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Modern human societies show hierarchical social modularity (HSM) in

which lower-order social units like nuclear families are nested inside increas-

ingly larger units. It has been argued that this HSM evolved independently

and after the chimpanzee–human split due to greater recognition of, and

bonding between, dispersed kin. We used network modularity analysis

and hierarchical clustering to quantify community structure within two wes-

tern lowland gorilla populations. In both communities, we detected two

hierarchically nested tiers of social structure which have not been previously

quantified. Both tiers map closely to human social tiers. Genetic data from

one population suggested that, as in humans, social unit membership was

kin structured. The sizes of gorilla social units also showed the kind of con-

sistent scaling ratio between social tiers observed in humans, baboons,

toothed whales, and elephants. These results indicate that the hierarchical

social organization observed in humans may have evolved far earlier than

previously asserted and may not be a product of the social brain evolution

unique to the hominin lineage.
1. Background
How did human society transition from small, autonomous groups, to

multi-tiered, hierarchically nested structures in which networks of association

and cooperation coalesce into successively higher-level units? And when did this

happen? According to the dominant narrative, the transition to a complex, multi-

tiered society in humans was part of a broader trend in mammalian evolution in

which brain size increase is associated with a suite of social cognition capacities

referred to as the Social Brain [1]. This hypothesis is supported by the presence

of highly developed neo-cortices in the mammalian taxa in which hierarchical

social modularity (HSM) is best documented (primates, elephantidae, odonto-

cetes) [2,3]. In fact, all of these taxa show a similar scaling pattern in which the

size of social groups at each social tier is the same fixed multiple of the size of

groups in the next lower tier, implying some common mechanism is at play [4].

An extreme version of the social brain narrative is that human HSM is a

product of hominin brain evolution, distinct from HSM observed in other

primates [5], kick-started when early hominins living in multi-male, multi-

female societies evolved a heightened capacity to recognize dispersed kin [6].

The social brain enhancements that evolved in the context of collaborating

with large coalitions of dispersed kin then facilitated the development of

HSM when the transition to single male social groups brought more structure

to kin interactions. In this narrative, the extension to even larger networks of

reciprocity among non-kin is due to further expansion of social brain capacity

[7]. A major foundation of this argument is that of all great apes, only

humans have been documented to show HSM [5]. But is the absence of evi-

dence, evidence of absence? Although chimpanzees appear not to show

HSM, there has been no rigorous attempt to study HSM in the next sister
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taxon, gorillas. And there are good reasons to suspect that

western gorilla (Gorilla gorilla) may exhibit HSM. Like most

traditional human societies [8], western gorillas predomi-

nantly live in reproductive groups with only one adult

male (silverback) and one or more females with dependent

offspring [9]. Upon reaching sexual maturity, both sexes dis-

perse from their natal groups [10]. Females transfer into

another social group, however, male gorillas may spend

many years as solitary males before they are able to attract

their own females and form a stable social group [9].

Unlike chimpanzees, strong territoriality does not prevent

higher-order associations between social units. Rather,

much like humans, western gorilla reproductive groups

occupy overlapping home ranges [11,12] and often aggregate

at resource hotspots [13]. There are also anecdotal reports of

affiliative interactions between these groups [12,14] and gen-

etic evidence that individuals may regularly move between

groups [15] and that silverback males may choose to live in

close proximity to related silverbacks [16].

HSM has not been previously studied in western gorillas

in good part because their home ranges span large swaths of

thick tropical forest, making observations of inter-group

social interaction difficult. To circumvent this problem, we

analyse observational data from two mineral-rich forest clear-

ings in the Republic of Congo. The superabundant resources

in such clearings draw gorillas from considerable distances,

creating hubs for social interaction [17,18]. Hierarchical clus-

tering and network modularity analyses are used to evaluate

whether gorilla visit patterns indicate a modular social organ-

ization, with higher-level social units formed of multiple

gorilla groups and solitary males. We then evaluate whether

the sizes of gorilla social units show hierarchical scaling [4]

and use genetic data to test whether these social units have

kin structure similar to humans.
2. Methods
(a) Generating networks
Two long-term datasets of western lowland gorilla visits to

forest clearings (known locally as bais) in the Republic of

Congo were used in the analysis. Gorillas are attracted to

these forest clearings by the mineral- and protein-rich veg-

etation [17,18], on which they usually feed for many hours at

a time, allowing individual gorillas to be identified and studied

from research platforms located on the edge of these clearings

[9,19,20]. The Lokoué published dataset [20], covers a period

of 409 days from April 2001 to September 2002 and includes

visit data on 205 individuals forming 48 gorilla units (27

groups and 21 solitary males). The Mbeli dataset [9,10,19] is

formed of data collected from January 2010 to December 2015

when the bai was monitored almost daily (2191 days) and

includes visit data on 271 individuals, forming 44 gorilla units

(19 groups, 18 solitary males, and 7 solitary males that

formed groups during the study period). The Mbeli dataset

was split into three separate 2-year datasets (A:2010–2011,

B:2012–2013, and C:2014–2015) of 730, 731, and 730 days

respectively. Individuals that visited fewer than eight times

within a 2-year dataset were removed from the analysis.

Values of association between all pairs of groups or solitaries

were calculated using the forest clearing visit data whereby

any visit by a pair of groups or solitaries on the same day (cov-

isit) was counted as an association. Association values were

calculated via two complementary methods. Firstly, the

Asnipe R package [21] was used to generate simple ratio (SR)
association indices (the most widely used form of association

index in social network analysis) and generate null models to

compare these to, through data stream permutations. Secondly,

the binomial probability (BP) association index was calculated,

and null models generated as specified in the electronic sup-

plementary material. The BP index calculates the probability

that two social units would covisit the observed number of

times given the average visit rate by each unit during a given

study interval. The BP index enabled us to correct for fluctu-

ations in the rate at which all gorillas visited each clearing

and, therefore, the probability of a random covisit. Use of the

BP index also avoided one major problem with the standard

SR association index, the potential for units with small numbers

of visits to be spuriously assigned very high association values.

Networks were produced using both association indices for all

datasets and null models using the ‘igraph’ R package [22].

Agreement in pairwise association values across consecutive

time periods was investigated using a mantel test in the ‘ape’

R package with 1000 permutations.

(b) Detection of hierarchical modular structure
Modular structure in the Lokoué and Mbeli C networks was

initially investigated with a hierarchical clustering approach

[23] using the ‘cluster’ R package and ‘average’ (UPGMA)

method. This produced hierarchical dendrograms, where

groups and solitaries that associated most strongly with each

other were joined on the dendrogram over the shortest distances

on the y-axis. This analysis was done using the BP association

values (electronic supplementary material) and the distances at

which every join (bifurcation) occurred in the dendrogram

were extracted. Association values were transformed (x2/3).

This enabled the rate of cumulative bifurcations (total number

of joins in the dendrogram with distance) in null models to fit

a linear relationship, such that any change in gradient within

the observed data would represent a transition from one level

of social structure to the next. Changes in gradient (knots)

were identified by Wilcoxon Two Sample Test and R2-values

from linear regression were used to compare the fit of real and

random networks.

Higher tier social units using both the SR and BP association

indices were identified using the Louvain multi-level modularity

optimization algorithm [24], which searched for modules of gor-

illa groups or solitaries that were more strongly associated with

one another than the wider gorilla population. Modularity

from each dataset was compared with that from 1000 null

models to generate p-values. Consistency between methods

was investigated using a binomial linear model to predict

co-membership of the same higher tier module (detected by

modularity analysis) from co-membership of the same lower

tier cluster (detected by hierarchical clustering).

As the previous modularity algorithm was designed to detect

a single optimal level of modularity, and therefore a single level

of social structure, an alternative method was required to search

for multiple levels of social structure within a population. The

cluster_resolution ‘igraph’ algorithm [25] was therefore used to

search for multiple peaks in modularity at varying module size

(indicating multiple levels of social structure), as a complemen-

tary approach to confirm the social tiers detected by

hierarchical clustering. This was done by varying the algorithm’s

resolution parameter between 0 and 2 by increments of 0.01,

altering how strong links within a module of groups and soli-

taries must be to assign a discrete module and, therefore, the

number of modules in a given population. p-values were then

calculated as the proportion of null models at the same resolution

value with modularity values equal to or greater than that of the

data. This analysis was run on SR associations only, as p-values

produced using the BP method were too low to show adequate

variation with a feasible number of null models.
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Figure 1. Multi-level structure of the Lokoué (a) and Mbeli (b) populations produced by hierarchical clustering using the BP association index, show preferential
associations between gorilla groups and solitary males. Height of significant knot (upper limit of first social tier) indicated by dashed line, such that groups or
solitaries joined before the dashed line are within the same first-order social unit. Social units detected by modularity analysis indicated by background shading,
such that those with the same background shading are within the same second tier social unit. Squares indicate groups, triangles indicate solitary males. Disagree-
ments between groupings by hierarchical clustering and modularity analysis indicated with colour of triangles or squares. For Mbeli Bai, the C dataset was used.
(Online version in colour.)

Table 1. Modularity values for all four networks by association index.
p-values (in brackets) calculated by comparison with 1000 networks built
from permutations of the original data demonstrate that real networks
show higher modularity than expected by chance.

simple ratio
binomial
probability

Lokoué 0.191 (,0.001) 0.040 (0.001)

Mbeli A ( period 2010 – 2011) 0.104 (0.069) 0.055 (0.003)

Mbeli B ( period 2012 – 2013) 0.091 (0.03) 0.047 (0.077)

Mbeli C ( period 2014 – 2015) 0.082 (0.009) 0.052 (0.025)
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(c) Scaling
Scaling of social unit size was investigated using results from the

Lokoué and Mbeli C (the Mbeli dataset of largest population size

(electronic supplementary material, table S1)) datasets, as well as

published data from Maya-Nord [26]. The log of social unit size

at each social level was taken. Linear models were run to predict

log social unit size by social level, producing R-squared and

p-values, for social unit sizes detected by each method (Method

A: hierarchical clustering approach and Method B: modularity

resolution varying approach). This was done for all three popu-

lations separately and then combined while controlling for the

specific population.
(d) Kinship
Published binary kinship data [20] of silverback male pairwise

relatedness from the Lokoué population (n ¼ 20) were used to
predict co-membership of the same social unit using binomial

logistic regression. Binary genetic data were based on microsatel-

lite markers from DNA extracted from faecal samples, with 1

indicating an estimated relatedness of greater than or equal to

0.2 and 0 indicating an estimated relatedness of less than 0.2.

This cut-off should assign all pairs that are half-siblings

(relatedness ¼ 0.25) or more closely related, a value of 1, with

some room for error in estimate precision. The social units used

in these analyses were the higher tier modules detected by

multi-level modularity analysis using the SR index and BP index.
3. Results
Association indices were generated using visits of gorilla

groups and solitary males to a clearing on the same day, as

a metric of social association, to estimate the probability of

both visual contact and long-distance auditory signalling

(e.g. chest beating) between them [27]. We applied clustering

analyses [23] to the BP association index based on the prob-

ability that pairs of groups or solitaries would appear at a

clearing on the same day. The resulting dendrograms

(figure 1) showed a pattern of preferential association

between small clusters of groups and solitaries. Analyses of

the rate at which bifurcations accumulated with association

distance (d ) when moving from tip to base of each dendro-

gram placed significant knots at d ¼ 0.29 (w ¼ 722, p ¼
0.0147) for Lokoué and d ¼ 0.26 (w ¼ 498.5, p ¼ 0.0285) for

Mbeli (electronic supplementary material, figure S1), indicat-

ing a transition from one social tier to the next. The number of

groups or solitaries involved in the first tier of associations

(below the social tier transition) averaged 2.29 for Lokoué
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Figure 2. p-values of modularity scores for a given size of module for (a) Lokoué and (b) Mbeli (using dataset (C)), produced by varying the modularity resolution
parameter demonstrate two p-value troughs, suggesting two separate levels of modularity (and hence social structure) in the associations between gorilla groups
and solitary males. Most significant value in both troughs of probability indicated in red. (Online version in colour.)
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and 1.94 for Mbeli and included a weighted mean of 11.4

individual gorillas.

Modularity analyses were then used to further investigate

these associations. The strongest modularity signal detected

using the SR index was for a previously unreported second

tier of association involving a weighted average of 39.3 indi-

vidual gorillas made up of 8.1 independent groups or

solitaries (8 at Lokoué, 8.25 at Mbeli (using the Mbeli C data-

set)). Statistical support for modularity at this level was very

strong for Lokoué and two of the Mbeli sampling intervals

and weaker for a third Mbeli sampling interval (table 1).

After correcting for seasonal variation in visitation rates, the

association index based on the BP of same day visits still pro-

duced strong statistical support, similar to that from the

classic SR index, suggesting that environmental variables

within the bai were unlikely to be driving the observed pat-

tern. At Mbeli, pairwise associations between group and

solitary gorillas using the SR index were highly consistent

between consecutive time periods (Mantel test: 2010–2011

with 2012–2013: Z ¼ 0.355 p ¼ 0.002, 2012–2013 with

2014–2015: Z ¼ 0.663 p ¼ 0.001), and even non-consecutive

time periods (Mantel test: 2010–2011 with 2014–2015: Z ¼
0.341 p ¼ 0.004), suggesting long-term stability in affiliative

relationships rather than short-term competitive interactions,

for example, in the acquisition of reproductive females [28].

For both populations, membership of pairs of groups or soli-

taries in the same first tier associations detected by clustering,

strongly predicted their presence in the same second tier associ-

ations detected by modularity analysis (Lokoué z¼ 7.144

Pr(.jzj) , 0.0001, Mbeli z¼ 5.245 Pr(.jzj) , 0.0001), demon-

strating consistency between the two approaches and that the

structure detected was hierarchically inclusive.

The initial modularity algorithm used was designed to

detect a single optimal level of modularity and biased

upwards in the size of modules it detects. Therefore, to

search for multiple peaks in modularity we manually

varied the algorithm’s resolution parameter, which defines

how relatively strong links between nodes (in this case, gor-

illa groups and solitary males) must be to assign a discrete

module and, therefore, the number of modules in a given

population [25]. For both study populations, using the SR

index, this revealed a second peak in modularity (trough in

random probability) at an average of 2.03 groups or solitaries

per association, or 13.1 individuals (figure 2 and electronic
supplementary material, figure S2); a first tier association

size very similar to that suggested by clustering analysis

using the BP index.

The tiers of western gorilla social hierarchy detected by

clustering and modularity analyses correspond closely to

those of other HSM taxa. The first tier associations we

record, involving a mean of 13.1 gorillas, map closely to

tier g3 (dispersed extended family group) in Binford’s classi-

fication of traditional human societies [29,30], where g1 and

g2 are, respectively, individuals and nuclear family groups.

They also resemble baboon ‘clans’, gelada ‘teams’, elephant

‘bond groups’, and dolphin ‘first-order alliances’ [4]. The

new, second tier of association we detect, involving a mean

of 39.3 gorillas maps to Binford’s g4 (aggregated group),

baboon and gelada ‘bands’, elephant ‘clans’, and dolphin

‘second-order alliances’. The potential for Binford’s tier g5,

periodic aggregations at resource hotspots, is demonstrated

in the tendency for many gorilla groups to converge on

places like Mbeli during super-annual ‘mast’ fruiting events

[13]. However, our observation days were too few to provide

adequate statistical power for detecting this tier. Community

closure consistent with Binford’s tier g6 (population) is indi-

cated by asymptotic new group accumulation curves at

Lokoué and Mbeli (electronic supplementary material,

figure S3). Gorillas also exhibit an association grade observed

in humans and referenced by animal ecologists but omitted

by Binford’s classification, preferential affiliation within

mother–offspring units [31,32].

When group size in each social tier is approximated by an

exponential function, the goodness of fit is extremely high for

both Lokoué and Mbeli (R2 ¼ 0.996 and 0.994; figure 3), indi-

cating that group size at each social tier increases by a

consistent multiplier relative to group size at the next lower

tier. The estimated scaling exponents for the two sites (2.78

and 2.73) were similar both to each other and that estimated

from a nearby site, Maya Nord (3.07) where data on social

group and population size but not rates of association are

published [26]. A slightly lower scaling exponent than for

other HSM taxa [4] is consistent with a lower demographic

rate that produces fewer potential kin associates.

Published data on binary genetic relatedness of pairs of

Lokoué silverbacks (group leaders or solitary males) pre-

dicted their joint membership in the second-order

associations (modules) detected by modularity analysis
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Figure 3. Social unit sizes across three gorilla populations follow a consistent
scaling relationship close to that observed in other mammalian species show-
ing HSM. Social tier values 1 – 7 represent g1 (individuals), mother – offspring
units, g2 (family units), g3 (dispersed extended family group), g4 (aggre-
gated group), g5 (sub-population), and g6 (overall population). (a) For
three separate populations Mbeli (blue), Lokoué (red), Maya Nord ( purple)
with their fitted exponentials shown by dashed lines. (b) For the mean of
social unit sizes at each level from all populations, with dashed line indicating
the fitted exponential (scaling ratio ¼ 2.70, R2 ¼ 0.991, p ¼ 6.37 �
10210). (Online version in colour.)
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(mean size ¼ 8.1 groups or solitaries, 39.3 individuals), with

silverback males that were half-siblings or more closely

related, more likely to be within the same module. Joint mem-

bership of modules calculated using the BP index (z ¼ 2.0,

Pr(.jzj) 0.045) was better predicted by relatedness than mod-

ules from the SR index (z ¼ 1.8, Pr(.jzj) 0.072). This is

consistent with kinship influencing the underlying pattern

of associations with some additional variation introduced

from environmental variables. However, related silverbacks

represented only 14.6% and 12.8% of total pairs within the

same module for which relatedness was known, for BP and

SR modules, respectively, demonstrating that a considerable

proportion of the associations detected were occurring

between males less closely related than half-siblings. Due to

the dispersal of females between groups multiple times

throughout their lives, it is possible for males that are not clo-

sely related to grow up within the same natal group. This

may then lead to associations as adults. Alternatively, associ-

ations between unrelated males could be due to their
presence in distinct but closely associated natal groups or

develop during periods post-dispersal when young males

have been known to form all-male bachelor groups [33].

The first order of associations (mean size ¼ 2.03 groups or

solitaires, 13.1 individuals) could not be investigated geneti-

cally due to the low number of silverbacks within the same

first-order association for which genetic data were available.

4. Discussion
Our results suggest a social structure in western gorillas with

striking parallels to human society, from the kin bias of social

modules, to the hierarchical scaling in their size, providing a

potential link between human social structure and the mod-

ular societies observed in many other primate species [5].

Given the likely presence of HSM in both humans and goril-

las, and its relatively rare occurrence across mammalian

species, our results suggest it is more parsimonious to

assume that HSM evolved in a common ancestor of gorillas

and humans and was lost in chimpanzees, rather than evol-

ving independently in both lineages (figure 4). This may

also be the case for the predominance of single male repro-

ductive groups in humans which may have been inherited

from the common ancestor of all apes, rather than being

replaced by a territorial mm-mf structure in the most recent

common ancestor of chimpanzees and humans and then

regained in the hominin lineage (electronic supplementary

material, figure S4). Given that gorillas and humans also

share characters such as a matrix of evenly spaced, overlap-

ping home ranges and long-tailed distributions of social

contact at resource hotspots [13], they may have considerable

advantages as a model system for human social evolution,

relative to the more frequently relied upon chimpanzee

(Pan troglodytes) [6,34]. However, primate social systems

are so plastic within and variable between species that it

seems imprudent to lean too heavily on the states of

extant taxa when drawing conclusions about distantly

related early hominins. Rather, our key point is that if we

explicitly define ‘complexity’ as nested hierarchical struc-

ture, then the social brain enhancements of the hominin

neocortical explosion do not appear necessary to explain

human social complexity. What remains unclear is the role

of the social brain in the broader pattern of mammalian

HSM. This lack of clarity stems from the fact that although

characters like large brain size and extended parental depen-

dence are often attributed to the intricate social lives of taxa

that exhibit HSM [7,35] they can also be explained in terms

of the profound effect that large body size has on foraging

ecology [36].

HSM taxa use the fasting capability granted by large

body size to exploit rare, transient, and unpredictable

resource hotspots [36]. Western gorillas, baboons, and forest

elephants move kilometres each day to feed at diverse tree

species that fruit on sporadic ‘mast’ schedules [13,37–39].

Odontocetes travel even further to hunt fish schools that

form and dissolve in equally idiosyncratic ways [40]. Effi-

ciently implementing this strategy over a large home range

requires copious spatial memory for recording resource

location. Consequently, gorillas, elephants, and odontocetes

have spatial memory centres that rival or exceed humans’

[41]. This strategy also relies heavily on associative learning.

Thus, the delayed natal dispersal that typifies HSM taxa is

not just for mastering specific skills [42,43]. Rather,
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by triangles. (a) Transitions required under the assumption that HSM evolved late in the hominin lineage. (b) Transitions required under our proposed, more
parsimonious model, of social evolution. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20190681

6

specializing on patchily distributed resources with idiosyn-

cractic dynamics may inherently require long training

periods. Delayed natal dispersal in HSM taxa generates over-

lapping cohorts of offspring and a ready pool of possible

cooperators, with the potential for cooperative foraging to

dramatically increase resource localization rate [44,45]. This

could be coordinated through the long distance, individually

recognizable contact calls common to HSM taxa [46,47].

Long-term associations between siblings in natal groups

could provide the kind of repeat interaction critical to repu-

tation building and the stabilization of reciprocity networks

[48]. If dispersing offspring establish home ranges adjacent

to their parents or siblings [16,49,50], rates of exposure

would correlate with degrees of relatedness and the strong

social bonds formed within natal groups. This could enable

considerable reciprocal and kin-based benefits to cooperation

between neighbouring groups for foraging, and a potential

driver for the evolution of the complex HSM present in

these species.

Our results demonstrate extensive, previously overlooked

similarities between human and gorilla social structure,

suggesting that the social brain enhancements observed

within the hominin lineage were not necessary to enable

HSM. When contextualized with common trends across

other mammalian HSM taxa, the remarkable consistency in

life-history and foraging behaviour is suggestive of a possible

alternative mechanism as a driver of social complexity; that of

collaborative foraging. Under this hypothesis, selection for

optimizing foraging strategies when feeding on patchily dis-

tributed and unpredictable resources could drive the

maintenance of affiliation and communication between dis-

persed kin, and ultimately the complex HSM observed in

these lineages. While further research is clearly required to

investigate this hypothesis, the presence of a kin-based,
multi-tiered social structure in gorillas suggests that funda-

mental elements of human social complexity may have

far deeper evolutionary roots than previously assumed,

and that understanding the mechanistic details of how

they emerged will require peering more deeply into our

evolutionary past.
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