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Abstract Tissue-specific stem cells sustain organs for a
lifetime through self-renewal and generating differentiated
progeny. Although tissue stem cells are established during
organogenesis, the precise origin of most adult stem cells in
the developing embryo is unclear. Mammalian skin is one of
the best-studied epithelial systems containing stem cells to
date, however the origin of most of the stem cell populations
found in the adult epidermis is unknown. Here, we try to
recapitulate the emergence and genesis of an ectodermal
stem cell during development until the formation of an adult
skin. We ask whether skin stem cells share key transcrip-
tional regulators with their embryonic counterparts and
discuss whether embryonic-like stem cells may persist
through to adulthood in vivo.
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Introduction

Stem cells are defined by their ability to self-renew indefi-
nitely but also to produce daughter cells that have different,
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more restricted properties. Pluripotent stem cells have the
capacity to form all the body’s lineages, whereas multipo-
tent stem cells generate all lineages that constitute an entire
tissue or organ throughout adult life [1]. Whereas, these
stem cell definitions are now widely accepted and stem cells
have been described for a wide range of tissues, the origin of
specific stem cell populations in the adult mammalian body
is largely unknown [2]. Since they must arise in the embryo,
it seems logical to assume that during development plurip-
otent stem cells give rise to more and more restricted cells,
which then give rise to the different tissue-specific stem
cells in a classic hierarchical model [2].

The first critical event for embryo patterning during
mammalian development is the formation of a blastocyst.
The blastocyst consists of three lineages, the trophoblast,
hypoblast and epiblast. The epiblast generates the entire
fetus and a single mouse epiblast cell, isolated at this stage
and microinjected into another blastocyst, can contribute to
all lineages [3]. Functionally, the preimplantation epiblast is
the developmental ground state and is known to be the
source of embryonic stem cells [4, 5]. However, the life of
an epiblast is short during development. Epiblast cells lose
their self-renewal capacity as soon as they turn into a cell of
one of the three germ layers (Fig. 1); and also precursor cells
of ectoderm, endoderm and mesoderm are not self-renewing
indefinitely because they change identity during organogen-
esis. For instance, the origin of the hematopoietic stem cell
in the mouse is well-known but cells capable of long-term
repopulation of irradiated host animals are not present in the
early embryo and only arise after about 10.5 days of devel-
opment [6]. Thus rather paradoxically, indefinitely self-
renewing stem cells do not exist in the early embryo up to
the stage of organ formation [2, 7]. The question of whether
pluripotent cells irreversibly turn into more restricted cells
during development is debated. Through in vitro culture,
it is possible to reprogram differentiated cells into an
embryonic stem cell-like state and also the generation of
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Fig. 1 The developmental hierarchy for epidermal stem cell popula-
tions. The dotted lines indicate a putative relation between the pop-
ulations. CNS central nervous system, SG sebaceous gland, /FE
interfollicular epidermis

pluripotent cells isolated from postnatal organisms has
been reported [2, 8]. However, the existence of a com-
parable pluripotent cell in vivo is unlikely [9]. A model,
which allows the frequent loss of stem cells through
commitment to a more restricted fate during develop-
ment, makes it very challenging to track the origin of
one adult tissue stem cell down to the embryo. Under
such a model, it is also unlikely that adult tissue stem
cells and their embryonic original counterpart share
many characteristic features, such as expression profiles;
however they may share key transcriptional regulators.
Below, we have made an attempt to follow a mouse
embryonic cell through ectodermal development until
formation of adult skin.

First decisions of ectodermal cells and commitment
to an epidermal fate

After gastrulation, the embryo surface consists of a single
layer of neuroectoderm, which will form the nervous system
and skin epithelium. Neural induction is positively enforced
by extrinsic cues, including protein members of fibroblast
growth factors (Fgf) acting in concert with inhibition of
bone morphogenetic proteins (Bmp) [10]. In contrast,
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epidermal fate can be enforced by expression of bmp; and
continual Wnt signaling blocks the response of epiblast cells
to Fgf signals, permitting the expression and signaling of
Bmp to direct an epidermal fate [11, 12]. The result of
combinatorial Wnt, Fgf and Bmp signaling is a single layer
of epidermal cells, covered by a transient protective layer
called the periderm (Fig. 2). The function of the periderm is
unclear but likely to form an early epidermal barrier to
protect the developing skin from constant exposure to am-
niotic fluid. The periderm is shed once the stratification
program is completed [13]. Since the periderm is a unique
feature of developing epidermis, multipotent stem cells
maintaining the periderm or periderm-promoting signals
are lost over the course of stratification. In mice, ectodermal
commitment to an epidermal fate is initiated at 8.5 days of
development and the stratification program lasts about
10 days [14].
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Fig. 2 Epidermal structures formed during development until adult-
hood. The stratified epidermis is formed by E18.5 and gives rise to the
interfollicular epidermis (IFE) and infundibulum in adult skin. The
hair epithelium is initiated at around E14.5 by the placode or
composed of bulge hair germ (HG), isthmus and junctional zone
in adult skin. Markers for the respective epidermal compartments
are indicated in the lefi hand corner



J Mol Med (2012) 90:783-790

785

Transcriptional regulators in the developing epidermis

Although dermal signals induce or repress a whole range of
responsive genes in the developing epidermis, p63 is one of
the earliest induced transcription factors associated with
epidermal fate [14]. The p63 protein is a structural and
functional homologue of the tumor suppressive transcription
factor p53, and due to high sequence identity in their
transactivation domains, p63 can transactivate p53-
responsive genes [15]. Ablation of p63 during mouse
development leads to the formation of truncated limbs
and a block of ectodermal specification [16—18].

Although it can be argued that expression of p63 is not
restricted to stem cells, it is an essential factor for the
formation of an intermediate layer between the basal layer
and the periderm, which is the earliest morphological sign of
stratification [18-20]. The intermediate cell layer is later
replaced by post-mitotic spinous layers [19]. In conclusion,
p63 is a crucial factor allowing ectodermal stem cells to
develop and survive. Similarly, another protein homologue
p73, which is not expressed in epidermal cells, ensures the
survival of neural stem and early progenitor cells during
development [21, 22].

The p63 gene encodes several protein isoforms generated
by alternative splicing and how or whether specific isoforms
control epidermal stem cell fate remains unclear [23]. The
most abundant isoform in the epidermis (ANp63x) lacks a
transactivation domain, and accordingly fails to induce ap-
optosis and inhibits p53 transcriptional activity [24]. The
full-length TAp63 isoforms are the first to be expressed
during embryogenesis and are required for initiation of
epithelial stratification but TAp63 isoforms must be counter-
balanced by ANp63 isoforms to allow cells to respond to
signals required for maturation of embryonic epidermis
[18]. In zebrafish, ANp63 over-expression blocks neural
development and promotes non-neural development [25].
Thus, the lack of ectodermal specification in p63 null mice
might be due to a combination of a failure to establish and
maintain epidermal stem and progenitor cells.

Although the precise function of the different p63
isoforms in stem and progenitor cells is debated, p63
clearly plays a major role in embryonic development of
ectodermal lineages [23]. Heterozygous mutations in the
human p63 gene are responsible for several ectodermal
dysplasia syndromes, which are congenital disorders
characterized by abnormalities of two or more ectoder-
mal structure, including hair, teeth, nails and sweat
glands among others [23, 26].

Another transcription factor required to maintain an
undifferentiated and proliferative state of epidermal progeni-
tors in both the developing and adult skin is the Yes-associated
protein (YAP1). YAPI is a proto-oncogene from the Hippo
pathway; nuclear YAP1 specifically marks progenitor cells in

the developing epidermis and its deletion results in epidermal
embryonic hypoplasia [27, 28].

Epigenetic regulators in the developing epidermis

Robust changes in gene expression during development and
cellular differentiation are often achieved by a tight interplay
between transcription factors and chromatin modifying
enzymes [29, 30]. Setd8, the sole enzyme to catalyze the
formation of mono-methylated histone 4 at lysine 20, is
essential for survival of basal ectodermal cells prior to
stratification and its deletion results in a phenotype
similar to that observed upon deletion of p63 [31].
Due to redundancies, the direct roles of other chromatin
modifying enzymes in regulating epidermal progenitors
are often complex and difficult to define.

Ezhl and Ezh2 mediate tri-methylation of histone 3 at
lysine 27 (H3K27me3) and are part of Polycomb Repressive
Complex-2 (PRC2). Deposition of H3K27me3 in promoter
regions correlates with transcriptional repression and is
essential for lineage commitment of embryonic stem
cells into the three germ layers [32, 33]. In the epidermis, only
complete loss of the H3K27me3 by deletion of both
Ezh2 and Ezhl causes de-repression of non-epidermal
lineage markers [34, 35]. Intriguingly, the PRC2 complex is
also required to balance epidermal stem cell prolifera-
tion in adult skin, as shown by deletion of Ezh1/2 and
Jarid2 [34, 36].

Regulators of the epidermal stratification process

One of the first steps to complete the stratification program
during development might be the direct transcriptional
activation of the genome organizer Satbl by p63 [37].
Through remodeling of chromatin, Satbl causes tran-
scriptional activation of genes located to the epidermal
differentiation complex, a gene locus essential for skin
maturation [37, 38]. During the differentiation program,
epidermal progenitors then detach from the basal mem-
brane and switch to a post-mitotic suprabasal state. This
switch is achieved through asymmetric as opposed to
symmetric cell divisions; and further involves Notch
signaling pathways, polarized cytoskeletal and adhesive
changes as well as expression of proteins that will ultimately
form the impermeable epidermal barrier; processes that have
been extensively reviewed elsewhere [14, 39—44].
Transcriptional regulators inducing the basal to supra-
basal epidermal switch during embryogenesis involve
the retinoblastoma family members p107 and p130, both
of which are required for establishing a quiescent cell
cycle state of suprabasal cells [45]. The CCAAT/
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enhancer binding proteins C/EBPx and C/EBP{ are
expressed in the first suprabasal layer, where they stim-
ulate the onset of differentiation by repressing p63 [46].
Post-transcriptonal repression of p63 during stratification
is achieved by the microRNA miR-203 [47].

During stratification the epidermal cells progressively
differentiate as they move upwards and form the spinous,
granular and finally the dead, impermeable cornified layer
of the skin (Fig. 2). After completion of the stratification
program, cells located in the basal layer of the interfollicular
epidermis maintain its structure throughout adult life;
and under homeostatic conditions, they can do so inde-
pendent from any other stem cell population found in
skin to date [48-50].

The development of a hair follicle

About half way through the stratification program at
embryonic day 14.5 ectodermal stem cells can adopt
an alternative fate to epidermis, the formation of a hair
follicle (Figs. 1 and 2). Commitment to a follicular
epithelium starts with the formation of a placode
(Fig. 2). Placode formation is dictated by signals sent
from the underlying mesenchyme, the dermal cells. The
mesenchymal cells aggregate immediately underneath
the epidermis and mark the location of the new hair
follicle [51]. These aggregates or dermal condensates
are the precursors of the dermal papilla, the permanent
mesenchymal part of a hair follicle [52]. The occurrence
of dermal aggregates, and thus the formation of hair
follicles, is controlled in a strict spatiotemporal manner
and the signals involved in this process have been
extensively reviewed [51-55].

One of the first essential events to form a placode is the
activation of Wnt signaling in the epidermis; expression of
the Wnt inhibitor Dickkopf-1 abolishes the development of
hair follicles [56—58]. Activation of Wnt signaling in the
hair follicle epithelium is followed by expression of Sonic
hedgehog (Shh), which is important for the early develop-
ment and maturation of the dermal papilla [59, 60]. Key
dermal factors also include Fgf and subsequent inhibition of
Bmp [61, 62]. Interestingly, Fgf signaling collaborating with
Bmp inhibition induced neural induction earlier in develop-
ment, indicating that the secretion of a highly specialized
cocktail of factors from the underlying mesenchyme is
temporally and spatially controlled. Accordingly, the
dermis not only dictates the formation of appendages
but also timing, spacing, size and type [63].

Maturation of the placode is co-ordinated by Wnt targets
such as the Leucine-rich repeat containing G-protein
coupled receptor 4 (Lgr4) and EDAR, both of which
are required for the proper initiation and maintenance of
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the primary hair follicle placodes [64, 65]. Once orga-
nized, the placodes start proliferating and grow down-
wards, a process that is dependent on expression of Shh
in the proliferating epithelial cells at the distal tip of the
developing hair follicle [59, 66, 67]. Notably, the role
of Shh in hair follicle development is epidermal cell autono-
mous because hair follicle formation is initiated and the der-
mal condensate is formed in mice lacking Shh [68]. The
down-growing hair follicles generate the first hair germs at
embryonic day 15.5, which will develop into the epithelial
part of the hair follicle and then elongates into hair pegs at
embryonic day 16.5 to 17.5.

The correct directional down-growth of the placode is
determined by specific sets of microRNAs; conditional de-
letion of the miRNA processing enzymes Dicer or Dgcr8
does not impair placode formation, but causes placode
evagination into the embryonic epidermis [69, 70].
Interestingly, placode evagination is also observed in re-
sponse to impaired integrin and YAPI signaling pathways,
indicating that polarity of embryonic hair growth is regulat-
ed through both transcription and cell-matrix interactions
[27, 71]. During down-growth, the leading front of the hair
follicle (matrix) remains proliferative through its interaction
with the dermal papilla, whereas reduced adhesive prop-
erties and proper polarization of dermal-epidermal inter-
actions allow migration into the dermis [45, 72, 73].

At embryonic day 18.5, the inner root sheath develops
into the hair channel and the outer root sheath maintains
contact with the basement membrane [52]. At birth, the most
mature hairs begin to break the surface and maturation
continues through to the first postnatal week [55]. At postnatal
day 17, hair morphogenesis ends and the first adult hair cycle
begins. In adult skin, the hair follicles keep undergoing cyclic
bouts of growth (anagen), apoptosis-mediated regression
(catagen) and rest (telogen) [74, 75].

Origin of hair follicle stem cells

The origin of an adult hair follicle stem cell is particularly
difficult to define. The classical view of a hair follicle stem
cell is a slow cycling cell, which exhibits long-term
contribution to all hair compartments. Such multipotent
hair follicle stem cells are located in a special microen-
vironment called the bulge (Fig. 2) [40, 76]. The estab-
lishment of the quiescent bulge takes place early during
postnatal hair follicle morphogenesis, and depends on
signals that are already present in the embryonic placode [77].
However, recent studies on the hair follicle have uncovered
diverse and cycling populations of stem cells outside the bulge
region (isthmus and junctional zone; Fig. 2), which can also
act as multipotent stem cells in stress situation, such as injury
[48]. These studies established the concept of the existence of
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several classes of epithelial stem cells in the hair follicle
[78, 79]. How these stem cell populations relate to each
other is unclear but recent evidence suggests a hierar-
chical organisation with a quiescent bulge stem cell at
the base [80].

One strategy to identify a potential common founder
population of adult hair follicle stem cells is the genetic
marking of cells, which allows the tracing of all daughter
populations. Labelling of Shh-expressing cells in the pla-
code showed that the progenies can indeed generate all
structures of a hair follicle [50], indicating that the
Shh-positive placode cell is the origin of all hair follicle
stem cells. In contrast, progeny of stem cell populations
in the adult hair follicle contribute to more restricted
lineages of hair follicle during homeostasis [48]. One
Shh-dependent transcription factor expressed in the pla-
code is Sox9. Progeny of Sox9-expressing cells also
contribute to all hair lineages and ablation of Sox9
leads to a failure to generate hair and sebaceous glands
and the bulge stem cell niche is never formed [77, 81].
Whether a placode-like cell persists throughout adult life and
how they may relate to cycling stem cell populations in the
hair follicle remains unclear.

Molecular regulators that control both embryonic and
adult hair follicles are rare but expression profiling of
placode cells compared to other epidermal populations
revealed a couple of additional transcriptional regulators
enriched in the placode, which are associated with postnatal
genetic hair defects: Cutll, Glil, Hoxc13, Lhx2 and Runx1
[53, 55, 82-84].

The development of a sebaceous gland

Together with the hair, the majority of sebaceous glands are
an integral part of a pilosebaceous unit; although some
glands can be found without an associated hair follicle
[85]. Sebaceous glands are functionally important to main-
tain hair; and lack of sebaceous glands can be associated
with scarring alopecia [86, 87]. Sebaceous glands form late
in mouse development and appear when follicles elongated
into hair pegs. Although absence of Sox9 inhibits the for-
mation of an early bulge and sebaceous glands, the first
sebaceous cells in the developing hair follicle are not Sox9
positive but arise from Lrigl-positive cells in the hair folli-
cle [77, 88]. During homeostasis in adult mouse skin, Lrigl-
positive cells contribute to the infundibulum and the seba-
ceous glands [89].

Concepts of homeostatic stem cell self-renewal

Tissue homeostasis is a balance between stem cell self-
renewal and the generation of committed daughter cells.

As in many other tissues, a single stem cell that is the origin
of all epidermal lineages in a non-perturbed condition has
still to be identified in adult skin. Whether the absence of a
single stem cell at the base of a potential hierarchy is due to
technical limitations in the respective studies or simply
reality is debated. However, the notion that tissue ho-
meostasis is not achieved by a single stem cell but at
the level of stem cell populations is rising. Under this
model, stem cell fate within a population is stochasti-
cally determined, meaning that the fate of an individual
stem cell is random, whereas the dynamics of a popu-
lation unfolds in a predictable manner [90]. Importantly,
this model allows the loss of individual stem cells and a
‘shift’ of properties within stem cell populations deter-
mined by intrinsic and extrinsic cues. Such a model is
attractive to explain stem cell behavior during develop-
ment and has been suggested for a number of adult
tissues, including the intestine, epidermis and blood
[90, 91]. For instance, genetic marking of single cells
in the mouse epidermis revealed that a stochastic cell
population with random fate to produce stem or differ-
entiated daughter cells is sufficient to maintain the epi-
dermis in the long term [90, 92, 93]. As mentioned
above the identity of the cell at the very base of this
hierarchy is debated and its absence might be due to
technical limitations of the assay [94].

In the hair follicle, self-renewal and differentiation pro-
cesses might be differently regulated. During development,
hair follicle cells self-organize to anatomical patterns by
coordinating few morphogenetic signals [95-97].
Activation of Wnt in the dermal papilla is one of the stron-
gest inducers of anagen and activators of hair follicle stem
cells to enter proliferation and differentiation pathways [98].
Interestingly, spontaneous activation of Wnt in individual
dermal papillae, however, does not translate into anagen
entry as long as the number of Wnt activated dermal papillae
in neighboring hair follicles is below five [96]. Within the
hair follicle bulge, stem cells divide infrequently and enter
quiescence in telogen, when single bulge cells migrate out
of their niche to undergo proliferation as progenitors before
they differentiate into hair [79, 99].

Summary

Although some progress has been made to identify the
origin of tissue specific stem cells, there is no clear evidence
that an embryonic-like stem cell is maintained in adult skin.
It is however clear that both quiescent and cycling stem cell
populations found in skin have restricted differentiation
potential under homeostatic conditions but can give rise to
all epidermal lineages after injury or insult [40, 48]. How
this increase in plasticity is achieved remains to be
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investigated but might either involve activation of a very
rare single stem cell or de-differentiation processes of
progenitors.
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