii) the SHAP algorithm to evaluate the Extra
Trees algorithm were set up (Figure 1). The cell-containing solution was composed of a
photosynthetic microorganism, which provides substrates derived from CO2 as the carbon
source, and a heterotrophic microorganism, which can use the substrates. This combination
is important from the viewpoint of industry because even heterotrophic microorganisms
can produce useful substances directly from carbon dioxide through the organification
of carbon dioxide by autotrophic microorganisms. Firstly, absorbance spectra in various
cell densities of Chlamydomonas reinhardtii and S. cerevisiae were obtained to set up the
cell density prediction method as essential data for machine learning. Secondly, machine
learning was performed using the data of the obtained cell density and absorbance spectra
to clarify each relationship. In this study, one of the challenges was to explain which
absorbance wavelengths affect cell density with respect to the machine learning model, in
addition to evaluating the performance of the cell density prediction. There is no report
about predicting the cell density of autotrophic/heterotrophic microorganism mixtures
by machine learning using absorbance spectra data; therefore, this research can show the
impact for industry.
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Figure 1. The concept of cell density prediction in microbial flora using absorbance spectra data.

2. Materials and Methods
2.1. Strains and Growth Conditions

The S. cerevisiae BY4741 strain (MATa, his3∆1, leu2∆0, met15∆0, ura3∆0) was purchased
from Funakoshi (Tokyo, Japan) as a laboratory haploid strain [22]. S. cerevisiae was cul-
tured at 30 ◦C in YPD (yeast extract, 10 g·L−1; peptone, 20 g·L−1; glucose, 20 g·L−1). The
C. reinhardtii strain C-9: NIES-2235 was provided by the National Institute for Environ-
mental Studies. C. reinhardtii was cultivated under a white fluorescent light intensity of
150 µmol photons·m−2·s−1 at 25 ◦C with CO2 bubbling (15,000 ppm, 0.05 vvm) in BG-11 [23].
All processes for C. reinhardtii cultivation were provided by CMD Corporation.

2.2. Cell Density Evaluation

For the absorbance spectrum analysis, the cell-containing solutions were composed of
(i) only S. cerevisiae, (ii) only C. reinhardtii, and (iii) S. cerevisiae and C. reinhardtii, respectively.
Each cell density was evaluated by absorbance from 400 nm to 750 nm in 1 nm increments
with the 96-well microplate reader SH-1300Lab CRN-2508 (Hitachi High-Tech Science
Corporation, Tokyo, Japan).

2.3. Cell Density Prediction by AI Analytics

The AI analysis consisted of the two components of cell density prediction and the
explanation of the prediction results. Cell density predictions using absorbance spectra data
were performed for three solvent conditions containing different microorganisms: single
S. cerevisiae, single C. reinhardtii, and mixture of S. cerevisiae and C. reinhardtii. The predicted
target variable was the cell density for the microorganism in each solvent condition. In
the third mixture solution, each cell density of S. cerevisiae and C. reinhardti was predicted
using the same absorbance spectra data. To generate a prediction model, 36 features of
absorbance identified at 10 increments were extracted from 400 to 750. The data structure
for cell density prediction is shown in Figure 2. As the machine learning algorithm for
cell density prediction, the extremely randomized trees regressor [14], also called Extra
Trees, was used from the Pycaret library [24] of the Python language. Extra Trees is an
ensemble learning algorithm using a set of multiple decision trees, shown as Figure 3. The
main difference from other tree-based ensemble learning algorithms is that each decision
tree is grown using whole training samples, but not bootstrap samples, and each node
in a decision tree is split by choosing a cut-point at random, but not by calculating the
locally optimal combination of the feature and cut-point based on an information criterion.
The cut-point t is usually represented as x[i] > t, where x[i] indicates the i-th feature.
Final predictions in the case of regression are yielded by averaging the predictions of the
multiple decision trees. By using multiple decision trees generated by random cutoffs in
this way, the overfitting that occurs in a single decision tree algorithm can be improved.
This corresponds to reducing the variance of the bias variance problem [14]. The hyper-
parameters in Extra Trees were turned by the random search method [25] of Pycaret under
the setting of 10-fold cross-validation, the generation of 100 decision trees as the predictors,
and the optimization index of the coefficient of determination (R2) for the scatter plot of
actual vs. predicted values. The accuracy of the cell density predictions by AI analytics
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based on the spectra data was assessed with accuracy ratios calculated by dividing the
predicted cell density by the actual cell density.
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Figure 3. Machine learning algorithm to predict cell density with values at each absorbance wave-
length as the feature to be explained (concept of the algorithm Extra Trees Regressor).

2.4. Explanation of the Prediction Results

One of the challenges in this study was to elucidate which absorbance wavelengths
affect cell density prediction; however, machine learning models are generally black boxes,
and it is difficult to explain why the prediction values are output. Recently, however,
Shapley additive explanation (SHAP) [16] analysis has received attention in the field of
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explainable AI (XAI) [15] to interpret how each feature affects the prediction values. The
advantage of SHAPs is that the prediction values can be expressed as the sum of the effects
of features and the base value estimated by the expected prediction values, i.e., the mean of
all prediction values for the input samples, called additive feature attribution methods [16].

f (x) = φ0( f ; x) +
M

∑
i=1

φi( f ; x) (1)

where x, f (x), φ0( f ; x), φi( f ; x) M are represented as the data of the sample, the prediction
value generated by the trained model f , the base value calculated as the mean of the pre-
diction values, the SHAP value for the i-th feature, and the number of features, respectively.
Therefore, it is possible to intuitively interpret the contribution of the features by how
much each feature raises or lowers the predicted value from the base value. The SHAP
analysis was performed by the SHAP method for tree-based machine learning models,
called TreeSHAP [26] in the Python language shap library.

3. Results and Discussion
3.1. Evaluation of Absorbance Spectrum of Each Strain of S. cerevisiae and C. reinhardtii

The development of a method to predict cell density in a cell-containing solution
composed of S. cerevisiae and C. reinhardtii was attempted with the absorbance spectrum
of the microbial flora. Since the differences in the absorbance spectrum characteristics of
S. cerevisiae and C. reinhardtii could be a stepping stone for predicting each cell density
in the cell-containing solution, the spectra of the cell-containing solution composed of
single strains of S. cerevisiae and C. reinhardtii were analyzed (Figure 4). As the results,
no significant shift was observed in the absorbance spectrum of S. cerevisiae, and specific
absorbance bands were confirmed at 425 nm and 675 nm for C. reinhardtii.
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The cell densities of S. cerevisiae and C. reinhardtii were kept constant, and those
absorbance spectra were analyzed from 400 to 750 nm. C. reinhardtii, a green alga, has
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chloroplasts for photosynthesis, and chloroplasts use light mainly in the Soret and Q bands,
which are highly efficient for photosynthesis [27,28]. Therefore, C. reinhardtii in this study
showed maximum absorbance at 425 nm and 675 nm. Since S. cerevisiae has no chloroplasts,
the broad shape of the absorbance spectrum resulted from simple light scattering. Thus, the
differences in the absorbance spectrum due to the characteristics of each cell were confirmed.
The absorbance spectra were obtained from the cell-containing solution adjusted for each cell
density of S. cerevisiae and C. reinhardtii, and the cell density prediction using the absorbance
spectra data was attempted simply to estimate the cell density.

3.2. Evaluation of Predictive Performance for Cell Density Prediction with the Coefficient
of Determination

The cell density prediction in the cell-containing solution was made using the absorbance
spectra data from the microbial flora. The scatter plots with the measured and predicted
values of the cell density in the cell-containing solution were drawn to evaluate the pre-
dictive performance (Figure 5). In the scatter plots, the coefficient of determination R2 for
S. cerevisiae and C. reinhardtii, which consisted of only a single strain, was 0.9982 and 0.9997,
respectively, indicating that the fitted curve showed extremely high-precision linearity. The R2

was 0.8495 when the cell density was fixed in C. reinhardtii and shifted in S. cerevisiae; on the
other hand, the R2 was 0.9232 when fixed in C. reinhardtii and shifted in S. cerevisiae.
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prediction accuracy. (a) Only S. cerevisiae, drifted: S. cerevisiae cell density; (b) only C. reinhardtii,
drifted C. reinhardtii cell density; (c) S. cerevisiae and C. reinhardtii, fixed: C. reinhardtii cell density,
drifted: S. cerevisiae cell density; (d) S. cerevisiae and C. reinhardtii, fixed: S. cerevisiae cell density,
drifted: C. reinhardtii cell density. (Evaluation for prediction accuracy of cell density in cell-containing
solution using absorbance spectra.)

According to the results of the scatter diagrams of the measured and predicted cell
density, the R2 of the cell-containing solutions composed of single strains of S. cerevisiae and
C. reinhardtii were extremely high, indicating that the cell density could be evaluated with
high accuracy depending on the absorbance spectrum from the low- to high-density band.
These are natural results because both cell densities were generally measured by optical
density; however, the validity of the prediction is shown by the fact that the cell density
can be accurately estimated from the absorbance spectrum of the cell-containing solutions
composed of single strains. On the other hand, even the R2 of the cell-containing solution
with S. cerevisiae and C. reinhardtii exceeded 0.84, indicating that the prediction could be
workable. In order to understand the reason for the high R2, the impacts of absorbance at
each wavelength were evaluated by using SHAP values.

3.3. Feature Importance Based on SHAP Values

SHAP analyses were performed to understand how each feature value affected the
predicted value of the cell density. In order to evaluate the feature importance, the mean
absolute SHAP values were compared, respectively (Figure 6). In the case of the single
strain of S. cerevisiae, the impact indicated a large value exceeding 3.5 at 600 nm, and these
were less than 1.0 at the other absorbance wavelengths. On the other hand, in the case of the
single strain of C. reinhardtii, the impacts indicated remarkably large values exceeding 2.0 at
440 nm, over 1.0 at 400 nm and 490 nm, and less than 1.0 at other wavelengths. In the case
of the mixed strain of S. cerevisiae and C. reinhardtii, when the cell density of C. reinhardtii
was fixed and the cell density of S. cerevisiae was shifted, the impact was significantly higher
at 730 nm, exceeding 300, followed by higher values at 430 nm and 410 nm. On the other
hand, when the cell density of S. cerevisiae was fixed and the cell density of C. reinhardtii
was shifted, the impact was characteristically over 300 at 410 nm, followed by high values
at 430 nm and 740 nm.

To show how the absorbance at each wavelength affected the cell density prediction,
the mean absolute SHAP values were evaluated at wavelengths as features. In the case of
S. cerevisiae, the impact at 600 nm was the highest in whole absorbance wavelength, and this
fact corresponds to the evaluation method of the cell density of S. cerevisiae, generally with
the OD600. The result indicated that the prediction of the cell density of S. cerevisiae with
the OD600 was significantly reasonable. For C. reinhardtii, the high impacts of C. reinhardtii
were shown at 440 nm, 400 nm, and 490 nm and coincided with the Soret absorbance band.
Therefore, these facts present that the cell density prediction using absorbance spectra
could be important with respect to the biological properties of C. reinhardtii. From the
above results, the prediction was successful based on the properties of the absorbance
of both strains S. cerevisiae and C. reinhardtii. Thus, even for the mixture of S. cerevisiae
and C. reinhardtii, the possibility was shown that the prediction could evaluate the density
based on the specific properties of the absorbance spectrum of both strains. In fact, both
R2 were over 0.84 when the cell densities in the mixtures of S. cerevisiae and C. reinhardtii
were evaluated with the prediction (Figure 5). When the density of S. cerevisiae was shifted
and the one of C. reinhardtii was fixed, even without using the factor of absorbance at
600 nm, the highest impact for the others was shown at 730 nm, the wavelength of which is
not related to the Q band derived from the chloroplasts. The results could mean that the
impact was shown as the optical density relating simply to the cell density in the mixture.
Additionally, high impacts were detected at 430 nm and 410 nm, and those impacts could
contribute to the algorithm predicting the cell density using the spectra data because those
wavelengths are in the Soret band derived from C. reinhardtii properties. On the other hand,
when the cell density of S. cerevisiae was fixed and the one of C. reinhardtii was shifted, the
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results indicated that the high impacts at 470 nm and 430 nm and the one at 740 nm were
related to the Soret band and the optical density, respectively. In either example, those
analyses revealed which wavelengths worked effectively as the features for the prediction
of the cell density using the absorbance spectra data. However, in order to understand the
prediction in detail, the analyses of the positive or negative impacts on the predicted value
should be required because the impacts were shown with the absolute value.
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results. Features are sorted in descending order of impact. (a) Only S. cerevisiae, drifted: S. cerevisiae
cell density; (b) only C. reinhardtii, drifted C. reinhardtii cell density; (c) S. cerevisiae and C. reinhardtii,
fixed: C. reinhardtii cell density, drifted: S. cerevisiae cell density; (d) S. cerevisiae and C. reinhardtii,
fixed: S. cerevisiae cell density, drifted: C. reinhardtii cell density. (Comparison of feature importance
at each wavelength as a feature analyzed by SHAP).
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3.4. Contribution of Features for Each Sample Based on SHAP Values

Detailed SHAP analyses were attempted by dividing the impact into positive and
negative SHAP values (Figure 7). The impacts were positively correlated with the values
for all features. In detail, S. cerevisiae and C. reinhardtii had positive impacts at 600 nm
and around 400–500 nm, respectively. When the cell density of C. reinhardtii was fixed
and the one of S. cerevisiae was shifted, the impacts were positive at 730 nm and 740 nm,
but negative at 420–450 nm and 660–690 nm. On the other hand, when the cell density of
S. cerevisiae was fixed and the one of C. reinhardtii was shifted, the impacts were positive at
400–430 nm, 460 nm, and 670–680 nm, but negative at 720–750 nm.
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features are arranged in order of the mean absolute value of the SHAP values. The horizontal axis
represents the SHAP value, and the larger the SHAP value in the positive or negative direction, the
more the feature contributes in each direction. The color represents the magnitude of the feature, with
larger features being red and smaller features being blue. (a) Only S. cerevisiae, drifted: S. cerevisiae cell
density; (b) only C. reinhardtii, drifted C. reinhardtii cell density; (c) S. cerevisiae and C. reinhardtii, fixed:
C. reinhardtii cell density, drifted: S. cerevisiae cell density; (d) S. cerevisiae and C. reinhardtii, fixed:
S. cerevisiae cell density, drifted: C. reinhardtii cell density. (Comparison of positive/negative impacts
of absorbance at each wavelength analyzed by SHAP.) Analyses for the positive and negative impacts
of each feature on cell density were performed. The reason why the values of the features and the
impacts on the features were positively correlated with each other in the cell-containing solutions
consisting of only a single strain could be that the spectrum properties of the observed strain was not
disturbed by the properties of another strain. In fact, S. cerevisiae and C. reinhardtii are strains having
different properties, and the impacts of the features of 420–450 nm and 660–690 nm had an effect in
the negative direction when the density of C. reinhardtii was fixed and the density of S. cerevisiae was
increased. The reason could be that the ratio of the cell density occupied by C. reinhardtii relatively
reduced with respect to the one by S. cerevisiae in the cell-containing solution since the wavelengths
of 420–450 nm and 660–690 nm correspond to the Soret and Q bands derived from the chloroplasts of
C. reinhardtii. Furthermore, when the cell density of S. cerevisiae was fixed and the one of C. reinhardtii
was increased, this conjecture could be also supported by the fact that the impacts were high in the
negative direction at 720–750 nm. Additionally, the impacts were high in the positive direction at
400–430 nm, 460 nm, and 670–680 nm, indicating that the cell density ratio of the green alga was
significantly correlated with the Soret band and Q band. Therefore, the differences in the impacts
depending on the specific features of both strains could be significant for the construction of the
algorithm to calculate the cell density in the cell-containing solution.

3.5. Evaluation of Prediction Accuracy on Each Cell Density

The accuracy of the cell density prediction was assessed for the cell-containing solu-
tions of S. cerevisiae and C. reinhardtii by dividing each cell density into four parts (Figure 8).
Regardless of the density of the cell-containing solution, few predicted values of the cell
densities were higher than the measured values. When the cell density of both strains was
low in the cell-containing solution, the prediction accuracy was low, varying within a range
of about 0.1 to 10 for the accuracy ratio of the cell density. When the measured density of
either S. cerevisiae or C. reinhardtii was high, on the low-density side, the evaluation results
showed a ratio of about 30. When both strains were on the high-density side in the solution,
the variation was suppressed to about 0.2 to 1.5. According to the above results, as the
properties of the cell density prediction using absorbance spectra, the improvement of the
prediction accuracy was confirmed when the cell-containing solution was composed of a
high cell density.

In the cell-containing solution composed of S. cerevisiae and C. reinhardtii, the prediction
accuracy was evaluated at each cell density. As a result, there was a tendency for the
scatter to decrease for the cell density evaluation in the high-density section, indicating the
possibility that the properties of the absorbance spectra of the strains could appear in the
cell-containing solution. In fact, in the analytical section (IV), where both strains were at
high concentrations, 87% of the evaluation accuracy of the cell density of the cell-containing
solution was within the range of 0.5 to 1.2, demonstrating highly accurate analytical results.
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Figure 8. The accuracy of each cell density estimated by the prediction method using absorbance
spectra data analyzed with a distribution diagram. (a) Each cell density in the cell-containing solution
is plotted in four compartments depending on the value of each cell density as follows: (I) S. cerevisiae:
low density, C. reinhardtii: low density; (II) S. cerevisiae: low density, C. reinhardtii: high density;
(III) S. cerevisiae: high density, C. reinhardtii: low density; (IV) S. cerevisiae: high density, C. reinhardtii:
high density. (b) Values of predicted cell density divided by the measured value are plotted on the
distribution diagram. The colored plots in black, red, blue, and yellow correspond to the values given
by the compartments of (I), (II), (III), and (IV) in Figure 8a, respectively. (Evaluation for accuracy
ratios of cell density predictions per sample using absorbance spectra data).

4. Conclusions

In this study, a method to predict the cell densities in the mixture of S. cerevisiae
and C. reinhardtii by using absorbance at each wavelength as a feature was developed.
By using the prediction, the cell density in the cell-containing solution composed of
S. cerevisiae and C. reinhardtii could be evaluated as R2 > 0.84, depending on the absorbance
spectrum. Additionally, as a result of the SHAP analyses, based on the meaningful features
such as the Soret and Q bands observed in C. reinhardtii, the cell density prediction using
absorbance spectra data could show the possibility to evaluate each cell density in the
cell-containing solution of S. cerevisiae and C. reinhardtii using simple absorbance spectra
data. Although the extremely randomized trees model was used as a machine learning
algorithm in this study, there is the potential to improve the prediction performance by
using other machine learning algorithms. Therefore, evaluating other machine learning
algorithms is one of the future works. Since the data were simply the absorbance spectra
of the cell-containing solution, the cell density prediction using absorbance spectra data
could have an industrial impact. In the near future, based on AI analysis technology for
microbiota such as in this research, meta-omics analyses using machine learning AI with
data, such as transcriptomics and metabolomics, obtained from microbiota composed of
multiple microorganisms, could be used to understand the metabolic flow related to the
production of value-added compounds.
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classification. PLoS ONE 2017, 12, e0184554. [CrossRef]

21. Sohn, M.B.; Li, H. A GLM-based latent variable ordination method for microbiome samples. Biometrics 2018, 74, 448–457.
[CrossRef] [PubMed]

22. Brachmann, C.B.; Davies, A.; Cost, G.J.; Caputo, E.; Li, J.; Hieter, P.; Boeke, J.D. Designer deletion strains derived from
Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications.
Yeast 1998, 14, 115–132. [CrossRef]

http://doi.org/10.1128/mBio.01524-14
http://www.ncbi.nlm.nih.gov/pubmed/25182323
http://doi.org/10.1016/j.biotechadv.2013.02.009
http://www.ncbi.nlm.nih.gov/pubmed/23473968
http://doi.org/10.1007/s10295-019-02231-0
http://www.ncbi.nlm.nih.gov/pubmed/31468234
http://doi.org/10.1007/s10295-011-0970-3
http://doi.org/10.1016/j.mib.2018.03.004
http://doi.org/10.1186/s12934-021-01671-7
http://doi.org/10.1093/femsre/fuab015
http://doi.org/10.3389/fmicb.2022.925454
http://doi.org/10.1038/nature14539
http://doi.org/10.1007/s10994-006-6226-1
http://doi.org/10.1016/j.inffus.2019.12.012
http://doi.org/10.3389/fmicb.2019.01722
http://www.ncbi.nlm.nih.gov/pubmed/31447800
http://doi.org/10.1073/pnas.2002959117
http://www.ncbi.nlm.nih.gov/pubmed/32675233
http://doi.org/10.1371/journal.pone.0184554
http://doi.org/10.1111/biom.12775
http://www.ncbi.nlm.nih.gov/pubmed/28991375
http://doi.org/10.1002/(SICI)1097-0061(19980130)14:2&lt;115::AID-YEA204&gt;3.0.CO;2-2


BioTech 2022, 11, 46 13 of 13

23. Waterbury, J.B.; Stanier, R.Y. Isolation and growth of cyanobacteria from marine and hypersaline environments. Prokaryotes 1981,
7, 221–223.

24. Ali, M. 2020, Pycaret. Available online: https://pycaret.readthedocs.io/en/stable/index.html (accessed on 23 September 2022).
25. Gergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2021, 13, 281–305.
26. Lundberg, S.M.; Erion, G.G.; Lee, S.I. Consistent individualized feature attribution for tree ensembles. In Proceedings of the

2017 ICML Workshop on Human Interpretability in Machine Learning (WHI 2017), Sydney, Australia, 10 August 2017.
27. Soret, J.L. “Analyse spectrale: Sur le spectre d’absorption du sang dans la partie violette et ultra-violette” (French). Comptes

Rendus De L’académie Des Sci. 1883, 97, 1269–1270.
28. Scotter, M.J.; Castle, L.; Roberts, D. Method development and HPLC analysis of retail foods and beverages for copper chlorophyll

(E141[i]) and chlorophyllin (E141[ii]) food colouring materials. Food Addit. Contam. 2005, 22, 1163–1175. [CrossRef] [PubMed]

https://pycaret.readthedocs.io/en/stable/index.html
http://doi.org/10.1080/02652030500306885
http://www.ncbi.nlm.nih.gov/pubmed/16356879

	Introduction 
	Materials and Methods 
	Strains and Growth Conditions 
	Cell Density Evaluation 
	Cell Density Prediction by AI Analytics 
	Explanation of the Prediction Results 

	Results and Discussion 
	Evaluation of Absorbance Spectrum of Each Strain of S. cerevisiae and C. reinhardtii 
	Evaluation of Predictive Performance for Cell Density Prediction with the Coefficient of Determination 
	Feature Importance Based on SHAP Values 
	Contribution of Features for Each Sample Based on SHAP Values 
	Evaluation of Prediction Accuracy on Each Cell Density 

	Conclusions 
	References

