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Objective: To investigate the projections the cerebrospinal fluid-contacting (CSF-
contacting) nucleus receives from the diencephalon and to speculate on the functional
significance of these connections.

Methods: The retrograde tracer cholera toxin B subunit (CB) was injected into the
CSF-contacting nucleus in SD rats according to the experimental formula of the
stereotaxic coordinates. Animals were perfused 7–10 days after the injection, and the
diencephalon was sliced at 40 µm with a freezing microtome. CB-immunofluorescence
was performed on all diencephalic sections. The features of CB-positive neuron
distribution in the diencephalon were observed with a fluorescence microscope.

Results: The retrograde labeled CB-positive neurons were found in the epithalamus,
subthalamus, and hypothalamus. Three functional diencephalic areas including 43
sub-regions revealed projections to the CSF-contacting nucleus. The CB-positive
neurons were distributed in different density ranges: sparse, moderate, and dense.

Conclusion: Based on the connectivity patterns of the CSF-contacting nucleus that
receives anatomical inputs from the diencephalon, we preliminarily assume that the
CSF-contacting nucleus participates in homeostasis regulation, visceral activity, stress,
emotion, pain and addiction, and sleeping and arousal. The present study firstly illustrates
the broad projections of the CSF-contacting nucleus from the diencephalon, which
implies the complicated functions of the nucleus especially for the unique roles of
coordination in neural and body fluids regulations.

Keywords: CSF-contacting nucleus, diencephalon, thalamus, projection, retrograde trace

INTRODUCTION

The cerebrospinal fluid (CSF)-contacting nucleus is a unique nucleus in the brain. It is located
within the ventral gray of the lower portion of the aqueduct (Aq) and upper portion of the fourth
ventricle (4V) floor (Song et al., 2019). The outstanding feature of this nucleus is that the neural
somata are located in the brain parenchyma but the processes stretch into the CSF (Song and
Zhang, 2018; Song et al., 2019). The morphological connections of the CSF-contacting nucleus
with non-CSF-contacting neurons, glia cells, and blood vessels have been confirmed with electron
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microscopy (Zhang et al., 2003). The unique characteristic
of the CSF-contacting nucleus implies that this nucleus may
be a key structure bridging the nerve and fluids (CSF and
plasma), and play an extremely important role in physiological
activities. It has been approximately 30 years now since we
first discovered, named and began to study this nucleus. The
basic biological characteristics of the CSF-contacting nucleus,
such as its specific labeling method (Lu et al., 2008), location
and morphology, stereotaxic coordinates (Song et al., 2019),
substance distributions [neurotransmitter (Lu et al., 2011),
receptor (Liu P. F. et al., 2017), ion channels (Wang et al., 2014)]
and its relationship with some biological activities [such as pain
(Zhou et al., 2017), sodium appetite (Xing et al., 2015), stress (Wu
et al., 2015), morphine dependence and withdrawal (Lu et al.,
2011)] have been revealed. However, this nucleus is involved in
pathways and mechanisms of different biological activities that
are still to be clarified.

The diencephalon is located between the cerebral cortex and
the mesencephalon and is covered by the cortex. It can be divided
into five parts: dorsal thalamus, epithalamus, hypothalamus,
metathalamus, and subthalamus. The dorsal thalamus serves
as a relay center for the transmission of sensory and motor
messages from the medulla oblongata and spinal cord to
the cerebrum. The hypothalamus is a high center of visceral
function modulation, and it is extremely important for the
maintenance of homeostasis. The metathalamus processes the
visual and auditory information to the cortex. The epithalamus
(mainly habenula) is involved in reward processing and
affective control (Hikosaka, 2010; Proulx et al., 2014). The
subthalamus (zona incerta and subthalamic nucleus) participate
in visceral, arousal and motor control (Mitrofanis, 2005;
Telkes et al., 2018).

One of the aims of Neuroscience is to unveil the neural
networks between different types of neurons to understand the
functions of the brain (Watabe-Uchida et al., 2012). The unique
feature of the CSF-contacting nucleus is to communicate with
body fluids. The nucleus may form specific neural circuits with
diencephalon in body fluids homeostasis and other functions.
However, the connections between the diencephalon and the
CSF-contacting nucleus have not been identified. To understand
these connections and their possible biological significance,
we injected retrograde tracer cholera toxin B subunit (CB)
into the CSF-contacting nucleus. The projections of different
diencephalic regions to the CSF-contacting nucleus can be
revealed with immunofluorescence. A putative functional
significance was speculated according to the projection
relationships. Our study provides the first approach to further
understand the biological significance of the diencephalic-CSF-
contacting nucleus connections.

MATERIALS AND METHODS

Experimental Animals
Specific pathogen-free (SPF) grade Sprague–Dawley rats (weight
250± 50 g) were acquired from the Experimental Animal Centre
of XuzhouMedical University. Rats successfully injected with the
tracer into the CSF-contacting nucleus were used for observation

and analysis (n = 6). All experiments were approved by the
Committee for Ethical Use of Laboratory Animals, Xuzhou
Medical University.

Tracer Administration
Rats were anesthetized with pentobarbital sodium (40 mg/kg,
i.p.), and heads were fixed on a stereotaxic instrument (Stoelting
51700, USA). A 1% CB solution (0.2 µl, Sigma, USA) was
injected into the core of the CSF-contacting nucleus (Bregma:
8,242 ± 183 µm, Lateral: 92 ± 6 µm, Depth: 6,451 ± 109 µm;
Song et al., 2019).

Sampling and Histology
Seven to 10 days after the injection of the tracer, rats
were perfused and sacrificed. Rats were anesthetized with
pentobarbital sodium (40 mg/kg, i.p.) and perfused with 300 ml
of phosphate-buffered saline (0.01 M PBS, pH 7.4), followed by
4% paraformaldehyde in 0.2 M phosphate buffer (300 ml, pH
7.4). The whole brain and spinal cord were isolated and sectioned
coronally on a cryostat (Leica CM1900, Germany) at 40 µm. All
sections were kept in sequence and numbered. In this study, only
the diencephalon regions were captured and analyzed.

Tracer Staining and Cell Counting
All sections were examined with CB immunofluorescence
(rabbit anti-CB primary antibody diluted in 1:600, Abcam;
donkey anti-rabbit Alexa Fluor 488 secondary antibody diluted
in 1:200, Life Technologies, Carlsbad, CA, USA). Sections
were mounted in sequence on slides, counterstained with
DAPI and coverslipped. Diencephalon sections were imaged
with a fluorescence microscope (Leica DM6, Germany) and
a confocal laser microscope (Zeiss, Germany). The cell
density of CB-positive neurons (cell number/0.2 mm2 area)
in each brain region was calculated using Image-Pro Plus
7.0 software. The density of CB-positive neurons was classified
as sparse, moderate and dense according to the densities: <5,
6–10 and >10, respectively.

Three-Dimensional (3D) Reconstruction of
Diencephalon Connections
The CB-positive neurons were aligned, segmented and registered
according to the rat common reference atlas (Paxinos and
Watson, 2007). The 3D diencephalon connections were
reconstructed using the Imaris software, version 8.4.1 (Bitplane,
USA). The ‘‘surface’’ module was used for rendering the brain
regions in the diencephalon and the outline of the brain surface.
The red areas represented strong connections; green areas
represented moderate connections, and blue areas represented
weak connections.

RESULTS

Injection of the Retrograde Tracer Cholera
Toxin B Subunit Into the CSF-Contacting
Nucleus
Injections of the CB tracer produced dense positive
staining (green). The tracer was confined within the
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boundary of the CSF-contacting nucleus, where the
microsyringe needle tract can be seen to be located at
the core of the CSF-contacting nucleus (Figures 1A,B).
Representative sections of the CSF-contacting nucleus are shown
in Figures 1C,D.

Cellular Morphology of the Diencephalon
Connections
After the retrograde tracer was injected into the CSF-contacting
nucleus, it was transported retrogradely along the axons,
and neuron somata projecting from the diencephalon
was detected.

In the diencephalon, the retrogradely labeled neurons
appeared fusiform or polygon-shaped with different neuron sizes
and clear processes. Some neurons were bipolar neurons with
two obvious processes, while others were multipolar neurons
with abundant dendrites (Figure 2).

Connection Sites of the Diencephalon
Regions
The entire diencephalon projections to the CSF-contacting
nucleus could be identified by positive-labeled neurons and
were mainly located in the hypothalamus, epithalamus, and
subthalamus. Few or no positive-labeled neurons were identified
in the dorsal thalamus and metathalamus.

In the epithalamus, CB-positive neurons were identified in the
medial habenular nucleus (MHb), in the medial part of the lateral
habenular nucleus (LHbM) and the lateral part of the lateral
habenular nucleus (LHbL). Among them, the MHb and LHbM
have strong connections, while the LHbL has sparse projections
to the CSF-contacting nucleus (Figure 3).

In the subthalamus, CB-positive neurons were observed in the
zona incerta (ZI) and subthalamic nucleus (STh). The ZI sends
moderate projections, and STh sends sparse connections to the
CSF-contacting nucleus (Figure 4).

FIGURE 1 | Image of the cholera toxin B subunit (CB)-tracer injection into the cerebrospinal fluid (CSF)-contacting nucleus. (A) The schematic diagram of the
injection site to the CSF-contacting nucleus. (B) The tracer CB injection into the CSF-contacting nucleus. Green fluorescence labeling of the CB was seen in the
entire CSF-contacting nucleus. The white arrow indicates the passage of the injected needle. (C) A representative section of the CSF-contacting nucleus in the brain.
(D) Higher magnification of the boxed area in (C). Aq, aqueduct. Scale bars: 100 µm in (B); 70 µm in (C); 40 µm in (D).
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FIGURE 2 | The cellular morphology of retrogradely labeled neurons in the diencephalon (A,B). Scale bar: 40 µm.

FIGURE 3 | Distribution of CB-positive neurons in the epithalamus (A,B). Abbreviations: MHb, medial habenular nucleus; LHbM, lateral habenular nucleus medial
part; LHbL, lateral habenular nucleus lateral part. Scale bars: 100 µm.

Most of the connections between the diencephalon and the
CSF-contacting nucleus were observed in the hypothalamus.
A total of 38 sub-regions in the hypothalamus formed
projections of the CSF-contacting nucleus. These include:
the paraventricular hypothalamic nucleus (Pa), periventricular
hypothalamic nucleus (Pe), anterior hypothalamic area (AH),
lateroanterior hypothalamic nucleus (LA), suprachiasmatic
nucleus (SCh), supraoptic nucleus (SO), supraoptic nucleus,
retrochiasmatic part (SOR), episupraoptic nucleus (ESO),
subparaventricular zone of the hypothalamus (SPa),
retrochiasmatic area (RCh), retrochiasmatic area lateral
part (RChL), lateral hypothalamic area (LH), accessory
neurosecretory nuclei (ANS), dorsal hypothalamic area (DA),

stigmoid hypothalamic nucleus (Stg), arcuate hypothalamic
nucleus (Arc), dorsomedial hypothalamic nucleus (DM),
ventromedial hypothalamic nucleus (VMH), A11 dopamine
cells (A11), A13 dopamine cells (A13), medial tuberal nucleus
(MTu), terete hypothalamic nucleus (Te), paraterete nucleus
(PTe), perifornical nucleus (PeF), subincertal nucleus (SubI),
posterior hypothalamic nucleus (PH), dorsal part of the posterior
hypothalamic area (PHD), ventral part of the pre-mammillary
nucleus (PMV), dorsal part of the pre-mammillary nucleus
(PMD), dorsal tuberomammillary nucleus (DTM), ventral
tuberomammillary nucleus (VTM), lateral mammillary nucleus
(LM), parasubthalamic nucleus (PSTh), gemini hypothalamic
nucleus (Gem), sub-mammillothalamic nucleus (SMT),
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FIGURE 4 | Distribution of CB-positive neurons in the subthalamus (A,B). Abbreviations: ZI, zona incerta; STh, subthalamic nucleus. Scale bars: 100 µm.

FIGURE 5 | Distribution of CB-positive neurons in the hypothalamus Part I (A–D). Abbreviations: Pa, paraventricular hypothalamic nucleus; AH, anterior
hypothalamic area; SO, supraoptic nucleus; Pe, periventricular hypothalamic nucleus; SCh, suprachiasmatic nucleus; LA, lateroanterior hypothalamic nucleus; RCh,
retrochiasmatic area; RChL, retrochiasmatic area lateral part. Scale bars: 100 µm.

prerubral field (PR), rostral interstitial nucleus of medial
longitudinal fasciculus (RI), and fields of Forel (F; Figures 5–7).

Among the hypothalamic regions, the Pa, AH, LA, SCh,
SO, RCh, RChL, LH, ANS, DA, STg, Arc, DM, VMH, A11,
A13, MTu, Te, PeF, SubI, PH, PHD, PMV, PMD, DTM,
and LM send strong projections to the CSF-contacting

nucleus; the SOR, SPa, PTe, VTM, PSTh, Gem, and SMT
send moderate projections; the Pe, ESO, PR, RI, and F
send sparse connections to the CSF-contacting nucleus
(Figures 5–7).

In summary, CB-positive neurons were distributed in three
functional areas including 43 sub-regions in the diencephalon
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FIGURE 6 | Distribution of CB-positive neurons in hypothalamus Part II (A-D). VMH, ventromedial hypothalamic nucleus; LH, lateral hypothalamic area; DM,
dorsomedial hypothalamic nucleus; PeF, perifornical nucleus; f, fornix. Scale bars: 100 µm.

and ranged from sparse, moderate and dense. CB-positive
neurons were mainly located in the epithalamus, subthalamus,
and hypothalamus. The dorsal thalamus and metathalamus did
not contain CB-positive neurons.

3D Reconstruction of CB-Positive
Diencephalic Neurons
The distribution of CB-positive neurons throughout the
diencephalon was 3D reconstructed. The density of the
connections became clear in a 3D view. Red areas were dense
connections (MHb, LHbM, Pa, AH, LA, SCh, SO, RCh, RChL,
LH, ANS, DA, Stg, Arc, DM, VMH, A11, A13, MTu, Te, PeF,
SubI, PH, PHD, PMV, PMD, DTM, and LM); green areas were
moderate connections (ZI, SOR, SPa, PTe, VTM, PSTh, Gem,
and SMT); and blue areas were sparse connections (LHbL, STh,
Pe, ESO, PR, RI, and F; Figure 8).

Number of Projections From Diencephalic
Regions to the CSF-Contacting Nucleus
In the diencephalon, the CB positive neurons were found in
three functional areas including 43 sub-regions. The number of
projections from these regions to the CSF- contacting nucleus is
shown in Figure 9.

DISCUSSION

The CSF-contacting nucleus is a unique nucleus in the
brain. This nucleus has non-synaptic connections between the
CSF-contacting neurons and blood vessels and the CSF, and
plays an important role in the regulation of body fluids; it has
also synaptic connections between the CSF-contacting and non-
CSF-contacting neurons, and it carries out nervous crosstalk in
the brain. The unique anatomical features of the CSF-contacting
nucleus imply that it may be a key structure bridging the nervous-
and humor- regulating systems. The connections between the
CSF-contacting neurons and blood vessels and CSF have been
described previously (Zhang et al., 2003). The projections that
this nucleus receives from the central nervous system have not
been described in detail, although the bidirectional synapses
between CSF-contacting and non-CSF-contacting neurons have
been previously observed in the parenchyma with electron
microscopy (Liang et al., 2007). This study provides a systematic
report of the projections the CSF-contacting nucleus receives
from different diencephalic functional regions.

Our results indicate that the CSF-contacting nucleus receives
extensive projections from three functional areas including 43
sub-regions of the diencephalon (Figure 10), which form the
focus of several basic and clinical studies. Taking into account
that some of these diencephalic functions have been described
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FIGURE 7 | Distribution of CB-positive neurons in hypothalamus Part III (A–C). A13, A13 dopamine cells; DA, dorsal hypothalamic area; A11, A11 dopamine cells;
PH, posterior hypothalamic nucleus; mt, mammillothalamic tract; f, fornix; PM, premammillary nucleus; VTM, ventral tuberomammillary nucleus; Te, terete
hypothalamic nucleus. Scale bars: 100 µm.

previously, the biological functions of the CSF-contacting
nucleus may be predicted based on its connection patterns.

Functional Implications
Homeostasis Regulation
The CSF-contacting nucleus receives dense projections from
the hypothalamus, which might participate in homeostasis
modulation. The role of homeostasis, modulated by the nervous,
fluid, and immune systems, is to maintain the coordinated
function of organs and systems in life activities, and a healthy
physiological equilibrium in a changing world (Burdakov, 2019).
The hypothalamus is a key structure for homeostasis regulation
such as ambient temperature, energy balance, water-electrolyte
metabolism, and biological rhythm.

Energy Balance
It is well established that hypothalamic regions play an important
role in the regulation of feeding behavior, which contributes
to processes of energy homeostasis (Flier and Maratos-Flier,
1998; Elmquist et al., 1999). The relevant hypothalamic nuclei
engaged in this function, including the Arc, DM, VMH, LH,
Pa, and PM, have extensive projections to the CSF-contacting

nucleus. Disruption of the VMH functions causes obesity, while
disruption of the LH functions induces weight loss, suggesting
the VMH as a ‘‘satiety’’ and the LH as a ‘‘feeding’’ center
(Hoebel and Teitelbaum, 1962). The Arc nucleus is extremely
important for appetite and energy expenditure (Wei et al., 2018).
Other hypothalamic nuclei are also crucial for the regulation
of energy balance (Denroche et al., 2016; Péterfi et al., 2018;
Zhang et al., 2018).

Fluids
Hypothalamic nuclei, such as the SO, LH and PSTh, can
modulate the fluid homeostasis and project extensively to the
CSF-contacting nucleus. The SO can sense the plasma osmolality
and stabilize it via the release of arginine vasopressin (AVP;
Prager-Khoutorsky and Bourque, 2015; Sandgren et al., 2018).
The LH is known for its essential role in regulating the drinking
behavior to maintain the homeostasis of fluids (Kurt et al., 2019).
The PSTh is anatomically linked to parabrachial regions and
participates in regulating the appetite for salt (Shin et al., 2011).

Biological Rhythm
The hypothalamic SCh and SPa have connections to the
CSF-contacting nucleus and can both modulate the biological
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FIGURE 8 | Three-Dimensional (3D) view of the diencephalon connection patterns to the CSF-contacting nucleus (A–D). Red areas are strong connections; green
areas are moderate connections; blue areas are weak connections.

rhythm. The SCh is known as amaster brain clock controlling the
circadian rhythms. Body activities synchronize the metabolism,
cognition and various behaviors to the environmental day-night
cycle (Mohawk et al., 2012). The SPa is also involved in circadian
rhythm regulation. It is a hub structure that relays the circadian
information from the SCh to other brain areas and finally
controls the circadian rhythms of various physiological processes
(Lu et al., 2001). Recently, the LHb in the epithalamus was
confirmed to express clock genes involved in the regulation of
circadian functions (Salaberry et al., 2019).

Visceral Activity
The hypothalamus is a higher center of visceral activity
modulation. Activation of the hypothalamus can produce
significant autonomic responses. Among the hypothalamic
regions and nuclei that mediate the visceral activity regulation
are the Pa, DM, VMH, VTM, PeF, PH and PSTh, which
project extensively to the CSF-contacting nucleus. The Pa is

regarded as an integrative region that modulates the sympathetic
outflow and cardiovascular activity (Coote, 2005; Li et al.,
2019). Electrical stimulation of the DM and PeF results in
tachycardia in rats (López-Gonzalez et al., 2013). Lesions in
the VMH can aggravate the gastric mucosal injury through
the vagal nerve pathway (Sun H. et al., 2018). The VTM is
a nucleus with a high density of histaminergic neurons and
is involved in arterial pressure control. Electrical or chemical
stimulation of the PH increases arterial pressure (Yamanaka
et al., 2017), heart rate, and sympathetic nerve activity (Gao et al.,
2016). The PSTh also participates in cardiovascular regulation
(Ciriello et al., 2008).

Stress
The CSF-contacting nucleus receives input from hypothalamic
Pa, SO and DA and may participate in stress. Stress responses
activate the hypothalamic-pituitary-adrenal (HPA) axis, where
Pa can release hormones, such as the corticotropin-releasing
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FIGURE 9 | Diencephalic CB-positive neuronal input to the CSF-contacting nucleus (mean ± SD, n = 6). (A) Epithalamus; (B) Subthalamus; and (C) Hypothalamus.

hormone (CRH) and AVP, that affect biological activities
(Joseph and Whirledge, 2017). The SO also expresses AVP
as well as other substances, such as oxytocin, in response to
a wide variety of stressors (Neumann, 2007; Borrow et al.,
2018). In rats, the DA neurons are activated during stress as
illustrated by c-Fos expression (Sarkar et al., 2007), and DA
neurons are involved in mediating stress-induced hyperthermia
(Machado et al., 2018).

Emotion
Both the LHb and MHb in the epithalamus have strong
projections to the CSF-contacting nucleus. Lesion and genetic
studies in mice and zebrafish respectively showed neuron burst
firing under depression, which can be significantly reversed with
antidepressants (Kim et al., 2018). Deep brain stimulation of the
STh in patients with Parkinson’s disease, improves anxiety and
mood disorders (Eisenstein et al., 2014; Gourisankar et al., 2018).
The hypothalamic VMH is involved in anxiety and is a target
of anxiolytic substances (Jiang et al., 2018). Moreover, the DM
regulates panic-related defensive behavior and produces escape
behavior (de Bortoli et al., 2013).

Pain and Addiction
The CSF-contacting nucleus receives input from the Pa, SO, A11,
ZI, and STh and may participate in pain modulation. The Pa
is involved in visceral hypersensitivity as revealed by colorectal
distension (CRD; Zhang et al., 2016; Tang et al., 2017). The Pa
and SO synthesize and release oxytocin, which participates in
neuropathic pain (Sun W. et al., 2018). The A11 hypothalamic
nucleus regulates the trigeminal analgesia andmigraine headache
(Kagan et al., 2013; Abdallah et al., 2015). The ZI and STh are
subthalamus structures. Many studies have confirmed the role
of ZI in pain processing via different nociceptive pathways and
various mechanisms (Trageser and Keller, 2004; Cavdar et al.,
2006; Masri et al., 2009; Moon et al., 2016). The deep brain
stimulation of the STh can produce significant improvement
of overall pain in patients with advanced Parkinson’s disease
(Oshima et al., 2012).

The epithalamus (MHb and LHb) and LH in the
hypothalamus project to the CSF-contacting nucleus and
may participate in drug addiction. The MHb plays a significant
role in drug addiction, especially nicotine and opioid addiction
because it contains a high density of nicotinic acetylcholine
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FIGURE 10 | The schematic diagram of projections from functional areas in the diencephalon to the CSF-contacting nucleus. Among them, epithalamus contains
three sub-regions, the hypothalamus contains 38 sub-regions, and subthalamus contains two sub-regions.

receptors and µ opioid receptors (Fowler and Kenny,
2014; Gardon et al., 2014; Shih et al., 2014). However,
the LHb correlates with the negative affective state after
withdrawal from drug abuse (Mathis and Kenny, 2019).
The LH is involved in drug-seeking behavior elicited by
drug-associated stimuli.

Sleeping and Arousal
The CSF-contacting nucleus receives input from the LH, PeF,
and ZI and may participate in sleeping and arousal. Different
neuron types in the tuberomammillary nucleus and LH are
implicated in the sleep/wakefulness regulation (Saito et al., 2018).
The PeF receives inputs from circadian rhythm messages of the
SCh to promote waking (Zhong et al., 2017). The stimulation
of thalamic-ZI projections induce a sleep-like state (Liu et al.,
2015), and a GABAergic subpopulation of neurons in the ZI can
promote sleep (Liu K. et al., 2017).

In this study, we used a tract-tracing method to reveal the
CSF-contacting nucleus input patterns from the diencephalon.
The unique morphological feature of the CSF-contacting nucleus
is that the somata are located in the brain parenchyma and
can receive input from the above diencephalon areas; the
processes can form synaptic and non-synaptic connections with
non-CSF-contacting neurons, CSF, or plasma. Circuits forming
between the diencephalon→CSF-contacting nucleus→non-
CSF-contacting neurons may participate in the regulation of
life activities via neuron-neuron crosstalk. Circuits that involve
diencephalon→CSF-contacting nucleus→CSF/plasma may
modulate physiological functions via neuron-fluid interactions.
Based on the connections between the CSF-contacting nucleus
and the diencephalon, we propose that the CSF-contacting
nucleus participates in homeostasis regulation, visceral activity,
stress, emotion, pain and addiction, sleeping and arousal,
among others. Our study provides morphological evidence for

further unveiling the significance of CSF-contacting nucleus in
brain functions.
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