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SUMMARY

Mesenchymal stem cells (MSCs) are one of the most easily accessible stem cells that can be obtained from various human tis-
sues. They have raised considerable interests for their potential applications in tissue repair, anti-cancer therapy, and inflam-
mation suppression. Stem cell-based therapy was first used to treat muscular dystrophies and has been studied intensively for
its efficacy in various disease models, including myocardial infarction, kidney injuries, liver injuries, and cancers. In this review,
we summarized the potential mechanisms underlying MSC-derived EVs therapy as a drug delivery platform. Additionally, based
on currently published data, we predicted a potential therapeutic role of cargo proteins shuttled by EVs from MSCs. These data
may support the therapeutic strategy of using the MSC-derived EVs to accelerate this strategy from bench to bedside. STEM
CELLS TRANSLATIONAL MEDICINE 2019;8:880–886

SIGNIFICANCE STATEMENT

The future of exosome therapeutics has great potential, but several challenges, as discussed in the present study, must be
overcome before exosome-based therapy will become an important option as a next-generation drug delivery system.

INTRODUCTION

Mesenchymal stem cells (MSCs), multipotent adult stem cells, are
one of the most easily accessible stem cells that can be obtained
from various human tissues. They have been widely tested as ther-
apeutics due to their accessibility, therapeutic efficacy in various
diseases, and tissue damage regeneration, their easy accessibility,
and their availability from ethically acceptable tissues such as
bone marrow aspirates and fat tissues [1].

MSCs have raised considerable interests for their potential

applications in tissue repair, anticancer therapy, and inflamma-

tion suppression. Stem cell-based therapy was first used to

treat muscular dystrophies [2] and has been studied inten-

sively for its efficacy in various disease models including myo-

cardial infarction [3], kidney injuries [4], liver injuries [5], and

cancers [6].
Recent studies have suggested the possibility that the key

therapeutic effects of MSCs in tissue repair are mediated
mainly via paracrine mediators secreted from the MSCs and only
partially from MSCs themselves. The “secretomes” of MSCs,
including various secretory proteins such as growth factors,

cytokines, and chemokines and extracellular vesicles (EVs) such
as microvesicles (MVs; 100–1,000 nm diameter) and exosomes
(40–150 nm diameter), have been shown to induce many of the
therapeutic properties of MSCs. For example, in an acute kidney

injury (AKI) model, systemically injected MSCs induced significant
recovery from cisplatin-induced kidney damage, despite the low
permanent engraftment of MSCs within the kidney [7]. Further
studies demonstrated that the paracrine factors collected from
MSCs were sufficient to induce MSCs-mediated recovery from
renal injury [8]. The beneficial effects of MSCs can be repli-
cated through secretomes of conditioned media from MSCs,
especially by exosomes [9].

Even though the precise mechanism of their paracrine effect
is not clearly understood, EVs have been recognized as potent
therapeutic vehicles that can transfer various proteins and regu-
latory genes to the targets. EVs are considered non-
immunogenic nanovesicles, which can protect their cargoes
from serum proteases and immune systems to transfer informa-
tion and communicate with other cells [10].

In this review, we summarized the potential mechanisms
underlying MSC-derived EVs therapy as a drug delivery platform.
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Additionally, based on currently published data, we predicted a
potential therapeutic role of cargo proteins shuttled by EVs
from MSCs. These data may support the therapeutic strategy
of using the MSC-derived EVs to accelerate this strategy from
bench to bedside.

EXTRACELLULAR VESICLES

EVs were initially identified as a quality control system used
by cells to dispose of unwanted content [11]. After years of
intensive research, the role of EVs as important cell-to-cell
communication mediators, which deliver various bioactive
molecules such as functional proteins, nucleic acids, and
lipids, was identified [10, 12–14]. Depending on their size,
cells or tissue of origin, biogenesis mechanisms, or proposed
functions, EVs are generally classified as MVs, exosomes, or
apoptotic bodies.

MVs, also known as ectosomes, shedding vesicles, or mic-
roparticles, are 100- to 1,000-nm vesicles released by budding
from the plasma membrane. Exosomes, 40–150 nm in diame-
ter, are generated from an inward budding of endosomes, for-
ming intraluminal vesicles inside the endosomal compartment,
which are called multivesicular bodies (MVBs). Exosomes are
actively released from cells by membrane fusion of MVBs and
the plasma membrane. Although the cargos of MVs are similar
to the composition of parental cells due to simple diffusion,
the cargos of exosomes differ from those of parental cells,
suggesting selective cargo-sorting mechanisms. Cargo loading
of exosomes is well controlled and well regulated, although
the mechanism is not fully understood. The endosomal-sorting
complex required for transport (ESCRT) family has been shown
to play a key role in cargo loading and exosome biogenesis
[15], but there are also ESCRT-independent pathways in cargo
sorting [12]. Exosomes, unlike other synthetic nanoparticles
such as liposomes, contain transmembrane and membrane-
anchored proteins that may enhance endocytosis to facilitate
delivery of their cargos [13, 14]. Even though the underlying
mechanisms and pharmacokinetics are still not well under-
stood, extensive studies have been directed toward utilizing
exosomes as a therapeutic conveyor in various diseases, by
using the exosome itself or engineering exosomes to increase
stability, targetability, or loading efficiency of specific pharma-
ceutical cargos. Apoptotic bodies, which are larger than MVs
or exosomes, are generally larger than 1 μm in diameter and
are released as blebs from dying cells. They contain fragmen-
ted DNA and are further characterized by phosphatidylserine
externalization [16, 17].

THERAPEUTIC POTENTIAL AND MANUFACTURING

OF MSC-DERIVED EVS

Stem cells are currently the best candidate for treating intracta-
ble degenerative or genetic diseases because of their capacity
to differentiate and produce new, healthy cells that can replace
injured or diseased cells. In addition, nonhematopoietic tissue
stem cells, such as the MSC, can similarly treat nonhemat-
opoietic disorders by replacing diseased cells with newly gener-
ated cells [18–20].

Of the stem cells that are currently in clinical trials, the
most extensively used cell type is the MSC. Interestingly, suffi-
cient MSC research exists to support alternative proposals that
MSC exerts its therapeutic effects through a secretion and not
through a differentiation mechanism [21]. MSC-conditioned
culture medium has been suggested to recapitulate the effi-
cacy of MSCs in cardio-protection [22, 23], renal tubular cell
survival [8], and hepatic failure protection [24, 25], as well
as relieve immune disease [26]. As MSC-conditioned culture
medium is rich in EVs, a complex cargo of lipids, proteins, and
RNAs in EVs is the most likely candidate of the therapeutic
effects. In addition, MSC-derived EVs also have been shown to
elicit an immunosuppressive phenotype and the therapeutic
benefits of their parental cells. Therefore, the therapeutic
potential of MSCs-derived EVs acting as a surrogate of parental
cells has been rigorously investigated.

MSC-derived EVs are known to have various therapeutic
effects such as tissue regeneration, wound healing, antitumor
action, and immunomodulation. Tested in various disease models,
EVs derived from MSCs of different organs have demonstrated
similar or better therapeutic capacity compared with their
parental cells. MSC-derived EVs have advantages in safety
issues, because they are considered nonimmunogenic with a
lower risk of allogenic immune rejection from the host [27]. In
addition, exosomes can bypass the blood-brain barrier by
transcytosis through the endothelial layers to deliver cargo
biomolecules to the brain parenchyma [28] (Table 1).

Exogenous MSC EVs in Tissue Regeneration

Much research has shown the beneficial effects of MSC-derived
EVs in healing a variety of stressed tissues (Fig. 1). Bruno et al.
showed an improvement of recovery from glycerol-induced AKI
by treating it with MSC-derived EVs, which contained mRNA
associated with the mesenchymal phenotype [40]. Similarly, He
et al. showed protection against kidney damage in the subtotal
nephrectomy murine model of renal regeneration by decreasing
the levels of uric acid, creathinine, fibrosis, and lymphocyte infil-
tration by treating MSC-derived EVs [31]. In another murine

Table 1. Comparison of MSC therapy and MSC-derived EVs
therapy

MSC therapy MSC-derived EVs therapy

Therapeutic
effects

Tissue regeneration,
wound healing,
antitumor effects,
immunomodulation
[29, 30]

Retains therapeutic
effects of MSCs, and
loading therapeutic
cargo can increase
their effects [2, 5, 25,
31, 32]

Homing to
target
tissue

Home to sites of injury
and cancer, but less
than 1% of MSCs
result in engraftment
[33]

Mostly homes to the
liver and spleen, and
surface engineering of
exosomes can induce
targeting ability
[34–36]

Can pass though the
blood-brain barrier
[37]

Rejection Can induce allogenic
immune rejection
[38, 39]

Considered to be
nonimmunogenic

Abbreviations: EV, extracellular vesicle; MSC, mesenchymal stem cell.
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model of myocardial ischemia-reperfusion injury, MSC-derived
EVs enhanced the recovery by increasing phosphorylated Akt and
phosphorylated glycogen synthase kinase-3β and by decreasing
phosphorylated mitogen-activated protein kinase 8 and oxidative
stress [41]. Furthermore, the therapeutic potential of MSC-
derived EVs was also verified in a murine model of fibrotic liver
induced by carbon tetrachloride [5] and in a rat skin burn model
[42]. Overall, these results indicate that MSC-derived EVs mediate
the therapeutic effects in multiple diseases through multiple
mechanistic pathways and provide a novel approach for the
treatment of degenerative and acute injury-related diseases.
However, the mechanism of action of MSC-derived EVs is still
not fully understood. Further extensive investigation into the
mechanism of action is essential to establish MSC-derived EVs
as Food and Drug Administration-approved therapeutics.
Besides the MSC-derived EVs, effects of neural stem cells (NSCs)
and endothelial progenitor cells (EPCs) derived EVs were also
studied. Grafted NSCs communicate with the host immune sys-
tem via interferon gamma signaling mediated by EV-associated
IFN gamma/Interferon gamma receptor 1 complexes [43].
Human EPCs-derived EVs delivered mRNA and microRNA, which
activated the endothelial cell proliferation to support revascular-
ization of injured murine tissue [44]. In addition, exosomes from
human cardiac progenitor cells expanded ex vivo regenerated
injured murine hearts by inhibiting apoptosis and increasing the
proliferation of cardiomyocytes and endothelial cells [32].

Manufacturing Exosomes for Clinical Use

Most of exosomes are collected based on their size, and the
most common way is to use differential centrifugation. How-
ever, centrifugation has a low recovery yield and low specific-
ity due to nonexosomal or MV debris.

Unlike the strategies of isolating exosomes or MVs by
size, the immunoaffinity-based approach sorts them via
detecting the expression pattern of specific proteins on
their surface. This approach has the advantage of isolating
specific subpopulations of exosomes and simultaneously reduc-
ing copurification of cell debris and protein aggregates. One
example of immunoaffinity-based sorting is the use of conven-
tional magnetic-activated cell-sorting (MACS) columns [45]. The
Taylor and Cercel-Taylor repurposed MACS to isolate exosomes
from serum. In this study, exosomes with epithelial cell adhe-
sion molecule (EpCAM) were incubated with anti-EpCAM
magnetic microbeads and then the microbeads were trapped
using a conventional MACS Separator [45]. However, applying
this technique to clinical setting is doubtful because of diffi-
culties in upscaling and automating such a process. It is nec-
essary to develop an isolation method that can distinguish
each type of exosome and facilitate a large-scale production
of exosomes.

MSC was easily expanded relative to the other isolation
methods using conventional tissue flasks and bioreactors, but
their growth capacity in culture is limited and their biological
properties can be changed with repeated passage. Certain
strategies such as MSC immortalization by natural selection or
by genetic modification could be used to overcome this limita-
tion, although this would raise safety issues [46, 47]. Other
approaches to scale up the amount of isolated exosomes could
include using bioreactors to culture the MSCs [48]. However, it
is important to determine whether bioreactor culture condi-
tions could change exosome protein and RNA content, which
may affect therapeutic efficacy [49]. There are many chal-
lenges associated with oxygen supply, shear stress, and pH
balance by using bioreactor culture systems [50, 51]. Also, the
impacts of these parameters may vary depending on the

Figure 1. The characteristics of MSC-derived extracellular vesicles (EVs). (A): The function of the MSC-EV-mediated therapeutic effect
studied in animal model such as the kidney, liver, and heart. (B): Secreted MSC-derived exosomes through fusion of multivesicular bodies
with the cell membrane are mediated paracrine effects. Exosomes have the potential to exert various effects such as immunomodulation,
disease therapy, and tissue repair in recipient cells. Abbreviation: EXPLOR, exosomes for protein loading via optically reversible protein-
protein interaction; MSC, mesenchymal stem cell.
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different cell types. In conclusion, to facilitate the production
of large-scale MSC-derived exosome, new batches of MSCs
should be periodically derived through testing and validation.

ENGINEERED EXOSOMES AS THERAPEUTICS

Due to the various therapeutic potential of exosomes, clinical
trials are currently in progress. One clinical trial is testing the
effects of naïve MSC-derived exosomes in promoting healing
of large and refractory macular holes [52]. In contrast, the
majority of other clinical trials currently in progress use engin-
eered exosomes rather than naïve exosomes. For example, a
clinical trial is in progress for promoting neurovascular remo-
deling and functional recovery after acute ischemic stroke
using miR-124-loaded MSC-derived exosomes [53]. These engi-
neered exosomes have a higher therapeutic potential when
compared with naïve exosomes. There are mainly two differ-
ent strategies that can improve the therapeutic potential of
MSC-derived exosomes: loading cargo into the exosomes and
targeting via exosomes (Fig. 2).

LOADING CARGO INTO EXOSOMES

Passive Loading

To enhance the therapeutic potential of naïve exosomes,
researchers have developed several methods to load exoge-
nous molecules into exosomes, involving passive and active
cargo loading. Passive loading uses the concentration gradient
of the molecules. By incubating exosomes with paclitaxel at
37�C for 1 hour, a small amount of paclitaxel was loaded into

exosomes [54]. Cells were also incubated with paclitaxel to
produce paclitaxel-loaded exosomes [55]. The loading capacity
depended on the hydrophobic nature of the cargo molecules.
Hydrophobic cargos bind to the lipid bilayer of exosomes and
remain stable. However, the major downside of passive load-
ing is the low loading capacity, even for hydrophobic cargos.

To compensate for the low loading capacity of concentra-
tion gradient-based methods, various physical and chemical
techniques that can directly modify the exosomal membrane
have been developed. Electroporation, sonication, extrusion,
and freeze-thaw cycles are included in the physical methods,
whereas lipofection, drug-associated loading, and click chemis-
try are examples of chemical methods [56]. However, these
methods also have disadvantages, such as the aggregation of
exosomes, compromise of exosomal membranes, toxicity to
recipient cells, and excessive purification steps.

Active Loading

To overcome the low passive loading efficiency, researchers
have targeted the membranes of exosomes during the exosome
biogenesis processes. Fang et al. proposed a technology that
uses plasma membrane anchors to allow highly oligomeric pro-
teins to be targeted into exosomes because of the link between
the cargo and anchor upon treatment to the recipient [57].

Exosomes are enriched in transmembrane proteins, such as
tetraspanins including CD9, CD63, CD81, CD82 [58], lactadherin
[59], and lysosome-associated membrane glycoprotein 2 (Lam-
p2B) [60]. By fusing transmembrane proteins to cargo molecules,
transmembrane proteins have the potential to directly load
cargo molecules into the exosomes in a manner similar to Fang’s

Figure 2. Engineering of exosomes. Exosomes are engineered to acquire therapeutic potential. Two different engineering methods are
used. Exosomes are engineered (A) to load therapeutic cargos and (B) to acquire targeting abilities. Abbreviations: CIBN, truncated form
of CIB(cryptochrome-interacting basic-helix-loop-helix); EGFR, epidermal growth factor receptor; RVG, rabies viral glycoprotein.
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approach. Yim et al. introduced a technology called exosomes for
protein loading via optically reversible protein-protein interaction,
which allows the cytosolic localization of cargo proteins. Upon
treatment with recipient cells, the cargo proteins were not
just restricted to membranes, but were scattered in the
cytosol [61].

In addition to protein cargos, methods to load RNA into
exosomes have also been developed. Hung et al. introduced a
technology called TAMEL (Targeted and Modular EV Loading),
which used Lamp2B as a fusion target. Hung et al. transfected
cells with a Lamb2B-MS2 bacteriophage coat protein dimer (RNA
binding domain) and MS2 stem loops fused to the cargo DNA.
MS2 bacteriophage coat protein specifically recognizes the MS2
stem loop of RNA. Upon transcription, the RNA cargo is loaded
inside exosomes due to recognition of the RNA loop [62].

TARGETING VIA SURFACE ENGINEERING

Since the discovery of exosomes, researchers have thoroughly
studied their natural tropism. Many factors such as the cell
source, route of administration, and dosage have effects on
the biodistribution of EVs in vivo. Once administered exoge-
nously, naïve exosomes are generally distributed to the liver,
spleen, intestines, and lungs of mice, where the mononuclear
phagocyte system (MPS) is active [63]. In macrophage-depleted
mice, clearance of exosomes from the circulation was much
slower compared with that in control mice, indicating the
important role of macrophages in exosome biodistribution
[64]. Engineering exosomes with targeting ability increases the
chances of exosomes reaching target cells/tissues before being
taken up by the MPS. Eventually this will decrease the off-tar-
get/side effects, leading to lower therapeutic dosages while
maintaining therapeutic efficacy. In addition, surface modifica-
tions can be used to increase the delivery efficiency. Kim et al.
introduced a membrane-editing technology by which vascular
stomatitis virus-G protein-engineered exosomes increased the
cargo delivery via low-density lipoprotein receptor targeting [65].
Here, we describe two different techniques that engineer
exosome biogenesis processes to equip exosomes with increased
targeting ability.

Modification of Membrane Protein (Lamp2B)

Alvarez et al. modified the N-terminus of Lamp2B with rabies
viral glycoprotein (RVG). RVG specifically binds to acetylcholine
receptors, which are rich in neuronal cells. By transfecting cells
with Lamp2B fused to RVG, exosomes displaying RVG protein
at the outer membrane were produced. Using electroporation,
they loaded the RVG-exosomes with siRNA against BACE1, a
protease that has an important role in Alzheimer’s disease
pathogenesis by cleaving the amyloid precursor protein. Upon
treatment, RVG-exosomes specifically targeted neuronal cells
compared with naïve exosomes, and successfully knocked down
the BACE1 mRNA in wild-type mice [66]. However, targeting
peptides fused to Lamp2B were vulnerable to degradation due
to localization in the lumen of endosomes during exosome bio-
genesis [67].

Modification of Glycosylphosphatidylinositol (GPI)

Instead of modifying exosomal membrane proteins, Kooijman
et al. modified a glycolipid that could be integrated into
the exosomal membrane during exosome biogenesis. EVs are
enriched in lipid raft-associated lipids and proteins. The
glycosylphosphatidylinositol (GPI)-linked protein decay-accele-
rating factor (DAF) is one of the EV-rich proteins loaded during
reticulocyte maturation. Kooijman et al. genetically engineered
cells with DAF-derived GPI-linked peptides fused with nanob-
odies. They used specific nanobodies that targeted the epider-
mal growth factor receptor. Nanobodies were significantly
enriched in exosomes compared with parent cells in fusion
with GPI-anchors. It is suggested that GPI-anchoring could be
used as a versatile tool to incorporate a variety of protein on
exosomes, such as enzymes, antibodies, reporter proteins, and
signaling molecules [68].

CONCLUSION

The future of exosome therapeutics has great potential, but
additional challenges must be overcome. The following obstacles
still must be adequately addressed: (a) exosome components
and the mode of action must be fully understood. To be vali-
dated by the Federal Drug Administration as a drug, the safety
and efficacy of exosomes should be thoroughly studied and the
components of the preparations and modes of action must be
validated. (b) A database of absorption, distribution, metabolism,
and excretion (ADME) should be established. As previously men-
tioned, various parameters such as the cell source and the route
of administration affect the ADME of exogenously administered
exosomes. To reach the maximum therapeutic potential and
establish the dosage, an ADME study is essential. (c) Exosome
production efficiency must be increased. Even though MSCs are
known to produce more exosomes than do other types of pri-
mary cells, it is necessary to develop culture methods that
increase the production of exosomes or immortalized MSCs that
produce validated exosomes for clinical applications. (d) Better
targeting mechanisms should be developed. To reduce the off-
target/side effects and avoid clearance, screening for targeting
molecules is key. If these challenges are sufficiently addressed,
exosome-based therapy will be an important option not only in
the field of regenerative medicine but also as a next-generation
drug delivery system.
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