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Abstract: Despite liver cancer being the second-leading cause of cancer-related death worldwide,
few systemic drugs have been approved. Sorafenib, the first FDA-approved systemic drug for unre-
sectable hepatocellular carcinoma (HCC), is limited by resistance. However, the precise mechanisms
underlying this phenomenon are unknown. Since fibrinogen-like 1 (FGL1) is involved in HCC
progression and upregulated after anticancer therapy, we investigated its role in regulating sorafenib
resistance in HCC. FGL1 expression was assessed in six HCC cell lines (HepG2, Huh7, Hep3B,
SNU387, SNU449, and SNU475) using western blotting. Correlations between FGL1 expression
and sorafenib resistance were examined by cell viability, colony formation, and flow cytometry
assays. FGL1 was knocked-down to confirm its effects on sorafenib resistance. FGL1 expression
was higher in HepG2, Huh7, and Hep3B cells than in SNU387, SNU449, and SNU475 cells; high
FGL1-expressing HCC cells showed a lower IC50 and higher sensitivity to sorafenib. In Huh7 and
Hep3B cells, FGL1 knockdown significantly increased colony formation by 61% (p = 0.0013) and
99% (p = 0.0002), respectively, compared to that in controls and abolished sorafenib-induced sup-
pression of colony formation, possibly by modulating ERK and autophagy signals. Our findings
demonstrate that sorafenib resistance mediated by FGL1 in HCC cells, suggesting FGL1 as a potential
sorafenib-resistance biomarker and target for HCC therapy.
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1. Introduction

Liver cancer is the fourth most common cause of cancer-related deaths worldwide [1].
Primary liver cancer includes hepatocellular carcinoma (HCC) and intrahepatic cholan-
giocarcinoma, the former being one of the most common malignancies [2]. HCC occurs in
patients with chronic liver disease and is caused by persistent liver damage, inflammation,
and regeneration [3]. Since HCC is characterized by rapid progression, metastasis, and
relapse, its early detection and treatment could significantly affect clinical outcomes and
patient prognosis [4–7]. Treatment in the early stages of HCC includes surgical resection,
liver transplantation, and topical resection [8]. However, 70% of patients who undergo
resection experience tumor recurrence at 5 years [9].

Sorafenib, an oral, multikinase inhibitor, is the only FDA-approved systemic drug
applicable for patients with HCC that inhibits cellular proliferation and survival-related
signaling pathways [10]. Its administration has been shown to reduce the risk of death
in patients with HCC [10]. The effect of sorafenib on improving survival and delaying
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tumor progression has been demonstrated in phase III Asia-Pacific trials conducted in
South Korea, Taiwan, and China [11]. The mechanisms of action of sorafenib include
induction of apoptosis of tumor cells, as well as suppression of angiogenesis by inhibiting
RAS/RAF/MEK/ERK (MAPK)-mediated cell proliferation and/or vascular endothelial
growth factor signaling [12]. However, the efficacy of sorafenib treatment is limited by
the development of resistance [13]. Although several potential mechanisms of resistance
to sorafenib, including epigenetic biological processes, transport processes, regulated cell
death, and tumor microenvironment factors, have been proposed [13–16], further research
is needed to clarify novel targets and mechanisms of sorafenib resistance in HCC.

Fibrinogen-like protein 1 (FGL1), also called hepassocin or hepatocyte-derived fibrinogen-
related protein 1 (HFREP1), is mainly secreted from hepatocytes [17]. FGL1 shows mitotic
activity in hepatocytes and is overexpressed during liver regeneration [18]. Paradoxically,
FGL1 also shows a suppressive effect on the growth of hepatocellular carcinoma cells [19,20].
Its expression also has been reported that FGL1 is frequently reduced or absent in human
HCC tissue [21], and in vivo disruption of FGL1 accelerates HCC development [18]. A
recent study reported that FGL1 is a new major ligand of lymphocyte-activation gene 3
(LAG-3), which is an immune inhibitory receptor. Moreover, the potential of FGL1 in cancer
immunotherapy was recently suggested [22]. A previous study attempted to identify potential
therapeutic target genes for HCC by using Gene Expression Omnibus (GEO) and The Cancer
Genome Atlas (TCGA) databases [23], and FGL1 was identified as a possible biomarker in
lung adenocarcinoma [24]. However, little is known about the impact of FGL1 on sorafenib
resistance or the relationship between changes in the FGL1 level and HCC progression.

The present study aimed to explore basal FGL1 expression in six HCC cell lines
(Hep3B, Huh7, HepG2, SNU387, SNU449, and SNU475) and investigate its relationship
with susceptibility to sorafenib treatment. We examined changes in proliferation, viability,
and resistance-related molecular signaling in response to sorafenib treatment in vitro.

2. Results
2.1. Basal FGL1 Levels in HCC Cell Lines Are Associated with Cell Viability in Response to
Sorafenib Treatment

Basal FGL1 levels in the six HCC cell lines were investigated using western blotting.
The results showed obvious FGL1 expression in HCC cell lines, with expression levels
being notably higher in HepG2, Huh7, and Hep3B cells than in SNU387, SNU449, and
SNU475 cells (Figure 1A). To examine the viability of each HCC cell line after sorafenib
treatment, we treated all six cell lines with various concentrations of sorafenib. The three
HCC cell lines with high FGL1 expression were more sensitive to sorafenib than those with
low FGL1 expression (Figure 1B). IC50 (half-maximum inhibitory concentration) values of
sorafenib in high-FGL1 expressing HCC cells (HepG2, Huh7, and Hep3B) were 2–3 times
lower than those in low-FGL1 HCC cells (Table 1).

Table 1. IC50 of sorafenib against HCC cell lines.

Cell Line Basal FGL1 Level IC50 (µM)

Hep3B High 12.56 ± 0.79
HepG2 High 10.14 ± 0.92
Huh7 High 11.55 ± 1.01

SNU387 Low 20.77 ± 0.96
SNU449 Low 17.67 ± 0.83
SNU475 Low 38.32 ± 1.54

Values of IC50 are the mean ± SD.

2.2. Sensitivity to Sorafenib Is Correlated with Endogenous FGL1 Levels in HCC Cell Lines

To investigate the effect of sorafenib on the growth of HCC cells, we employed the
colony forming assay. We treated the six HCC cell lines with 0, 2, and 5 µM sorafenib
and counted the number of colonies that developed. Results showed that the number
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of colonies was different across HCC cell lines (Figure 2A). However, after sorafenib
treatment, a dose-dependent decrease in colony number was observed in all six HCC cell
lines; colonies of high-FGL1 expressing HCC cells were fewer than those of low-FGL1
expressing cells (Figure 2B). The results indicated that cell death due to sorafenib treatment
in high-FGL1 expressing HCC cells (HepG2, Huh7, and Hep3B) was 2–3 times higher than
that in low-FGL1 cells (Figure 2C).
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Figure 1. FGL1 expression level and viability in HepG2, Huh7, Hep3B, SNU387, SNU449, and 
SNU475 hepatocellular carcinoma (HCC) cell lines. (A) Expression of FGL1 in the six HCC cell 
lines, as determined through immunoblotting. Data are presented as the mean ± standard deviation 
(SD) (n = 3). *** p < 0.001, significantly different from HCC cells with high FGL1-expressing. (B) Cell 
viability in the six HCC cell lines after sorafenib treatment. Data are presented as the mean ± 
standard deviation (n = 6). 
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Figure 1. FGL1 expression level and viability in HepG2, Huh7, Hep3B, SNU387, SNU449, and
SNU475 hepatocellular carcinoma (HCC) cell lines. (A) Expression of FGL1 in the six HCC cell lines,
as determined through immunoblotting. Data are presented as the mean ± standard deviation (SD)
(n = 3). *** p < 0.001, significantly different from HCC cells with high FGL1-expressing. (B) Cell via-
bility in the six HCC cell lines after sorafenib treatment. Data are presented as the mean ± standard
deviation (n = 6).
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Figure 2. Effect of sorafenib on the cell colony forming capacity and cell death of HepG2, Huh7,
Hep3B, SNU387, SNU449, and SNU475 hepatocellular carcinoma (HCC) cell lines. (A) Number of
colonies after seeding 200 cells of each HCC cell line in the plate. (B) Effect of sorafenib on the colony
forming potential of HCC cells. The six HCC cell lines were incubated for 7 days in the presence of 0,
2, or 5 µM sorafenib. Data are presented as the mean ± standard deviation (SD) (n = 3). * p < 0.05,
** p < 0.01, and *** p < 0.001, significantly different from 0 µM sorafenib-treated cells. (C): Effect of
sorafenib on cell death measured by flow cytometry using Annexin V-FITC and propidium iodide
(PI) staining. The graph presents mean ± SD values of three independent experiments.
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2.3. Effects of Sorafenib on MAPK and Autophagy Pathways Differ Based on the FGL1
Expression Level

To examine whether the potential mechanism underlying the therapeutic action of
sorafenib differed depending on the basal level of FGL1 in HCC cell lines, we measured
the levels of proteins related to cell proliferation, autophagy, and apoptosis by western
blotting (Figure 3A). Sorafenib treatment in Huh7 and Hep3B cells lowered the levels
of PCNA and phosphorylated ERK while increasing those of LC3-II and cleaved PARP1
(Figure 3B,C). However, in SNU387 and SNU475 cells, sorafenib affected neither PCNA
and phosphorylated ERK nor LC3-II, and cleaved PARP1 (Figure 3D,E).
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Figure 3. Effect of sorafenib on cell death and cell proliferation factors in high FGL1- and low
FGL1-expressing hepatocellular carcinoma (HCC) cell lines. (A): Protein expression was analyzed by
western blotting 48 h after treatment with 10 µM sorafenib. Expression levels of PCNA, p-ERK/ERK,
LC3-II, and cleaved PARP1 quantified in Huh7 (B), Hep3B (C), SNU387 (D), and SNU475 (E) cell
lines. Data are presented as the mean ± standard deviation (SD) (n = 3). * p < 0.05, ** p < 0.01, and
*** p < 0.001, significantly different from 0 µM sorafenib-treated cells.

2.4. Suppression of FGL1 Mediates Colony Formation and Death of HCC Cells after
Sorafenib Treatment

To investigate the impact of FGL1 on HCC cell lines, we knocked down endogenous
FGL1 in two high FGL1-expressing HCC cell lines, Huh7 and Hep3B, using siRNA. FGL1
levels were decreased in both cell lines after siFGL1 transfection (Figure 4A,C). Knockdown
of FGL1 increased the colony formation ability of Huh7 and Hep3B cells by 61% (p = 0.0013)
and 99% (p = 0.0002), respectively (Figure 4B,D). The anticancer effect of sorafenib was
notably interrupted by siFGL1 in Huh7 (−24%) and Hep3B (−28%) cells, in contrast to the
anticancer effect of sorafenib mediated by scrambled siRNA in Hur7 (−48%) and Hep3B
(−52%) (Figure 4B,D).
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Figure 4. Effect of silencing FGL1 in Huh7 and Hep3B cells on their sorafenib sensitivity. (A) Ex-
pression of FGL1 in Huh7 cells 24 h after FGL1 siRNA transfection. (B) Colony formation of Huh7
cells following siFGL1 and/or sorafenib (2 µM) treatment. (C) Expression of FGL1 in Hep3B cells
24 h after FGL1 siRNA transfection. (D) Colony formation of Hep3B cells following siFGL1 and/or
sorafenib (2 µM) treatment. Graphs present mean ± standard deviation values (n = 4). * p < 0.05,
** p < 0.01, and *** p < 0.001, significantly different from scrambled siRNA-treated cells. siFGL1 (−),
treated with siScr; Sorafenib (−), treated with vehicle (DMSO); siScr, scrambled siRNA; siFGL1,
FGL1 siRNA.

To further investigate the effect of siFGL1 on resistance to sorafenib, cell death was
examined by flow cytometry of siFGL1- and/or sorafenib-treated HCC cells (Figure 5A,C).
Flow cytometric analysis revealed that sorafenib treatment significantly increased the cell
death rate for both Huh7 and Hep3B cells (Figure 5). However, knockdown of FGL1
impeded sorafenib-induced cell death for both Huh7 and Hep3B cells (Figure 5B,D), al-
though there were slight increases in the sorafenib-induced cell death rate in Hep3B cells
with siFGL1.
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significantly suppressed the phosphorylation of ERK in both two cell lines (p = 0.016 in 
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Figure 5. Effect of FGL1 knockdown on sorafenib-induced cell death in Huh7 and Hep3B cell lines.
Flow cytometry results of Huh7 (A,B) and Hep3B (C,D) cells are shown. The cell death percentage
was estimated using the sum of the upper left, upper right, and lower right quadrants in each dot
plot. The graphs present percentage of cell death. All values are presented as the mean ± standard
deviation of three independent experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001, significantly
different from scrambled siRNA-treated cells; # p < 0.05, significantly different from FGL1 siRNA-
treated cells. siFGL1 (−), treated with siScr; Sorafenib (−), treated with vehicle (DMSO); siScr,
scrambled siRNA; siFGL1, FGL1 siRNA.

2.5. Knockdown of FGL1 Modulates Sorafenib-Induced p-ERK and Autophagy Signaling

As shown previously, sorafenib inhibited the phosphorylation of ERK and facilitated
autophagic signaling in high FGL1-expressing HCC cells (Figures 3 and 6). We analyzed
p-ERK, Beclin-1, and LC3-II after sorafenib treatment in HCC cells with FGL1 knockdown.
Consistent with flow cytometry and colony formation assay results, sorafenib treatment
significantly suppressed the phosphorylation of ERK in both two cell lines (p = 0.016 in
Huh7 and p = 0.028 in Hep3B), whereas siFGL1 abolished those effects on p-ERK. Moreover,
sorafenib-induced activation of autophagy signals, represented by Beclin-1 and LC3-II, was
alleviated by siFGL1 (Figure 6).
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Figure 6. Effect of FGL1 knockdown on p-ERK, ERK, Beclin-1, and LC3-II in hepatocellular carcinoma
(HCC) cells following sorafenib treatment. Representative western blot and data from Huh7 (A)
and Hep3B (B) cells. Data are presented as the mean ± standard deviation (n = 3). * p < 0.05 and
** p < 0.01, compared to siScr-treated cells. siFGL1 (−), treated with siScr. Sorafenib (−), treated with
vehicle (DMSO).

3. Discussion

Sorafenib is an FDA-approved therapeutic agent for advanced HCC [25]. However,
resistance to systemic sorafenib therapy is becoming increasingly common. To improve
the antitumor effect of sorafenib, its potential mechanism and therapeutic targets should
be clarified. In this study, we investigated FGL1 as a promising biomarker that predicts
therapeutic response to sorafenib in HCC. We found that HCC cell lines showed differ-
ent basal expression levels of FGL1, and there was an association between endogenous
expression levels of FGL1 and sensitivity to the sorafenib-induced anticancer effect. In
high FGL1-expressing HCC cells, knockdown of FGL1 mediated resistance to sorafenib,
indicated by a higher proliferation rate and colony forming ability and lower cell death,
via the phosphorylation of ERK and autophagy signaling.

FGL1, secreted by parenchymal hepatocytes, is upregulated during liver regeneration
and is involved in liver cell growth [26]. A previous study reported that FGL1 expression is
elevated in HCC tissue relative to that in adjacent normal liver tissues [22]. In addition, high
plasma FGL1 expression is associated with poor response to immunotherapy, suggesting
FGL1 as a potential biomarker for predicting the outcome of cancer immunotherapy [17].
Moreover, FGL1 expression had been reported to be upregulated both in vivo and in vitro
following irradiation, indicating the possibility of FGL1 as a biomarker for liver injury [27].
In contrast, overall survival time was found to be remarkably shorter in patients with
gastric cancer with high FGL1 expression than in gastric cancer patients showing low
FGL1 expression [28]. Thus, controversy remains regarding the effects of FGL1 on cancer
cell progression, thereby calling for further investigation. In the present study, we first
examined the basal FGL1 expression levels in six HCC cell lines, HepG2, Huh7, Hep3B,
SNU387, SNU449, and SNU475 (Figure 1). We found that HCC cells with high levels of
FGL1 showed higher sensitivity to sorafenib than those with low levels of FGL1 (Figure 2).
These results indicated that sensitivity to sorafenib treatment is possibly related to the basal
levels of FGL1 in HCC cell lines.
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The MAPK signaling cascade has been reported to be essential for cellular communi-
cation, involving cell growth, survival, and differentiation [29]. Thus, considerable effort
has been invested in deciphering the molecular mechanisms involved in this pathway
for the development of cancer therapies [30]. Sorafenib is a potent multikinase inhibitor
capable of facilitating apoptosis, mitigating angiogenesis, and suppressing tumor cell
proliferation [31] in HCC [32] and prostate cancer cells [33] through MAPK [12]. It was
previously reported that the regulation of cell death, especially autophagy and ferroptosis,
is involved in sorafenib resistance in HCC. It has also been reported that c-Jun expression
is associated with sorafenib resistance [34]; however, the precise mechanisms associated
with sorafenib resistance in HCC cell lines remain largely unknown, and requires further
investigation. In the present study, HCC cells with high expression levels of FGL1, namely
Huh7 and Hep3B, showed induction of autophagy and apoptosis-related signals and a
reduction in ERK phosphorylation following sorafenib treatment. However, these changes
were not found in HCC cells expressing low levels of FGL1, namely SNU387 and SNU475
(Figure 3). These findings indicated that sorafenib sensitivity is possibly related to the
activation of ERK and autophagy signaling pathways in HCC cells; hence, measurement of
basal FGL1 expression levels could be useful as a predictor of sorafenib sensitivity.

To investigate the role of FGL1 in the response to sorafenib in HCC cell lines, we
modulated FGL1 expression levels in high FGL1-expressing HCC cells, Huh7 and Hep3B,
via FGL1 siRNA. Notably, siFGL1 treatment in HCC cells resulted in lower cell death
and higher colony forming activity compared to those with scrambled siRNA. Whereas
sorafenib treatment significantly increased cell death and reduced colony formation in
both Huh7 and Hep3B cell lines (Figure 2), knockdown of FGL1 alleviated sorafenib-
induced anticancer effects, as represented by the levels of cell death and colony formation
(Figures 4 and 5). Moreover, we found that siFGL1-induced resistance to sorafenib in HCC
was associated with a reduction in p-ERK and autophagy signaling (Beclin-1/LC3-II) by
western blotting (Figure 6). Previously, Zhang et al. [32] suggested that the phosphorylation
status of ERK is a potential predictor of sorafenib sensitivity in HCC; basal p-ERK levels
increase in accordance with their metastatic potential. Furthermore, studies have indicated
a critical role for autophagy in sorafenib resistance in HCC, as measured by changes in
the activity of IRE1, Akt, mTORC1, and others. Moreover, Tai et al. [35] reported that
sorafenib activates autophagy through the release of Beclin-1 binding to Mcl-1. Taken
together, our results suggested that FGL1 is involved in resistance to sorafenib in HCC
via p-ERK/autophagy signaling. However, additional studies using multiple cell lines
to assess the potential regulatory mechanism in HCC cell lines with different origins are
required to determine the possible role of FGL1 expression in drug resistance.

There have been controversial results with respect to FGL1 expression levels and their
impact on cancer therapy. Our results showed that siFGL1 in high FGL1-expressing cells
increased colony formation; these results are consistent with previous reports showing
that FGL1 exerts an inhibitory effect on HCC growth and functions as a tumor suppressor
in HCC proliferation [21] and that knockdown of FGL1 accelerates HCC development
in vivo [18]. Further, Bie et al. reported, via through TCGA and GEO database data
mining and in vitro functional experiments, that the loss of FGL1 promotes cell growth,
epithelial-mesenchymal transition (EMT), and angiogenesis in LKB1-mutant lung ade-
nocarcinoma [24]. However, Sun et al. reported that FGL1 confers gefitinib resistance
and that the knockdown of FGL1 in lung adenocarcinoma cells induces antitumor effects
in vivo [36]. Therefore, further preclinical and clinical studies of HCC are necessary to
clarify the role of FGL1 and its impact on HCC.

There are limitations to this study. First, we demonstrated the effect of FGL1 sup-
pression on sorafenib resistance using high FGL1-expressing HCC cell lines, but did not
overexpress FGL1 in low FGL1-expressing cells. Further studies to clarify the impact of
FGL1 overexpression on HCC are needed. Second, additional clinical evidence is needed
to confirm our conclusion.
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The current study demonstrated that the effects of sorafenib treatment on cell viability
and colony formation are significantly correlated with the basal FGL1 level in HCC cell lines.
Knockdown of FGL1 decreased sorafenib-induced apoptosis and suppression of cell prolif-
eration in HCC cell lines with high FGL1 expression, probably through ERK/autophagy
signaling. Our results collectively suggest that FGL1 is a potential biomarker for sorafenib
resistance in HCC and a promising target for HCC therapy.

4. Materials and Methods
4.1. Cell Culture

The cell lines and their culture media were as follows: HepG2 (ATCC, Manassas, VA,
USA), DMEM; Huh7 (KCLB, Korean Cell Line Bank, Seoul, Korea), RPMI1640; Hep3B
(KCLB), DMEM; SNU387 (KCLB), RPMI1640; SNU475 (KCLB), RPMI1640; SNU 449 (KCLB),
RPMI1640. The medium for each cell line was supplemented with 10% FBS and 1%
antibiotic and cultured in an incubator at 37 ◦C and 5% CO2.

4.2. Reagents and Treatment

Sorafenib purchased from Selleckchem Inc (Houston, TX, USA) was dissolved in
dimethyl sulfoxide (DMSO). DMSO was used as a vehicle. For FGL1 silencing in HCC cells,
scrambled siRNA (siScr) and FGL1 siRNA (siFGL1) were purchased from IDT® (Integrated
DNA Technologies, IA, USA). siRNAs were transfected using the Lipofectamine 2000
(Invitrogen, San Diego, CA, USA) following manufacturer’s instructions. siRNA sequences
were as follows: 5′-GGGACAGAGAUCAUGACAACUAUGA-3′ for siFGL1 (#2) and 5′-
CGUUAAUCGCGUAUAAUACGCGUAT-3′ for siScr.

4.3. Cell Viability Assay

The cell viability assay was performed using 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl-
tetrazolium bromide (MTT). For this, 3× 104 cells were seeded in 24-well plates and treated
with different concentrations of sorafenib (2.5, 5, 10, 25, and 50 µM). After 48 h, MTT solu-
tion was added (final concentration 0.5 mg/mL) to each well and then incubated for 2 h at
37 ◦C. Next, MTT solution was removed and DMSO was added to each well. Optical den-
sity was measured at 570 nm using a microplate reader (Molecular Devices Ins, Sunnyvale,
CA, USA).

4.4. Colony Forming Assay

To assess the effectiveness of sorafenib on six different HCC cell lines, we conducted
a colony forming assay. From each cell line, 300 cells were plated in a 60-mm dish. After
24 h, sorafenib was added at 0, 2, or 5 µM, and the cells were incubated at 37 ◦C with 5%
CO2 for 7~10 days. The cells were washed with PBS twice and fixed with 10% neutral
buffered formalin in PBS solution. Then, the cells were stained with 0.5% crystal violet for
30 min, washed with running water, and the number of colonies was counted. A colony
was defined as consisting of more than 50 cells.

4.5. Western Blotting

Immunoblotting was performed as described previously [27]. Briefly, cells were lysed
with RIPA buffer supplemented with protease inhibitor. The protein concentration was
then determined using Bradford reagent (Bio-Rad, Hercules, CA, USA) according to the
manufacturer’s instructions. Equal amounts of protein (15–40 µg) were separated on
10% SDS-PAGE gel and transferred onto a nitrocellulose membrane at 100 V for 90 min.
The membrane was incubated in 5% skim milk with PBS containing tween 20 (PBST)
for at least 1 h to block non-specific binding. Next, the membrane was incubated with
the primary antibody at 4 ◦C overnight. The following primary antibodies were used to
detect target proteins: anti-FGL1 (1:1000 dilution; Proteintech, Rosemont, IL, USA), anti-
PCNA (1:1000 dilution; Santa Cruz Biotechnology, Dallas, TX, USA), anti-phosphorylated
ERK (1:1000 dilution; Cell Signaling Technologies, Danvers, MA, USA), anti-ERK (1:1000
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dilution; Cell Signaling Technologies), anti-LC3-II (1:3000 dilution; Novus Biologicals,
Littleton, CO, USA), anti-cleaved PARP1 (1:1000 dilution; Cell Signaling Technologies),
anti-Beclin-1 (1:1000 dilution; Cell Signaling Technologies), and anti-β-actin (1:2000 dilution;
Sigma-Aldrich, St. Louis, MO, USA). The membrane was thereafter incubated with the
appropriate horseradish peroxidase-conjugated secondary antibody (1:3000 dilution; Santa
Cruz Biotechnology) for 1 h at room temperature. The membrane was finally washed
with PBST and then developed using an enhanced chemiluminescence kit (Perkin Elmer,
Waltham, MA, USA). Protein bands were quantified using ImageJ software (National
Institutes of Health, Bethesda MD, USA) and corrected by subtracting the measured
intensity from that of β-actin.

4.6. Annexin V/Propidium Iodide Staining

The Annexin V-FITC Apoptosis Detection Kit (556547, BD Biosciences, San Jose, CA,
USA) was used to detect apoptotic cell death. Cells were seeded (1 × 104 per well) into
60 mm dishes and incubated with sorafenib (10 µM). After 48 h, cells were washed once in
cold PBS and resuspended in 500 µL of 1× binding buffer containing 5 µL of annexin-FITC
and 5 µL of propidium iodide. Then, the apoptotic cells were analyzed immediately using
the FACSCalibur™ flow cytometer (Becton-Dickinson, Franklin Lakes, NJ, USA).

4.7. Statistical Analysis

Data are represented as the mean ± standard deviation. Statistical significance was
determined using one-way analysis of variance followed by Tukey’s multiple comparison
test using GraphPad Prism (version 8.4.3).
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