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Abstract

Soil greenhouse gas fluxes (particularly CO2, CH4, and N2O) play important roles in climate change. However, despite the
importance of these soil greenhouse gases, the number of reports on global soil greenhouse gas fluxes is limited. Here, new
estimates are presented for global soil CO2 emission (total soil respiration), CH4 uptake, and N2O emission fluxes, using
a simple data-oriented model. The estimated global fluxes for CO2 emission, CH4 uptake, and N2O emission were 78 Pg C
yr21 (Monte Carlo 95% confidence interval, 64–95 Pg C yr21), 18 Tg C yr21 (11–23 Tg C yr21), and 4.4 Tg N yr21 (1.4–11.1 Tg
N yr21), respectively. Tropical regions were the largest contributor of all of the gases, particularly the CO2 and N2O fluxes.
The soil CO2 and N2O fluxes had more pronounced seasonal patterns than the soil CH4 flux. The collected estimates,
including both the previous and the present estimates, demonstrate that the means of the best estimates from each study
were 79 Pg C yr21 (291 Pg CO2 yr21; coefficient of variation, CV= 13%, N= 6) for CO2, 21 Tg C yr21 (29 Tg CH4 yr21;
CV = 24%, N= 24) for CH4, and 7.8 Tg N yr21 (12.2 Tg N2O yr21; CV = 38%, N= 11) for N2O. For N2O, the mean of the estimates
that was calculated by excluding the earliest two estimates was 6.6 Tg N yr21 (10.4 Tg N2O yr21; CV= 22%, N= 9). The
reported estimates vary and have large degrees of uncertainty but their overall magnitudes are in general agreement. To
further minimize the uncertainty of soil greenhouse gas flux estimates, it is necessary to build global databases and identify
key processes in describing global soil greenhouse gas fluxes.
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Introduction

Soil greenhouse gas (GHG; particularly CO2, CH4, and N2O)

fluxes are a key component to understanding climate change. CO2

is produced by mostly heterotrophic organisms and plant root

respiration and is emitted from the soil surface to the atmosphere

[1–2]. Soil is generally a sink of atmospheric CH4 through

oxidation in the soil [3–4], but the soil in wetlands is a strong

source of CH4. In general, N2O is released from the soil surface to

the atmosphere [5–6] and is the result of N2O production and

consumption processes in soil [7]. The soil CO2 flux is the largest

component of the soil GHG fluxes, and it nearly counterbalances

the plant carbon fixation. However, considering their global

warming potentials, CH4 and N2O fluxes are also important

components. Moreover, it is reported that recent changes in the

climate may increase these soil GHG fluxes both globally and

regionally [2] [8].

Despite the importance of these soil GHG fluxes, the number of

reports on global soil GHG fluxes remains limited. In general,

these estimations have been performed using detailed process-

oriented models [6] [9] or simple data-oriented models [2] that

entail data synthesis, and these two approaches compensate for the

disadvantages of each. For example, simple data-oriented models

cannot trace detailed processes and may not be suitable for long-

term predictions, but they can provide more data-oriented

estimates. Also, simple data-oriented models provide benchmarks

against results from more detailed, process-oriented models [1]

[10].

The objective of this paper is to report new global estimates of

soil CO2 emission (total soil respiration), CH4 uptake, and N2O

emission fluxes. First, I report new global estimates that were

estimated using a simple data-oriented model [8] [11]. The soil

GHG flux submodels describe each gas flux simply in terms of

three functions: the soil physiochemical properties, water-filled

pore space, and soil temperature. The total fluxes, spatial

distribution, and seasonality of each flux were estimated. Here,

the average fluxes between 1980 and 2009 are provided. Second,

the global estimates reported in previous studies were compiled,

and I report the means of the best estimates from each study.

Results

The estimated global fluxes of CO2 emission, CH4 uptake, and

N2O emission were 78 Pg C yr21 (Monte Carlo 95% confidence

interval, 64–95 Pg C yr21), 18 Tg C yr21 (11–23 Tg C yr21), and

4.4 Tg N yr21 (1.4–11.1 Tg N yr21), respectively. The uncertainty

was the largest for the N2O flux and smallest for the CO2 flux.

Respectively, the boreal (mean annual temperature, T,2.0uC),
temperate (2.0#T#17.0uC), and tropical (T.17.0uC) ecosystems

contribute 10%, 19%, and 70% to the total global CO2 flux, 18%,

26%, and 56% to the total global CH4 flux, and 5%, 18%, and

77% to the total global N2O flux. The contribution of the tropical
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ecosystems was the highest for all of the gases, especially for CO2

and N2O.

Figure 1 shows the estimated spatial distributions of the soil

CO2 emission, CH4 uptake, and N2O emission fluxes; the

relationships between each gas flux are shown in Figure 2. The

CO2 and N2O fluxes showed clear spatial patterns that were

controlled mainly by temperature. The fluxes were higher in the

tropical regions, and they decreased at higher latitudes, yet the two

gas fluxes do not always co-occur (Figure 1AC and Figure 2C).

The fluxes from the +30u to 230u latitude belt were high for CO2

and N2O, but the belt seems to be wider for CO2 than N2O. For

N2O at the latitude regions of approximately +30u and 230u, only
the fluxes from east of North America and East Asia, east of South

America, and east of Australia were high. In contrast, the CH4 flux

did not show clear temperature-induced spatial patterns. Hot spots

of CH4 uptake were observed in North and South America,

Kamchatka, Japan, and New Zealand, corresponding to the

distribution of highly porous soils (Andosols). The distribution

patterns of the frequencies differed among the three gases

(Figure 3). The CO2 flux showed a wider and flatter range than

the CH4 flux and exhibited a relatively low peak value (300–

450 g C m22 yr21). The CH4 flux has a single peak in the middle

of the range. The N2O flux had a long, right-skewed distribution,

which is often observed in field studies [12]. The distributions in

the histograms correspond to the spatial distribution of each gas

flux. The distinct spatial distribution patterns for CO2 and N2O

(Figure 1) resulted in the broad distributions of the CO2 and N2O

fluxes in the histograms (Figure 3); the wide spatial distribution of

the smaller flux resulted in peaks in the low values in CO2 and

N2O flux histograms (Figure 3).

Seasonal changes in the CO2 emission, CH4 uptake, and N2O

emission fluxes are shown in Figure 4. Except in low-latitude

regions, CO2 and N2O showed clear seasonality, being high

during the summer and low during the winter. As observed in

Figure 1, the belt of large flux around the tropical regions was

narrower for N2O than CO2, and a north-south asymmetry can be

observed for N2O. The seasonal changes in the CH4 flux were not

as large as the other two gases. The CH4 uptake flux was relatively

higher in the middle latitudes and was high during the summer

and low during the winter. The seasonality seemed to be the

opposite at low latitudes (+20u and 220u).

Discussion

I compiled reports on global soil CO2 emission, CH4 uptake,

and N2O emission fluxes [1–6] [9–10] [13–41], and the estimates

in this study were comparable to those of previous studies

(Figure 5). The estimate for CO2 was within the range of previous

studies but was relatively smaller than the latest estimate derived

from the synthesis of global data [2]. For the CH4 uptake, the

estimate in this study was intermediate among the previous

estimates, and the CH4 estimates had greater variance when

compared with the CO2 estimates. In my literature survey, the

number of estimates for CH4 was the largest among the three

gases. The estimate for N2O was of the same magnitude as the

previous estimate but was relatively smaller than those of previous

studies. When evaluating the uncertainty of each study, the

uncertainties for the N2O and CH4 estimates were quite large.

The uncertainty for the CO2 flux appears to be smallest; however,

it should be emphasized that the uncertainty for the CO2 estimate

would still have the highest impact on the uncertainty in terms of

the global GHG budget because, among the three gases, the soil

CO2 efflux is the largest component in global warming potentials.

The means of the best estimates from each study were 79 Pg C

yr21 (291 Pg CO2 yr
21; coefficient of variation, CV=13%, N=6)

for CO2, 21 Tg C yr21 (29 Tg CH4 yr
21; CV=24%, N=24) for

CH4, and 7.8 Tg N yr21 (12.2 Tg N2O yr21; CV=38%, N=11)

for N2O. For N2O, the earliest two estimates (the estimate of Banin

et al. (1984) [38] and Banin (1986) [39], and that of Bowden (1986)

[37]) are markedly higher than the others values. Accordingly, the

mean calculated without these two estimates was 6.6 Tg N yr21

(10.4 Tg N2O yr21; CV=22%, N=9). The base years of the

estimates compiled in Figure 5 vary among the estimates.

Moreover, it was found that the base year of each estimate is

not always stated in each reference. Because the climate is

changing, and interannual climate variation should not be

regarded as being negligible, the difference in the selected base

years should be an important consideration. In addition, the

vegetation, land cover, or soil type that was masked out in each

simulation varies among these studies, which is one of the sources

of variations in the estimates. The compilation presented here

provides approximate overall estimates based on historic reports;

however, the consideration of the different calculation conditions

used in various studies is one of the important process for lessening

the variation of estimates among studies. Another issue is that the

source of uncertainty and the definition of uncertainty differ

among studies, which hinders the comparison of uncertainty in

published estimates.

More distinct spatial distribution patterns and seasonality were

found for CO2 and N2O than for CH4. This difference is mostly

attributable to the high temperature sensitivity of CO2 and N2O

Figure 1. Global maps of the estimated rates of fluxes. (A) CO2 emission flux, (B) CH4 uptake flux, and (C) N2O emission flux. The values are the
averages between 1980 and 2009.
doi:10.1371/journal.pone.0041962.g001
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and the low temperature sensitivity of CH4 in the model structure.

Similar spatial distribution patterns were found in previous studies.

For example, it is reported that the contribution of CO2 flux from

tropical ecosystems was 67% [2]. Also it is estimated that more

than 60% of the global N2O flux occurred via tropical forest and

savanna ecosystems [6]. For the CH4 uptake flux, the global

distribution pattern still appears to vary among models [4] [21];

some studies estimated distinct spatial distribution patterns,

whereas others did not. For example, four schemes for CH4

uptake (the algorithms of Potter et al. (1996) [9], Ridgewell et al. (1999)

[23], Del Grosso et al. (2000) [42], and Curry (2007) [22]) were used

for global CH4 uptake flux estimates [21]; the comparison

demonstrated that the total CH4 uptake fluxes estimated by the

four schemes were comparable, but the fluxes showed the different

spatial distribution patters.

One of the limitations of the model used in this study could be

the simple exponential function that is used to estimate the

temperature response of GHG fluxes, especially for the CO2 flux.

It has been reported that the temperature sensitivity of soil CO2

fluxes changes depending on the temperature; in particular, it has

been noted that soil CO2 flux shows a greater temperature

sensitivity at low temperatures [43]. For simplicity, the gas flux

submodels used here adopts a simple exponential temperature

response. This simplification may lead to errors in the estimation

of soil CO2 fluxes in cooler regions, although this limitation likely

has a small effect on the global estimates because the contributions

of temperate and tropical regions dominate the global soil CO2

flux. Another limitation is that our simulations did not distinguish

between forested and agricultural areas. The gas flux submodels

were parameterized using data observed in forested areas and do

not include the effects of agricultural activity (e.g., N fertilizer

sources). The N2O flux, in particular, substantially differs between

forested areas and agricultural areas. Therefore, the estimates

reported in this study only account for so-called background

emissions from agricultural areas.

An advantage of the present study is that the estimates are based

on the simple data-oriented models that were data-assimilated

with multi-site data using Bayesian calibration; therefore, the

model estimates were well constrained by the observed data and

are shown with uncertainty. To obtain more data-constrained

estimates of global soil GHG fluxes, however, it would be

important to constrain models with the global dataset via the

data-assimilation process. One of the key factors is the de-

velopment of global datasets [44]. Another key is to include

necessary, though not too many, processes in the model. Simpler

models are easy to data-assimilate and can provide more data-

constrained estimates, but they may not be good for long-term

estimations because a variety of potential feedback processes

should affect the fluxes. However, too many detailed-process-

oriented models can provide possible feedback processes but are

not easily data-constrained with global datasets, and they increase

uncertainty. Therefore, to identify essential processes in describing

global soil GHG fluxes, closer collaborations between modelers

and experimenters/observers and inter-model comparisons are

vital.

Figure 2. Relationships between each flux. (A) CO2 emission flux and CH4 uptake flux, (B) CH4 uptake flux and N2O emission flux, and (C) N2O
emission flux and CO2 emission flux.
doi:10.1371/journal.pone.0041962.g002

Figure 3. Histograms of modeled soil GHG fluxes by gridded cells. (A) CO2 emission flux, (B) CH4 uptake flux, and (C) N2O emission flux.
doi:10.1371/journal.pone.0041962.g003
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This study reported new global estimates of soil CO2 emission,

CH4 uptake, and N2O emission fluxes, which were estimated using

a simple data-oriented model. The estimates were comparable to

the previous estimates for all of the gases evaluated. The

simulation results clearly demonstrated differences and similarities

in spatial distribution patterns and in the seasonality of the three

gas fluxes. The results, including both previous and the present

estimates, revealed that the reported estimates vary and have large

uncertainties but that the overall magnitudes are in general

agreement. To lessen the uncertainty in soil GHG flux estimates

Figure 4. Seasonal and latitudinal distributions of the fluxes. (A) CO2 emission flux, (B) CH4 uptake flux, and (C) N2O emission flux.
doi:10.1371/journal.pone.0041962.g004

Figure 5. Comparison of the global estimates for each flux. (A) CO2 emission flux, (B) CH4 uptake flux, and (C) N2O emission flux. The
estimates are in reverse chronological order. For the CH4 flux, the studies were divided according to the methodologies because the number of
studies was large. The values in ‘‘data synthesis and simple model’’ include estimates from data synthesis and extrapolations. For the CO2 flux, all
estimates are from data synthesis and simple modeling. For the N2O flux, only the estimate in Hirsch et al. (2006) [31] is from atmospheric inversion,
and the estimates from Potter and Klooster (1998) [33] to Bouwman et al. (1993) [5] are from process-based model. Other estimates are from data
synthesis. The definitions of the bars differ (*95% confidence interval; **standard deviation; ***standard error; ****based on two different model
assumptions or parameters; no-mark: no uncertainty was reported or the definition of the bar could not be explicitly identified.). The higher end of
the bar of Smith et al. (2000) [15] is 90 Tg C yr21 (B). The values in Ito and Inatomi (2011) [21] are the results from four models (B). The values in Hein et
al. (1997) [28] are the results from three different assumptions (B). The value in Hirsch et al. (2006) [31] is the preindustrial flux (i.e., the anthropogenic
terrestrial flux enhancement was removed), and the value in Olivier et al. (1998) [32] is the sum of the soil microbial production, grasslands, and
background emissions arable land sources (C). For Banin et al. (1984) [38] and Banin (1986) [39], the estimate without cultivated land is plotted (C).
When cultivated land is include, the estimate ranges from 4 to 29 Tg N yr21. For the estimates of IPCC, only the latest estimates were included (IPCC,
2007) [30] (B,C). In this synthesis, I did not include estimates that appeared to be the citation of the estimates in IPCC reports. Bouwman et al. (1995)
[41] reported two estimates of N2O emission flux that were calculated by overlaying the emission inventories from Bouwman et al. (1993) [5] and
Kreileman and Bouwman (1994) [35] with a new land cover database. The estimates (7.0 and 6.6 Tg N yr21) were slightly different from original
estimates (6.8 and 6.7 Tg N yr21), but were approximately the same as the originals; therefore, these estimates of Bouwman et al. (1995) [41] were not
included in this compilation.
doi:10.1371/journal.pone.0041962.g005
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further, it is necessary to build global databases and identify key

processes in describing global soil GHG fluxes.

Materials and Methods

The SGR, a regional, simple soil greenhouse gas flux model,

was used [8] [11]; the SGR model consists of submodels of soil

temperature, water, and GHG fluxes (Figure S1). A monthly time

step was adopted, and the inputs for the model were the monthly

mean air temperature and the monthly precipitation. The soil

physical and chemical properties were also required. The soil

temperature submodel calculates the soil temperature using the

mean air temperature and the snow cover, and the soil water

submodel calculates the water-filled pore space (WFPS) using the

air temperature, the potential evapotranspiration [45], and the

precipitation. The soil water characteristic was estimated using the

generalized soil-water relationship [46]. The Bayesian calibration

scheme was used to parameterize the snow, soil temperature,

WFPS, and soil gas submodels. The scheme is an optimization

scheme that uses Monte Carlo sampling and a model-data

synthesis scheme. In each grid, the snow cover and potential

evapotranspiration were calculated using monthly air temperature

and precipitation data, and the soil temperature and WFPS were

subsequently simulated. Using the soil physiochemical property,

WFPS, and soil temperature, the flux model for each gas yields

a monthly flux. The model is described in detail elsewhere [8] [11–

12], and all parameters are shown in Table S1.

Gas Flux Submodel
The SG models were used for the soil GHG fluxes [11]. In these

models, each gas flux (CO2, mg C m22 s21; CH4, mg C m22 h21;

and N2O, mg N m22 h21) is described by the same three factors:

soil physiochemical properties, soil water, and soil temperature:

Gas flux~f (SP)g(WFPS)h(T), ð1Þ

where f(SP) is the function for the soil physiochemical properties

(SP, 0–5-cm soil layer), g(WFPS) is the function for the WFPS (5-cm

depth), and h(T) is the function for the soil temperature (5-cm

depth).

The f(SP) is defined as follows: the function for the CO2 flux was

defined to increase with increasing C/N ratios (CNR, 0–5-cm soil

layer):

f (CNR)~menCNR ð2Þ

The function for the CH4 flux was defined to decrease with

increasing bulk density (BD, Mg m23, 0–5-cm soil layer):

f (BD)~me{nBD ð3Þ

For the N2O flux, the function was defined to decrease with

decreasing CNR:

f (CNR)~me{nCNR ð4Þ

The function for the WFPS (5 cm) was defined by the following

equation and was used for every gas model:

g WFPSð Þ~ WFPS{a

b{a

� �d
WFPS{c

b{c

� �{db{c
b{a

, ð5Þ

where the parameters a and c are the minimum and maximum

values of the WFPS, respectively (i.e., g(a) = g(c) = 0). Parameter b,

which ranges between a and c, is the optimum parameter (i.e.,

g(b) = 1). Parameter d controls the curvature of the function, but

the three other parameters also affect the shape. The function has

a convex shape, and the values range from 0 to 1.

The exponential function was used for the soil temperature for

every gas flux as follows:

h(T)~epT , ð6Þ

where p is the parameter and T is the soil temperature (uC, 5 cm).

The value of h(T) is 1 when the soil temperature is 0uC.
The gas flux submodels were calibrated using multi-site data,

which were gathered monthly in Japanese forests between 2002

and 2004 (36 sites, N=768 in total for each gas flux) [11]. After

parameterisation, the values of the root mean square errors

(RMSE) for the CO2, CH4, and N2O fluxes were 10.25 mg C m22

s21, 29.29 mg C m22 h21, and 5.65 mg N m22 h21 (N=768 for

each gas), respectively.

Snow Submodel
I adopted a simple snow model that calculates the snow

accumulation and snowmelt based on the air temperature and the

precipitation [47].

If TairƒTsnow then Snowfall~PRE ð7Þ

If Tair§Tmelt then Snowmelt~Smelt(Tair{Tmelt) ð8Þ

where Tair is the monthly air temperature (uC), Tsnow is the

maximum temperature at which precipitation becomes snow (uC),
Tmelt is the minimum temperature at which snowmelt occurs (uC),
Smelt is the snow melting rate (mmuC21), and PRE is the

precipitation (mm). This simple snow model was used to estimate

whether soil is covered with snow. In this model, the amount/

depth of snow accumulation does not affect the simulation.

Instead, the model output is affected by whether the soil is covered

with snow via the soil temperature submodel.

Soil Water Submodel
Because the gas flux models require the WFPS, the WFPS was

calculated in the soil water submodel. First, an index of wetness

was defined as follows:

ri~
RprePREiz(1{Rpre)PREi{1

RpetPETiz(1{Rpet)PETi{1
ð9Þ

where ri is the wetness index of the month (ratio). PREi and PREi21

are the precipitation for the month and the last month (mm),

respectively, and PETi and PETi21 are the potential evapotrans-

piration of the month and the last month (mm), respectively. Rpre

and Rpet are constants (ratio) that indicate the weights of the

precipitation and potential evapotranspiration of the month,

respectively. The function indicates that the wetness of the site,

ri, is affected by not only the precipitation and potential

evapotranspiration of the month but also those of the last month.

Global Soil Greenhouse Gas Fluxes
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Second, the WFPS was calculated using the following functions:

If ri§1 then WFPSi~SWW ln(ri)zWS0 ð10Þ

If riv1 then WFPSi~SWD ln(ri)zWS0 ð11Þ

If TairvTW then WFPSi~WFPSi{1 ð12Þ

where WS0 is a WFPS when r is 1 (or ln(r) = 0) and is defined as the

WFPS of a 30-kPa soil water potential and WFPSi21 is the WFPS

of the last month. It is assumed that the WFPS does not change

when the air temperature is low (lower than TW uC ) because of the

low evapotranspiration and the minor amount of snowmelt.

The potential evapotranspiration was estimated using the

Thornthwaite method [45], which calculates the potential

evapotranspiration using the air temperature and the longitude.

The generalized soil2water characteristics model [46] was used to

calculate the soil water characteristics (WS0) from the soil texture.

The default parameters were used for the potential evapotrans-

piration submodel [45] and the soil water characteristics submodel

[46].

Soil Temperature Submodel
A linear model was used for soil temperature (Tsoil, uC): when

the soil is not covered with snow, the soil temperature is calculated

with a linear function of air temperature (Tair, uC); when soil is

covered with snow, a constant temperature was assumed.

If Snow~0 then Tsoil~Tair{(SstTairzIst) ð13Þ

If Snoww0 then Tsoil~Tsnowsoil ð14Þ

where Sst, Ist, and Tsnowsoil are constant (uC).

Effect of Atmospheric CH4 Concentration on CH4 Uptake
Although uncertain feedbacks between soil nitrogen and CH4

oxidation in soil have been suggested [48], the CH4 uptake is

generally expected to increase with the atmospheric CH4

concentration [4]. The effect of atmospheric CH4 was therefore

included by multiplying the factor of CH4 concentration, j([CH4]),

which was calculated using the relative concentration of atmo-

spheric CH4.

CH4 flux~f (SP)g(WFPS)h(T)j(½CH4�): ð15Þ

Driving Data and Simulations
The gas fluxes were evaluated with a spatial resolution of

0.5u60.5u. The air temperature and precipitation were derived

from the CRU 3.1 (Climate Research Unit) climate data [49], and

the global grid area data in the EOS-WEBSTER were used. The

ISRIC-WISE global dataset of soil properties was used for the

distribution of the soil physiochemical properties [50]. The soil

physiochemical properties in the ISRIC-WISE dataset were

converted to those of the 0–5-cm soil layer using ISRIC-WISE

global soil profile data [51]. Soils with distinctively small bulk

density (#0.28 Mg m23 in ISRIC-WISE) were excluded because

they were presumed to be peat soils. The data of atmospheric CH4

concentrations observed at the Ryori BAPMon station, from the

GLOBALVIEW-CH4 database [52], were used to calculate

j([CH4]).

A Monte Carlo approach was used to evaluate the uncertainty

of the estimates. For each simulation, new parameters were chosen

from the uncertainty for each parameter, as determined through

the Bayesian calibration. A normal distribution with a 10%

coefficient of variance was assumed for each parameter that did

not undergo Bayesian calibration. The model was run 1000 times,

and the results were analyzed using the R statistical computing

software (version 2.11.1). The codes for the SGR and Bayesian

calibration were written in C.

Here, the average CO2 emission flux, CH4 uptake flux, and

N2O emission flux between 1980 and 2009 are shown. The SGR

models do not include CH4 emissions; therefore, this study focuses

on the soil CH4 uptake. Areas of ice, permanent water, mangrove,

and peat soils (see above) were masked out. The cultivated area

was included in this study.

Comparison with Data from a Global Database of Soil
CO2 Flux (Soil Respiration)
A global database of soil CO2 flux (soil respiration) was released

recently (https://code.google.com/p/srdb/) [44]. Although the

mismatch in scale between site-scale measurements and the coarse

resolution of the simulation (0.5u60.5u) should be an issue, the

results of the simulation were compared with the data in the

database (version 20100517a). For the comparison, the data from

non-agricultural ecosystems without experimental manipulation

measured using infrared gas analyzer or gas chromatography were

extracted. The data with quality check flags, except for Q01, Q02,

and Q03, were excluded (please see the database). A total of 1464

data points met the above conditions, and 1246 data points where

the measurement locations (latitude and longitude) corresponded

to the simulated area were included. The comparison showed that

the two agreed in their magnitude and were positively correlated

(R=0.43) (Figure S2). However there was some mismatches: the

variation in the simulated values was less than that of observed

data points. In particular, the simulation did not produce large

fluxes (e.g. .1500 g C m22 yr21). This difference is partly due to

the different scale in the field measurements and the simulation.

The second difference is that the fluxes generated by the

simulation were smaller than those of the database. This difference

resulted in the gap between the estimate in this study and the

global estimate reported by Bond-Lamberty (2010) [2], which is

based on the global database (Figure 5). This gap would suggest

that the global estimate substantially varies depending on the data

used to constrain the model, although the differences in model

structures and the scale mismatch between measurements and

simulations should be taken into account.

Supporting Information

Figure S1 Schematic diagram of the modeling approach.

(DOC)

Figure S2 Comparison between data in a global dataset [44]

and those of the simulations. The data from non-agricultural

ecosystems without experimental manipulation measured using

infrared gas analyzer or gas chromatography were extracted. The

data with quality check flags, except for Q01, Q02, and Q03, were

excluded (please see the database). A total of 1464 data points met

the above conditions, and 1246 data points where the measure-

ment locations (latitude and longitude) corresponded to the

simulated area were included. The broken line is y = 0.17x+418
(P,0.0001). The Pearson’s correlation coefficient was 0.43.
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