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Abstract

Cells sense their surrounding by employing intracellular signaling pathways that transmit

hormonal signals from the cell membrane to the nucleus. TGF-β/SMAD signaling encodes

various cell fates, controls tissue homeostasis and is deregulated in diseases such as can-

cer. The pathway shows strong heterogeneity at the single-cell level, but quantitative

insights into mechanisms underlying fluctuations at various time scales are still missing,

partly due to inefficiency in the calibration of stochastic models that mechanistically describe

signaling processes. In this work we analyze single-cell TGF-β/SMAD signaling and show

that it exhibits temporal stochastic bursts which are dose-dependent and whose number

and magnitude correlate with cell migration. We propose a stochastic modeling approach to

mechanistically describe these pathway fluctuations with high computational efficiency.

Employing high-order numerical integration and fitting to burst statistics we enable efficient

quantitative parameter estimation and discriminate models that assume noise in different

reactions at the receptor level. This modeling approach suggests that stochasticity in the

internalization of TGF-β receptors into endosomes plays a key role in the observed temporal

bursting. Further, the model predicts the single-cell dynamics of TGF-β/SMAD signaling in

untested conditions, e.g., successfully reflects memory effects of signaling noise and cellu-

lar sensitivity towards repeated stimulation. Taken together, our computational framework

based on burst analysis, noise modeling and path computation scheme is a suitable tool for

the data-based modeling of complex signaling pathways, capable of identifying the source

of temporal noise.
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Author summary

Fluctuations in molecular networks give rise to heterogeneity in cellular behavior and

therefore promote the diversification of tissues. For a better understanding of cellular

decision making, it is important to identify sources of molecular fluctuations and to quan-

titatively describe them by predictive mathematical models. In this work, we focused on

temporal fluctuations of the TGF-β signaling pathway that is important for controlling

cell division and migration.
We characterized a single-cell dataset comprising hundreds of cells using time series

analysis and a large-scale stochastic model. By fitting several model variants to the data,

we identified the stochastic internalization of cell surface receptors into endosomes as a

main source of temporal fluctuations (’bursts’) in the signaling pathway. The correspond-

ing model accurately predicted novel experimental data, and provided insights into the

long-term memory of signaling fluctuations. In summary, we propose a modeling

approach to quantitatively describe heterogeneous behavior in large-scale single-cell data-

sets and to identify the underlying biological mechanisms.

Introduction

During development and homeostasis of mammalian tissues, proliferation and differentiation

are coordinated among thousands of cells. To communicate with each other, cells use cyto-

kines, a group of extracellular signaling molecules. The cytokine transforming growth factor

beta (TGF-β) and other members of the TGF-β superfamily play an important role in tissue

homeostasis, as they induce antiproliferative and apoptotic responses in adult cells to effec-

tively limit tissue growth [1, 2]. Furthermore TGF-β signaling induces a loss of cell-cell junc-

tions, cytoskeletal reorganization and migration [3], thereby allowing epithelial cells to evade

from their original location by acquiring a migratory, mesenchymal phenotype in a process

called epithelial-to-mesenchymal transition (EMT).

Since the TGF-β signaling pathway is involved in such central regulatory processes, its

deregulation is associated with diseases like fibrosis and cancer. In cancer progression, TGF-β
signaling plays a dual role: In normal cells the pathway typically provides a cytostatic response

and thus acts as a tumour suppressor. In early tumor stages, the tumor-suppressive function is

frequently lost, whereas in late-stage tumors TGF-β signaling may induce EMT and promote

metastasis [4]. Hence, TGF-β signaling undergoes a specificity switch from a tumor-suppress-

ing to a migration-enhancing function. To better understand this specificity switch, deeper

insights into cellular information processing in the TGF-β pathway are required.

The molecular mechanisms of TGF-β signal transmission within cells are well character-

ized: Signaling is initiated by binding of TGF-β to the TGF-β receptor type II (TGFBR2). This

receptor then recruits a type I receptor (TGFBR1) to form the receptor-ligand complex, which

phosphorylates SMAD2 and SMAD3, the intracellular transducers of the signal. In the cyto-

plasm, phosphorylated SMAD2/3 proteins form trimers with another protein called SMAD4,

and the SMAD trimers translocate into the nucleus to act as transcription factors regulating

the expression of downstream target genes. Among the induced genes are both positive and

negative feedback regulators, e.g., SMAD7 which inhibits TGF-β receptors by inhibiting their

catalytic activity and inducing their degradation [5].

Previous studies indicate that the cellular response to TGF-β stimulation is correlated to the

temporal dynamics of SMAD activation [6–8]. For instance, in cancer cell lines EMT and cell

migration seems to be induced upon transient SMAD activation, while the cytostatic response
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requires sustained signaling [6]. Moreover, we recently analyzed the dynamics of SMAD

nuclear translocation in single MCF10A cells using live-cell imaging and found that cells with

sustained signaling tended to divide less when compared to cells showing a transient signal

[7]. Due to high temporal and spatial resolution, this data allowed us to accurately observe the

temporal heterogeneity of SMAD signaling at the single-cell level. Interestingly, we found tem-

poral fluctuations in the nuclear translocation of SMAD2 on an intermediate time scale of 30

min to 2 hours which we refer to as activity bursts in the following. These bursts may be physi-

ologically relevant, as stochastic or periodic pulsatile changes in signaling proteins were found

to have an influence on the cellular response for several other pathways including calcium [9],

NF-κB [10, 11], ERK [12, 13] and P53 [14] signaling.

The temporal regulation of SMAD translocation is well studied and understood by deter-

ministic mathematical models, see e.g. [7, 15–18]. These models can be seen as approximations

of the average dynamics in the limit of small noise assuming large populations of identical cells

[19]. Using deterministic models, ligand degradation due to receptor internalization and the

negative feedback via SMAD7 have been identified as important factors in the termination of

signal. However, deterministic models do not account for the temporal activity bursts we

observe at the single-cell level. For a better understanding of the pathway dynamics and to

reproduce the effect of bursting events on the pathway, stochastic simulations are required. A

common but computationally expensive way to integrate stochastic effects in time trajectories

is to use the Gillespie algorithm [20], also known as kinetic Monte Carlo method. The algo-

rithm delivers a solution of the underlying chemical master equation by sampling from a large

number of realizations [21, 22]. Approximating the probability distribution of the chemical

master equation in the limit of small noise, the chemical Langevin equation introduces a sys-

tem of stochastic differential equations (SDEs), that assumes noise in the concentrations of the

chemical species to approximate the stochastic dynamics [23, 24]. Other types of SDE and ran-

dom ordinary differential equation models have been applied to cellular dynamics for example

in [25–27]. The complexity of the TGF-β system under investigation is reflected by a large

number of dynamic variables and parameters acting on different time scales leading to a stiff

system of ordinary differential equations (ODEs). This reduces the efficiency of stochastic sim-

ulations and complicates the quantitative calibration of stochastic models based on large-scale

single-cell datasets.

Species that are present in low copy numbers contribute most to the stochasticity. In con-

trast, species with large copy numbers or fast reaction rates necessitate smaller time steps in

the Gillespie algorithm, thereby increasing the required computing time. In common splitting

methods, either the species [28] or the reactions are split into a slow and a fast group [29, 30],

or combinations of both [31] under quasi-steady-state or partial equilibrium assumption. In

other hybrid methods, based on a separation of time scales, fast components are modeled

deterministically while other components are treated with a stochastic model [32]. Further

hybrid methods determine their stochastic species based on the variance [33, 34]. Derived

from fundamental chemical reactions of simple molecules without conformational changes,

these methods assume Poisson- or normal distributions of reaction events. Other methods

employ lognormal parameter sampling combined with SDEs to model noise arising on differ-

ent time scales [35].

In contrast to these methods we propose a hybrid deterministic-stochastic modeling

framework, which allows for multi-parametric stochastic processes corresponding to more

complex processes. To this end our efficient approach applies stochasticity by means of SDEs

to a subset of selected variables within the system. We further propose an analysis framework

that uses species splitting to our advantage since it offers the possibility to attribute sources

of noise. To quantitatively reproduce bursting events in the SMAD signaling pathway, we
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apply an automated burst detection algorithm enabling us to analyze how burst properties

vary across the population. Applying the same burst analysis to both the measured data and

the simulations, we define an objective function and thereby compare different model vari-

ants that consider stochasticity in distinct parts of the signaling cascade to the data. Thus, we

were able to determine the contribution of different pathway reactions to generating activity

bursts in SMAD signaling and found that TGF-β receptor internalization may play a key role

in this respect. Finally, we compared the predictions of our model to experimental data in

untested conditions and show that our model faithfully reproduces the temporal heterogene-

ity of the SMAD signaling network. The proposed framework may be generally applicable to

quantitatively model stochastic biochemical signaling networks based on live-cell imaging

data.

Results

Quantification of temporal stochasticity in single cells by burst analysis

To analyze activity bursts in TGF-β/SMAD signaling, we used previously published measure-

ments of SMAD2 nuclear translocation at the single-cell level [7]. In these experiments,

MCF10A breast epithelial cells stably expressing SMAD2 fused to a fluorescent protein were

analyzed by time-resolved live-cell microscopy. The nuclear and cytoplasmic SMAD2 concen-

trations were quantified over a 24h time interval after stimulation with different concentra-

tions of TGF-β. To determine pathway activity, the ratio of nuclear to cytoplasmic SMAD2

(nuc/cyt SMAD2 ratio) was used as a quantitative measure of the translocation of SMAD2 to

the nucleus (see Fig 1).

The analysis in [7] showed that upon stimulation with a saturating TGF-β stimulus (100

pM), the population-average response summarizing 352 single cells shows a transient peak

that is followed by a plateau above the baseline (black line in Fig 1B). At the single-cell level,

we observed fluctuations in the nuc/cyt SMAD2 ratio on three different time scales: On a short

time scale of less then 100 minutes, there are temporally uncorrelated fluctuations that most

likely reflect measurement noise. On a larger time scale of more than 12 hours, we observed

drifts of the trajectories possibly caused by photobleaching or environmental conditions like

the density of the cells. On an intermediate time scale we observed changes in nuc/cyt SMAD2

ratio that we interpreted as bursting events in SMAD signaling (cf. Fig 1B). As shown in [7]

and S6 Fig, these events cannot be explained by uncorrelated fluctuations in cytoplasmic

SMAD.

To quantify how activity bursts vary between cells and TGF-β doses, we developed a

method to automatically detect bursting events on an intermediate time scale between 100 and

300 minutes. Our burst analysis consists of three principal steps (see Methods and Fig 1C for

details): (1) Slow drifts on a larger timescale are identified and subtracted from the signal. (2)

Fast and uncorrelated fluctuations below the relevant time scale of bursting events are

removed from the signal. (3) The position, height and duration of the remaining events are

detected and quantified. We validated this burst detection algorithm using in silico-generated

datasets, in which we on purpose introduced bursts resembling the experimentally observed

ones (see Methods).

This burst detection workflow was applied to experimental single-cell data recorded at low

(2.5 pM) and high (100 pM) doses of TGF-β, or in the absence of stimulation (0 pM). In the

stimulation datasets, the first signal detected as a burst corresponds to the timing of the initial

peak observed in the population average (black line in Fig 1B). The amplitude of these single-

cell peaks increased in a dose-dependent manner much like the population-average response

(compare Fig 1D). Subsequent activity bursts, enumerated by the burst indices 2–5, reflect
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stochastic events. These show a substantially lower amplitude than the first burst, but are still

elevated in a dose-dependent manner in most cells treated with 2.5 and 100 pM TGF-β when

compared to the 0 pM control. Moreover, the total burst count per single cell within the first

24h after stimulation gradually increased with the ligand dose (Fig 1E). In contrast, the dura-

tion of the first and subsequent activity bursts remained essentially constant across varying

TGF-β doses (compare Fig 1F), which agrees to estimations of the signals self-similarity

by means of autocorrelations (see S1 and S2 Figs). Taken together, these data suggest that

certain burst features change in a dose- and time-dependent manner (burst amplitude, total

Fig 1. Quantification of bursts in TGF-β-induced SMAD translocation. A: Scheme of microscopy-based single-cell analysis of TGF-β signaling. In unstimulated

cells the SMAD2-GFP fusion protein is primarily located in the cytoplasm (top). TGF-β stimulation promotes the transport of SMAD2-GFP to the nucleus and hence

increases the nuc/cyt SMAD2 ratio that was quantified from microscopy images (bottom). See [7] for details on the data analysis. B: Bursts in SMAD2 nuclear

translocation. Time-resolved measurements of the nuc/cyt SMAD2 ratio of four individual cells (colored lines) are compared to the population average response over

352 cells (black line) upon stimulation with 100 pM TGF-β. A stochastic deflection (burst) is highlighted (arrow, dotted lines indicate beginning and end). C: Burst

detection process. Bursts are detected in the nuc/cyt SMAD2 ratio of a single-cell upon stimulation with TGF-β. Top: Peaks in the measured trajectory of the nuc/cyt

SMAD2 ratio (black line) are approximated by a sum of Gaussian hills (green lines) which are subtracted from a smoothened version of the signal to estimate the long-

term trend (blue line). Bottom: Afterwards, the long term trend is subtracted from the measurement data (black line), short-term effects are smoothed out by a

Gaussian filter (blue line) and the result is analyzed by a peak finding algorithm which detects 5 bursts in this example (indicated in red). As pathway events might

occur shortly after each other we allowed for overlapping bursts. The bursts are characterized by their height and duration (red dashed lines). See Methods for details.

D: Burst height increases with TGF-β dose. Violin plots show the distributions of the burst height for the first 5 bursts (burst index) in the nuc/cyt SMAD2 ratio

trajectories upon stimulation with 5 pM (blue) and 25 pM (red) TGF-β and in a control population (0 pM). Median and mean are marked by red and black horizontal

lines. E: Burst count increases with TGF-β dose. Distribution of burst counts in the nuc/cyt SMAD2 ratio trajectories after stimulation with 5 pM and 25 pM TGF-β
and in a control population (0 pM). Higher doses of TGF-β lead to higher burst counts. Median and mean are marked by red and black horizontal lines. F: Burst

duration is independent of TGF-β dose. Violin plots show the distributions of burst duration for the first 5 bursts (burst index) in the nuc/cyt SMAD ratio trajectories

upon stimulation with 5 pM and 25 pM TGF-β and in a control population (0 pM). Median and mean are marked by red and black horizontal lines. G: Bursts count

correlates to cell motility at the single-cell level. Single cells were binned according to their area-under-curve (AUC), measured as the integral of the nuc/cyt SMAD2

ratio over all time points (x-axis), and were further sub-classified in terms of their total burst count (see legend). The cell motility (y-axis) was calculated by taking the

sum over the distance moved by the cells in consecutive time points. Among cells with similar total signal (AUC), cells with 8 or less bursts (blue) exhibit lower motility

than cells with 12 or more bursts (red).

https://doi.org/10.1371/journal.pcbi.1010266.g001
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burst count), whereas others apparently do not depend on the external stimulus (burst

duration).

Stochastic burst-like events may contribute to regulating cellular responses to TGF-β stimu-

lation such as cell migration. To quantify the relationship between bursts and cell migration, a

motility score for individual cells was calculated as the summed absolute displacement of cells

between consecutive time points, as previously described in [7] (see Methods). By relating the

motility of individual cells to bursting events we confirmed that cells with higher SMAD burst

counts also tend to exhibit a higher motility than cells with lower burst counts, see Fig 1G. As

cells with a lower burst count are also expected to exhibit a lower total SMAD signal, this anal-

ysis was performed for various bins summarizing single cells with a similar total area-under-

curve (AUC). Even after this correction for the total SMAD signal, cells with a higher total

burst count (>12) persisted to exhibit a higher mobility score than those with fewer bursts

(<8). This suggest that bursting events in the nuc/cyt SMAD2 ratio are partially correlated to

cellular migration and may be causally related to this cellular response.

Modeling burst like behaviour in single cells by generalizing a population-

average model

Given the dose-dependent nature of SMAD activity bursts and their potential relation to cell

migration, we sought to describe them using a stochastic modeling approach. To this end, we

built on a mechanistic model of the pathway published in [7] that is based on ordinary differ-

ential equations (ODEs). This model comprises three modules describing TGF-β receptor

dynamics [36], SMAD phosphorylation/complex formation [37] and SMAD-induced feedback

regulation [38], see Fig 2A for details.

Based on this model, we derived a stochastic description of a cell population to describe

bursting. This was done by simulating an ensemble of cells, in which each cell exhibits inde-

pendent stochastic fluctuations in certain kinetic parameter values. The individual cells of this

ensemble share a common extracellular TGF-β pool that serves as an input into the single-cell

model, but is also in turn influenced by the single cells, as these internalize receptor-ligand

complexes and thereby degrade the ligand. Hence, the model consists of interdependent equa-

tions describing the extracellular TGF-β and intracellular signaling protein dynamics.

The temporal dynamic of the external input, which is shared among many single cells, is

given by

dL ¼ fLðt; L;Y
1; . . . ;YN ;P1; . . . ;PNÞ dt; ð1Þ

where L denotes the concentration of the free ligand TGF-β and Yi is a vector including the

dynamic concentrations yi
1
; . . . yi

22
relevant to the SMAD pathway in cell i out of N cells. Simi-

larly, the vector Pi contains the relevant kinetic parameters p1
i ; . . . ; pi

55
in cell i, see S1 Table for

details. The right hand side fL of Eq (1) describes the addition of TGF-β into the cell culture

dish and its degradation due to internalization into cells. The detailed equations governing the

function fL are given in S2 Table and the dependence on the population size is shown in S8

Fig.

The intracellular SMAD signaling dynamics in the i-th cell in our ensemble model are gov-

erned by the equation

dyik ¼ fkðt; L;Y
i;PiÞ dt ð2Þ

for k = 1, . . ., 22 species in i = 1, . . ., N cells. The right hand sides fk for k = 1, . . ., 22 account

for the reactions inside the cell that depend on the ligand L from the outside, the intracellular

PLOS COMPUTATIONAL BIOLOGY Stochastic modeling of activity bursts in single-cell TGF-β signaling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010266 June 27, 2022 6 / 29

https://doi.org/10.1371/journal.pcbi.1010266


dynamical concentrations Yi and the kinetic parameters Pi. Refer to S2 Table for mathematical

details.

To account for bursting at the single-cell level, we introduced noise in a subset of kinetic

parameters by employing SDEs. This approach leads to different temporal trajectories of the

protein concentrations in each cell considered in (1) and (2). We use the Cox-Ingersoll-Ross

(CIR) model [39],

dpjðtÞ ¼ yjðp0
j � pjÞdt þ sj

ffiffiffiffi
pj

p
dBj; ð3Þ

Fig 2. The SMAD-signaling model: From population averages to stochastic single cells. A: Topology of the TGF-β pathway model. Extracellular TGF-β (yellow)

binds to free TGF-β receptors on the cell membrane (blue ovals) to form a receptor-ligand complex (gray ovals). This complex is then internalized into the endosome

(R1R2Le) and there functions as an enzyme that phosphorylates SMAD2 (blue rectangle). Phosphorylated SMAD forms homo- and heterotrimers, which are

transported into the nucleus. Nuclear SMAD further induces the expression of a generic feedback regulator (light green) inhibiting TGF-β receptors. Extensions in the

scheme indicate endosomal (e), nuclear (n) and phosphorylated (p) species. State transitions and intercompartmental shuttling are indicated with arrows, enzyme

catalysis with circle headed bars, and feedback inhibition with blunt headed bars. Colored circles mark parts of the pathway where stochastic noise was introduced in

the ‘degradation’, ‘receptor-ligand’ and ‘internalization’ model variants. This panel was modified from [7]. B: CIR model dynamics for kinetic parameters. Temporal

noise in kinetic parameters of the model is shown. For combinations of the variance and reversion parameters σ and θ in the CIR model (3) chosen according to the

graph in the bottom right, multiple trajectories are shown, along with their temporal distributions, which resemble log-normal distributions. In the top left, the noise

parameter σ was low, whereas it was high otherwise, either with a high (bottom left) or low (top right) reversion parameter θ. C: Flowchart of the modeling approach.

Starting from the deterministic model, which was fitted to the population mean, processes within the signaling pathway (colored reaction steps in panel A) were

chosen that are sensitive to temporally stochastic occurrences in the cells. Then, random noise (panel B) was introduced in the kinetic parameters connected to the

respective critical process (block model). This enabled the reproduction of and model fitting to single cell behavior. D: Propagation of stochastic noise in the model.

Noise was introduced in the receptor internalization rates as done in the stochastic internalization model, see S1 Table. The noise controlling parameters of the CIR

model were chosen as indicated by the same colors in panel B. Simulated trajectories of the dynamic model concentrations accounting for the activated complex on the

cell surface (y7, left), the activated endosomal complex (y8, center) and the nuc/cyt SMAD2 ratio (right) are depicted. For details on model species see S2 Table. The

trajectories show how the temporal noise propagates through the pathway for different parameters in the CIR model.

https://doi.org/10.1371/journal.pcbi.1010266.g002

PLOS COMPUTATIONAL BIOLOGY Stochastic modeling of activity bursts in single-cell TGF-β signaling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010266 June 27, 2022 7 / 29

https://doi.org/10.1371/journal.pcbi.1010266.g002
https://doi.org/10.1371/journal.pcbi.1010266


to describe the parameter change dpj at time point t by a reversion force towards the initial

value p0
j and a stochastic contribution due to a Brownian motion Bj. The standard deviation

parameter σj controls the time scale of the fluctuations for the corresponding model parame-

ters pj (see Fig 2B), while the parameter θj determines the strength of an additional mean rever-

sion force pulling the concentration back to its initial value p0
j .

For a suitable model of noise in kinetic parameter we expect first that parameters never fall

below zero and thus become nonphysical. Second, we expect temporal stability of the kinetic

parameter in the sense that its expectation remains constant and its variance bounded over

time. And third, the model should lead to log-normal-like distribution of kinetic parameters

over time (compare Fig 2B) as fluctuations in many cellular processes, e.g., in gene expression,

typically lead to this type of distribution [40].

The non-negativity of model (3) is verified (see also Methods for non-negativity of its dis-

cretization), although this does not apply to fundamental Brownian motion and the more

commonly used Ornstein-Uhlenbeck (OU) model. Moreover, the model preserves the mean

and its variance is bound over time which is unlike Brownian noise and random ODE models

whose variance steadily increases with time t. We could further verify by simulations that the

relative frequency of kinetic parameters over time resembles log-normal distributions (com-

pare Fig 2B). Refer also to S3 Fig and S5 Table for a comparison of the fitted CIR model to OU.

The mean reversion property of the model controlled by the parameter θj leads to burst-like

dynamics already in the paths of the kinetic parameters (see Fig 2B) and our model allowed us

to assess how these dynamics propagate to the experimental readout, the nuc/cyt SMAD2

ratio. This ratio is computed from the dynamic concentrations as the sum of nuclear divided

by the cytoplasmic SMAD2 species as described in the Methods. The occurrence and strength

of fluctuations in the nuc/cyt SMAD2 ratio predicted by the model depend not only on the

mean reversion force and variance of the stochastic kinetic parameter. They are also heavily

influenced by the choice of the parameter pj in which stochasticity is introduced. This sensitiv-

ity allowed us to discriminate different model assumptions and identify key parameters for

which added noise can reproduce the burst features of the single cell data shown in Fig 1.

Quantitative model calibration by fitting to single-cell datasets

By quantitative fitting to experimental data we aimed to reproduce TGF-β-induced bursting in

single cells (Fig 1). To reduce the complexity and to gain insights into the origin of stochastic

fluctuations, we considered block models in which we allowed randomness only in sets of

parameters describing similar reactions. Technically, each block model uses (3) only for a sub-

set of kinetic parameters i 2 S� {1, 2, . . ., 55}. The remaining kinetic parameters are assumed

to be temporally constant. For introducing stochastic fluctuations, we focused on reactions on

the receptor level, as receptor dynamics are rate-limiting in TGF-β signaling [7, 41]. Moreover,

we observed in our published single-cell data that complete inhibition of the TGF-β receptors

by a small-molecule inhibitor during a stimulation experiment leads to homogeneous decay of

SMAD nuclear translocation that showed no sign of stochastic SMAD dynamics at the single-

cell level [7].

We considered five stochastic block models (see S1 Table for details). The receptor/ligand
block model introduces noise in the reactions related to the binding of TGF-β to its receptors

of type 1 and 2 on the cell surface. The internalization block model allows for stochasticity in

the transport of receptors and TGF-β/receptor complexes from the cell membrane into the

cell. In the endosomal traffic block model noise is considered in the intracellular transport of

internalized ligand/receptor complexes. Stochastic synthesis of feedback proteins and type 1

and 2 TGF-β receptors is assumed in the synthesis block model. Finally, the degradation block
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model adds systematic noise to the degradation rates of the TGF-β receptors and the feedback

regulator.

To compare the stochastic models to the experiments, we applied the burst detection and

analysis used to characterize the data in Fig 1 to the model output. This allowed us to define an

objective function, which computes a distance measure between simulated and measured cell

populations. This function compares summary statistics of the population snapshot distribu-

tions (mean and standard deviation of nuc/cyt SMAD2 ratio, Fig 3B) as well as single-cell char-

acteristics (count, height and duration of bursts, Fig 3C). Snapshot summary statistics were

computed based on the nuc/cyt SMAD2 ratio of all cells at a given time point using the same

(5 min) sampling intervals as in the experimental data. As depicted in Fig 3A, the objective

function is a weighted sum of the distance values resulting from the comparison of these sin-

gle-cell and population statistics (see Methods for further details). The weights were balanced

Fig 3. Design of the objective function for the parameter estimation process. A: Flowchart describing the computation of the objective function for parameter

estimation. Starting from simulating the nuc/cyt SMAD2 ratio in many single cells, to which technical noise in the absence of stimulation was added, the deviation

from an experimental data set is computed: The characteristics of both population summary statistics (mean and standard deviation of nuc/cyt SMAD2 snapshots over

all time points) and individual cells (number of bursts, height and width of the first bursts) are included in the objective function. The differences between data and

simulation with respect to the individual components are scaled for comparability and added up with their corresponding weight to obtain a scalar value of the

objective function. See Methods for details. B: Calculation of snapshot mean and standard deviation as components of the objective function. The population mean

(left) and standard deviation (right) over time of the nuc/cyt SMAD2 ratio is shown for an experimental data set and a simulation using the degradation model. The

gray area between the trajectories reflects the corresponding objective function component. C: Bar chart of selected burst related objective function components. The

bar chart shows the statistics (mean and standard deviation) for the distributions of the single cell properties which are taken into account in the objective function:

number of bursts, height and duration of the first four bursts. The statistics of the data are shown in black and those of the simulation in red. The gray area in between

corresponds to the weighted component of the statistics as taken into account in the objective function. The width of the bars reflects the weighting factor.

https://doi.org/10.1371/journal.pcbi.1010266.g003
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to consider all single-cell features and the standard deviation of the snapshot distribution

equally while strictly penalizing deviations from the the snapshot mean through a larger corre-

sponding weight to ensure that the model reproduces the population-average response to

TGF-β stimulation. We validated the objective function by applying it to computationally gen-

erated data sets containing differences in the features we aimed to quantify. Furthermore, for

series of data sets with gradually changing features from a reference data set, we verified that

the objective function varied only gradually as well, see Fig 4B.

To calibrate the stochastic models we simulated the nuc/cyt SMAD2 ratio in 375 cells and

compared them to the the nuc/cyt SMAD2 ratio measured in 730 cells upon stimulation with

100 pM TGF-β using the objective function. For the simulation of the cells, we implemented a

high-order stiff SDE solver that takes into account both the coupling of the ligand degradation

by many cells and the stiffness of the system and confirmed its efficiency and accuracy (see

Methods and Fig 4). Interestingly, even in the absence of TGF-β stimulation stochastic events

were observed in SMAD nuclear translocation in the experimental data, possibly due to noisy

basal shuttling or due to measurement noise. To account for this in the stochastic models, we

have added measurement data (normalized by subtracting the mean) from a control experi-

ment without stimulation to the simulated time paths after their numerical computation. As a

result even the model version with constant parameters, to which we refer to as ‘deterministic

model’, includes temporal noise.

The kinetic parameters of the deterministic ODE model had been previously fitted to time-

resolved measurement data obtained in experiments with different doses of TGF-β in [7]. With

the exception of the kinetic parameters in which we introduced noise, we maintained these

originally obtained parameters in our stochastic model. Hence, only the stochastic parts of the

models had to be estimated using the objective function. Independent noise was assumed for

each stochastic parameter pi in a block model, i.e., three values were to be determined per pi
(the initial value pðiÞ0 , the noise parameter σi and the reversion parameter θi). Depending on the

number of stochastic parameters included in a block model between 3 and 9 parameters were

estimated during parameter optimization. The extended scatter search [42] within the software

package MEIGO [43] was used to carry out a global parameter search within the parameter

Fig 4. Validation of path computation scheme and cost function. A: Convergence of the path computation scheme. The strong error |E(XΔt − Xref)| with respect to

the time increment is shown in loglog scale (blue line). Here XΔt refers to the approximate model solution computed by the scheme with time increment Δt. The

reference solution Xref was computed with a small Δt = 0.03 and the maximum norm over time was chosen in the error computation. The slope in the graph

corresponds to the strong order of convergence. While for larger time increments the scheme exhibits an experimental convergence order only slightly larger than one

(yellow line), this order increases to approximately 1.5 for small time increments (red line). Thus, the high order of the scheme is verified (opposed to the commonly

used Euler-Maruyama scheme of strong order 0.5) and accurate numerical integration is ensured for small time increments. B: Sensitivity of the objective function

with respect to the dose of TGF-β. Single-cell data from experiments with different doses of TGF-β was compared using our objective function (see Fig 3). The

computed function values (indicated by numbers and color code) show that the objective function increases gradually as the difference in dose increases.

https://doi.org/10.1371/journal.pcbi.1010266.g004
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space. This evolutionary algorithm uses latin-hypercube sampling to identify an initial popula-

tion of parameter states, which then evolves by forming combinations between its members.

These combination states can replace the original members for the following iteration. The

search was stopped when the distance between subsequent populations was lower than a

defined level for an extended sequence of iterations. This algorithm together with our high-

order path computation scheme could optimize the noise parameters in feasible time.

TGF-β internalization explains temporal stochasticity in nuclear SMAD

The optimization results are summarized in Fig 5 and Table 1. Distributions of the burst

height, width and frequency in all block models are presented in Fig 5B. In Table 1 we show

the fitting errors of the block models with respect to the objective function. In Fig 5A various

paths of the internalization and the synthesis block models can be compared to the nuc/cyt

SMAD2 ratio observed in the experiments.

In summary, our results show that the internalization block model achieved the best fit to

the data (compare Fig 5A). All tested models succeeded in being consistent with the popula-

tion average of the nuc/cyt SMAD2 ratio. However, in terms of temporal stochastic fluctua-

tions significant differences between the models were observed: The block models endosomal

traffic, receptor-ligand and synthesis could barely achieve any variability in the observable

unlike the internalization and degradation block models (Fig 5B). Moreover, the latter two

models attain single cell statistics similar to those of the data, while the other models underesti-

mate the burst count and the variance in their height and duration.

As reductions of the full complexity of intracellular processes, the stochastic models cannot

explain the full variability in the data. Yet, the results are accurate enough to discriminate dif-

ferent models. Our model comparison implies that stochastic processes in the receptor-ligand

internalization may play a key role in the temporal heterogeneity of the nuc/cyt SMAD2 ratio

in the cell. We hypothesize that the predicted stochastic internalization may arise from low

receptor numbers on the cell surface combined simultaneous sorting of dozens of receptors

into internalization vesicles [44, 45]. Given that TGF-β receptor become only activated after

internalization, the formation of a vesicle will give rise to a sudden increase in the signal and

thus to a burst in the nuc/cyt SMAD2 ratio (see Discussion).

Stochastic bursting of SMAD2 is a dose-dependent phenomenon, as the burst number and

amplitude are reduced at low TGF-β concentrations, whereas the burst duration essentially

remains constant (Fig 1). Since the stochastic model has been calibrated solely on the 100 pM

TGF-β stimulus data, we asked whether it could successfully predict changes in bursting

dynamics at 5 and 25 pM TGF-β, respectively. Indeed, we found that the internalization model

also generated realistic predictions of population average and single cell responses for these

doses, which had not been employed for model fitting (see Fig 6).

Since the stochastic parameters were not fitted to the new stimulation doses, these predic-

tions show the generality of the model. They are also an indication that the stochasticity within

TGF-β internalization is an intrinsic property independent of the strength of the signaling. In

other words, the processes that lead to internalization noise do not depend on the stimulation

dose and the dose mainly influences how strongly the internalization noise is transferred to

the nuc/cyt SMAD2 ratio.

Temporally stable and unstable noise contributions explain variability in

response to repeated stimulation

The stochastic noise in our model leads to signaling fluctuations with a short memory, as the

bursts typically decay within a few hours after their appearance (Figs 5A and 6A). As shown in
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[7], SMAD signaling also exhibits a temporally stable noise component, since signaling in sis-

ter cells remains similar over longer time scales of more than a few hours after cell division.

Restimulation experiments, in which the same cell population is subjected to a second

TGF-β stimulus 6h after the initial treatment, probe the relative contribution of temporally

Fig 5. Stochastic internalization model achieves the best fit to the data. A: Nuc/cyt SMAD2 ratio trajectories of data and stochastic models. Experimental data

(left), the best-fit internalization model (center) and the best-fit synthesis model (right) are compared for stimulation with 100 pM TGF-β. Examples of single cell

trajectories of the nuc/cyt SMAD2 ratio (dashed lines) are shown in addition to the population average over all cells (thick black line). For comparison, the

population average of the experimental data (thick red line) is shown alongside with the simulations. B: Population summary and burst feature statistics in the data

and stochastic models. Population summary and single cell burst statistics are compared in terms of violin plots for experimental data and the stochastic models in

case of stimulation with 100 pM TGF-β. The ‘deterministic’ model which introduces noise only through experimental control data (0 pM TGF-β, see Methods) is

additionally considered. The mean and the median are indicated by black and red horizontal lines. Distributions of burst height and duration are compared for the

first four detected bursts (burst index). The shown model distributions are based on 5000 simulated cells using the best fit noise parameters. In summary, the

internalization model achieved the best fit to the data. For a comparison with other stochastic methods see S5 Fig and S7 Table.

https://doi.org/10.1371/journal.pcbi.1010266.g005
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stable and unstable fluctuations, and are thus an interesting test case for our stochastic model:

If the response to the first and second stimuli are highly correlated at the single-cell level, the

variability is dominated by temporally stable fluctuations. In contrast, temporal fluctuations

lead to uncorrelated restimulation responses and feedback loops in SMAD signaling addition-

ally contribute. To investigate the long-term memory of the pathway, we compared the best-fit

internalization model to restimulation experiments published in [7] (see Methods for details).

The model-data comparison was performed at the level of population-average trajectories

(Fig 7, top row) and by relating single-cell peak amplitudes approximately 90 minutes after

first and second stimulus, respectively (Fig 7, bottom row). The stochastic model approximates

the measured population-average trajectories reasonably well and reproduces that the second

peak reaches only approximately 80% of the magnitude of the first peak, thereby indicating sig-

naling refractoriness after the initial stimulus (Fig 7A). At the single-cell level, the stochastic

model performs less well, as the simulated noise reproduces only 48% of the measured vari-

ance of the first peak (initial stimulation), and 62% of the variance of the second peak (restimu-

lation). Furthermore, the first and second peaks upon restimulation are negatively correlated

in the model (Pearson correlation of r = -0.19), whereas their correlation is positive in the data

(r = 0.34) (Fig 7A, bottom). Taken together, the best-fit stochastic model fails to fully repro-

duce the restimulation behavior of the SMAD pathway.

In our model, SMAD signaling is controlled by transcriptional negative feedback loops (Fig

2A) which may introduce pathway refractoriness and are known to reduce signaling variability

[15]. To investigate whether the feedback strength may be overestimated in the model, we low-

ered the parameter of SMAD-dependent feedback induction to 30% of its best-fit value (see

also S4 Fig for a prediction of feedback reduction in case of single stimulation). In line with a

role in pathway refractoriness, the reduction of feedback increased the second peak at the pop-

ulation-average level (Fig 7B, top) and diminished the negative correlation of first and second

peaks at the single-cell level (Fig 7B, bottom). Furthermore, the feedback-reduced model

showed a higher cell-to-cell variability of both signaling peaks as expected (Fig 7B, bottom).

However, significant model improvements at the single-cell level could not be achieved with-

out strong deviations between model and data at the population-average level (Fig 7B, top).

Therefore, feedback strength alone does not account for differences between model and data,

and this model variant was not considered further.

Table 1. Goodness-of-fit of stochastic block models with respect to components of the objective function.

model model error

burst height burst duration count mean std. norm

deterministic 0.12 0.20 0.50 0.57 0.10 0.03 0.33 0.44 0.87 2.75 5.73 11.64

degradation 0.09 0.05 0.14 0.30 0.00 0.03 0.09 0.30 0.38 0.41 0.43 2.21

end. traffic 0.10 0.09 0.17 0.28 0.03 0.02 0.04 0.16 0.17 4.62 3.76 9.44

internalization 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 1.19 0.14 1.39

receptor/ligand 0.09 0.10 0.23 0.33 0.04 0.02 0.06 0.22 0.26 3.66 3.79 8.80

synthesis 0.12 0.19 0.47 0.54 0.12 0.03 0.26 0.40 0.76 1.33 5.67 9.90

Distance measurements achieved by the five block models after fitting to experimental data for a stimulation with 100 pM TGF-β. The objective function with final value

shown in the last column is the weighted sum of mean and standard deviation of the nuc/cyt SMAD2 ratio, as well as burst characteristics in single cells including count,

height and duration, for details see Fig 3 and Methods. Distance measures for burst height and duration are shown for the first four bursts in each model. In case of

single cell statistics the table shows summed contributions of median and standard deviation. For the fitted models no computational instabilities occurred and hence

the component accounting for failed simulations is zero. The stochastic internalization model achieved the best fit. An alternative validation in terms of the Akaike

information criterion led to consistent conclusions, see S6 Table.

https://doi.org/10.1371/journal.pcbi.1010266.t001
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In [7], we showed that temporally stable SMAD signaling fluctuations are caused by differ-

ences of signaling protein expression levels across cells. Therefore, we argued that a combina-

tion of stochastic noise and stable signaling protein fluctuations may be required to reproduce

the restimulation experiments.

Fig 6. Model accurately predicts stochastic behavior at low TGF-β concentrations. A: Nuc/cyt SMAD2 ratio trajectories of data at low TGF-β doses and

corresponding forecast by stochastic model. Single cell and population average of nuc/cyt SMAD2 ratio of the 5 pM and the 25 pM stimulation experiment are

shown in the data (left) and the prediction by the best-fit internalization model (right). B: Distributions of burst features in data and forecast by stochastic model.

Single cell burst statistics are compared in terms of violin plots for the experimental data (solid lines) and the forecast of the internalization model (dashed lines) in

case of stimulation with 5 and 25 pM TGF-β. The mean and the median are indicated by black and red horizontal lines.

https://doi.org/10.1371/journal.pcbi.1010266.g006
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To assess the effect of varying initial protein concentrations in the best-fit stochastic model,

we focused on total SMAD4 levels, as this parameter showed the strongest difference between

cellular subpopulations in our previous work [7]. In Fig 7C, we homogeneously decreased the

total SMAD4 concentration by 40% in all cells of the stochastic model ensemble (green). Com-

pared to the best-fit stochastic model (blue), the SMAD4-perturbed model shows a higher pop-

ulation-average response and a higher peak variance across cells (Fig 7C). Hence, minor

variations in SMAD4 levels cause a noticeable change in the behavior of the stochastic model.

To combine temporally stable SMAD4 fluctuations with stochastic noise, we constructed a

cellular ensemble (Fig 7D, cyan) that consists of two stochastic cell populations, one with the

best-fit parameters, and one with a homogeneous 40% reduction in total SMAD4 levels in all

cells (Fig 7C, blue and green). This combined model reproduced the major aspects of the

restimulation data including the population-average and the variability of the first and second

signaling peaks (Fig 7D). Furthermore, the single-cell correlation between the signaling peaks

was slightly positive (r = 0.08), and thus more consistent with the experimental data than the

previous stochastic model variants (Fig 7A–7C).

Fig 7. Contribution of temporally stable and unstable noise in restimulation experiments. A: Best-fit model fails to fully reproduce the restimulation response.

Top: Population median of the nuc/cyt SMAD2 ratio in a restimulation experiment where cells were treated with 5 pM of TGF-β at experiment onset and after 6 hours.

Experimental data (red) was compared to the best-fit internalization model (blue). Shades indicate the 25 to 75% quantiles. Bottom: Scatter plots comparing the height

of the first peak (x-coordinate) with the height of the second peak (y-coordinate) in single cells, each dot representing one cell. The height of each peak in single cells

was defined as the nuc/cyt SMAD2 ratio at the peak times in the population-average (55 minutes and 8h, respectively). Contour lines show the two dimensional

densities of the cell population. The first and the second peak show a positive correlation in the data (Pearson correlation r = 0.34) but a negative correlation in our

simulation (Pearson correlation r = -0.19). B: Model with reduced feedback strength shows less pronounced refractoriness to restimulation. Same as in A, but the

experimental data is compared to the model with feedback induction (P39 in S1 Table) reduced by 70% (yellow). Compared to the orginal model (A), the population-

average is increased, especially for the second peak, and the single-cell peak correlation is closer to 0 (Pearson correlation r = -0.12). Both indicate a reduced

refractoriness to restimulation. C: Minor reduction in the initial SMAD4 level has pronounced effect on stochastic model behavior. The best-fit internalization model

is compared to a model variant in which the total SMAD4 concentration is homogeneously reduced by 40% in all cells of the stochastic ensemble (dark green). A

reduction in SMAD4 increases the nuc/cyt SMAD2 ratio by indirect effects on negative feedback regulation. D: A model comprising both temporally stable and

unstable noise contributions provides a good match to the restimulation data. Artificial cell populations generated by the best-fit model (blue in panel C) and the

model variant with reduced SMAD4 (green in panel C) were merged (cyan) and compared to the experimental data (red). The merged population reproduced the

variability of the data and the positive correlation of the peak height (Pearson correlation r = 0.08).

https://doi.org/10.1371/journal.pcbi.1010266.g007
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Even though the more realistic simulations proposed in this paper were required to capture

all aspects of the restimulation data, these results further support our earlier observation that

SMAD signaling involves a temporally stable noise component, likely due to variations in sig-

naling protein levels. In addition, stochastic noise and negative feedback also contribute to the

restimulation response, e.g., by dampening the positive correlation of the first and second sig-

naling peaks. Therefore, the pathway responds in a complex and non-deterministic fashion to

repeated stimulation.

In summary, our restimulation analysis helped to assess the interplay of noise sources and feed-

back mechanisms in determining the long-term heterogeneity of SMAD signaling in single cells.

Discussion

In this work, we employed stochastic differential equations to model temporal variability

observed in single-cell SMAD signaling as stochastic fluctuations in kinetic parameter values.

Assuming a CIR process in TGF-β receptor internalization, the proposed model realistically

reproduced noisy signaling at the single-cell level. To quantitatively calibrate the model based on

experimental data, we developed a method to detect and quantify bursting events. In combina-

tion with an adjusted high-order time integration scheme, we thereby developed an efficient opti-

mization scheme to discriminate different model variants based on single-cell measurements.

In previous modeling studies, the SMAD pathway was mostly described at the population-

average level, i.e., the simulations described the dynamics of one average cell [16, 17, 37, 46–

53]. Now that more and more single-cell datasets of SMAD dynamics are available [51, 54–56],

quantitative modeling of cell-to-cell variability in the pathway becomes feasible. In [7], a first

attempt was made by sampling the initial protein concentrations in a deterministic model.

Thereby, a heterogeneous ensemble of single cells was simulated and the heterogeneity was

assumed to be temporally stable. Here, we have now focused on understanding the source of

temporal fluctuations observed in live-cell imaging of SMAD2 nucleocytoplasmic shuttling.

Specifically, we analyzed SMAD2 bursting events which may contribute to variability in the

cellular response to TGF-β, since cells with more bursts exhibit higher motility in the cell cul-

ture dish, clf. Fig 1G. Apparently, stochastic bursts were previously reported for the nuclear

translocation of the closely related SMAD4 protein during the development of Xenopus

embryos [57]. Our implementation of automated burst detection allowed us to quantify burst

height, width and frequency at the level of individual cells. We found that the number and

height of bursting events are dose-dependent, and therefore contain information about the

extracellular TGF-β concentration. To describe this bursting phenomenon, we have intro-

duced temporal noise in specific kinetic parameter values and analyzed how this noise propa-

gates to the experimentally observed nuc/cyt SMAD2 ratio, clf. Fig 2B and 2D.

Quantitative stochastic modeling in biology so far is mostly limited to a description of sim-

ple reaction networks, e.g., promoter cycles describing the activity of single genes [58–62]. Our

large-scale signaling pathway model (see Fig 2) contains 45 kinetic parameters and therefore

poses a challenge to stochastic modeling, especially when calibrated based on a single-cell data-

set with high temporal resolution (0–24h in 5 min intervals) and a large number of cells

(n = 730). To overcome this challenge, we proposed a hybrid deterministic-stochastic

approach where temporal fluctuations were modeled by a CIR process in a subset of the kinetic

parameters. In contrast to the Wiener process, which is commonly used in stochastic model-

ing, the CIR process guarantees non-negative dynamic variables. The properties of the CIR

process are well suited for biological modeling of noise: the temporal distribution of the noise

tends to a log-normal distribution, clf. Fig 2B, which was reported for kinetic rates also from

experiments, see for example [40].
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In this work we have implemented a time integration scheme that is capable to achieve reli-

able simulations and fast enough to fit the complex model to detailed data. The scheme’s effi-

ciency has been obtained by high order and semi-implicit time stepping. The non-negativity of

the CIR process has further contributed to the stability during parameter estimation. The iden-

tification of appropriate noise parameters for our model required a calibration that also takes

properties of the fluctuations into account. Instead of comparing full distributions, which

could be achieved for example using the Wasserstein distance, we used the first two statistical

moments of the burst feature in our objective function. While the duration of the bursts did

not exhibit significant differences among several tested models the burst height and their

count played a crucial role in their discrimination, clf. Fig 3B.

Using our burst detection technique, we could discriminate different models and quantify

the contribution of one or several parameters to the observed noise. We showed that the recep-

tor internalization model performed better than the degradation and the synthesis models, clf.

Fig 3. In the synthesis model, we observed low variability close to the results of the determin-

istic model. The degradation model variability is closer to the experimental data in terms of

burst statistics, but is still outperformed by the internalization model. These results indicate

that bursts might be caused by stochastic events in receptor internalization. In recent papers

studying the internalization of Epo receptors and of the yeast methionine transporter Mup1 by

live-cell imaging it has indeed been shown that receptor transport processes can exhibit strong

heterogeneity [63, 64]. A plausible explanation for noise arising in receptor internalization is

that large numbers of receptors on the cell surface get constricted and internalized at once dur-

ing vesicle formation. Given that TGF-β receptor internalization promotes downstream signal-

ing [44], the formation of a vesicle will give rise to a sudden increase in the signal and thus to a

burst in the nuc/cyt SMAD2 ratio (see also S7 Fig for an alternative internalization model).

For EGFR receptors, it was indeed observed that each internalized vesicle in the endosome

contains around 100 receptors [65]. Given that TGF-β receptors are present on the cell surface

in low amounts of few hundreds to thousand molecules [44, 45] and are internalized via coated

pits [66], these internalization bursts may indeed give rise to significant fluctuations in down-

stream signaling as we predict here. Notably cell cycle variation and fluctuations in the cell size

are also known to contribute to variability in biological networks [67, 68]. Since MCF10A cells

divide only every 24 hours, a consideration of these noise sources requires long-term micros-

copy experiments and could be implemented in future studies by parameter sampling. Our

findings about the role of receptor internalization in the SMAD pathway suggest promising

ways to derive simplified models with similar burst dynamics in the future (e.g. through quan-

tized state systems methods).

The best-fit internalization model was independently validated by analyzing the bursting

behavior at low TGF-β concentrations. The successful prediction of bursting at various TGF-β
levels proved that the noise parameters found by fitting to the 100 pM are not specific to this

condition. Hence, the internalization noise remained constant across conditions, but its prop-

agation through the signaling network changed, so that the net result is a lower signaling out-

put noise in terms of burst count and amplitude upon weak TGF-β stimulation (Figs 5 and 6).

The restimulation experiments showed that the stochastic model only partially accounted

for the pathway behavior upon repeated TGF-β application (Fig 7): In the experimental data,

the first and second signaling peaks are positively correlated, whereas the model, which focuses

on temporally unstable noise, predicted a negative correlation between peaks. By performing

detailed simulations, we could show that correlated restimulation behavior is explained by the

stochastic model if we additionally assumed a temporally stable noise contribution. As in our

previous work [7], this temporally stable noise contribution was implemented as cell-to-cell

differences in the total signaling protein concentrations which are important determinants of
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signaling fluctuations in various pathways [63, 69–74]. Likewise, a combination of temporally

stable and unstable noise has been used to model gene regulatory networks. [35]. The different

time scales of these two noise contributions explain why sister cells rapidly desynchronize

their SMAD signaling behavior after a division event (temporally unstable noise), but remain

partially similar over long time scales (stable noise) [7]. Likewise, the single-cell correlation of

the first and second peaks in a restimulation experiment will likely become more and more

dissimilar if the second treatment is delayed relative to the first one. While our model could

well reproduce the observed variability upon stimulation with a single TGF-β stimulus, an

extended approach that additionally accounts for amplification and attenuation effects intro-

duced by correlated noise in different kinetic rates, as studied in [75], could further improve

our understanding of the variability in the restimulation experiments. Our simulations have

shown that stochastic modeling is a valuable tool for the analysis of such experiments which

provides insights into the underlying mechanisms.

To the best of our knowledge, this work is the first approach to model bursting events in

signaling pathways using CIR processes in kinetic parameters. Our results demonstrated that

this approach is suitable to simulate single-cell dynamics and to analyze the origin of noise in

large systems. The optimization framework combining burst detection and an efficient time

integration scheme are not limited to TGF-β signaling and can be generalized to other systems

in the future.

Methods

Single-cell data

Most of the experimental data used in this paper was previously published in [7] and at the

Dryad digital repository [76]. Additionally, a new dataset was used, which is published

together with the reorganized data from [76] in the new GitHub repository [77]. In brief,

human MCF10A cells expressing SMAD2 fused to the yellow fluorescent protein mVenus and

H2B fused to the cyan fluorescent protein mCerulean under the control of the Ubiquitin C

promoter were imaged on a Nikon Ti inverted fluorescence microscope with a CCD camera

and a 20x plan apo objective using appropriate filter sets. The microscope was surrounded by a

custom enclosure to maintain constant temperature and atmosphere. Images were acquired

every 5 minutes for the duration of the experiments. Cells were tracked in the corresponding

images using custom-written scripts and fluorescent intensities quantified. For parameter esti-

mation of the stochastic models (Fig 7), the measured nuc/cyt SMAD2 ratio after stimulation

with 100 pM of TGF-β from the published dose-titration experiment (Fig 2A–2D in [7]) was

merged with the new dataset following the same experimental setup (N = 378 cells). For model

validation (Fig 6), we used the nuc/cyt SMAD2 ratios from the 5 pM and 25 pM conditions

from the same dose titration experiments. In the restimulation analysis (Fig 7), the experimen-

tal data from repeated 5 pM TGF-β stimulation (Fig 4F in [76]) was used.

Burst analysis

To successfully apply burst detection to experimental data, we tuned the parameters of the

above-mentioned processing steps, such as the bandwidth of the Gaussian filters and the

height thresholds of the peak detection. To create an in silico benchmark for burst detection,

we generated synthetic trajectories by model simulations and added Gaussian hills as artificial

burst events as well as fluctuations from unstimulated cells as noise. We chose the burst detec-

tion parameters such that in silico added bursts are detected reliably (high sensitivity: high

true positive detection rate), while keeping the detection of bursts in unstimulated cells low

(high specificity: low false detection rate). Specifically, we randomly sampled all burst
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detection parameters and calculated sensitivity and specificity for each burst parameter candi-

date. Thereby, a receiver operating characteristic (ROC) curve was generated [78] and the best

parameter set achieved a false detection rate below 25% and a sensitivity of more than 75%.

Objective function

The objective function that we used for the model validation and parameter estimation is a

weighted sum of several distance measures accounting for single-cell characteristics and sum-

mary statistics of the population distribution, see also Fig 3. All these distance measures were

calculated based on the SMAD2 nuc/cyt ratio which in the model is given by

r ¼
y18 þ 2y19 þ 3y20 þ y21

y10 þ y11 þ 2y13 þ 3y14

: ð4Þ

Hereby, we refer to S2 Table for details on the dynamic variables employed.

Single cell characteristics. To quantify the fit in burst height and duration we considered

the relative difference between model and data in median and standard deviation across simu-

lated and measured cell population. In more details, consider the empirical population X
including the nuc/cyt SMAD2 ratio in NX cells either given through measurement data or the

model. We define the distribution of the height of the i−th burst computed with our burst

detection by piheightðXÞ. We note that a) the burst detection might detect less than i bursts and

b) in case of a model population the path computation might fail to compute some of the

paths. Hence we assume that piheightðXÞ considers the i-th burst height only if a) and b) can be

excluded. Moreover we define ri(X)� 0 to be the relative number of paths where either a) or

b) holds for the i-the burst deducting the relative number of paths where a) holds in the data.

By denoting measurement data by Y and model results by X we set

di;med
heightðX;YÞ ¼ riðXÞ þ 1 � riðXÞð Þ

j~piheightðYÞ � ~piheightðXÞj
j~piheightðYÞ þ ~piheightðXÞj

; ð5Þ

where ~p denotes the median of the distribution p. Hence, the distance measure increases if the

burst height is different between model and data, and/or if a) or b) holds for a large number of

cells. Similarly, we quantify the distance in terms of standard deviation

di;stdheightðX;YÞ ¼ riðXÞ þ 1 � riðXÞð Þ
jsðpiheightðYÞÞ � sðp

i
heightðXÞÞj

jsðpiheightðYÞÞ þ sðpiheightðXÞÞj
; ð6Þ

with σ(p) referring to the standard deviation of the distribution p. Denoting by pidurðXÞ the dis-

tribution of the duration of the i−th burst in an empirical population X, we can define the dis-

tances di;med
dur ðX;YÞ and di;stddur ðX;YÞ in the same way and obtain the corresponding formulas by

exchanging the distributions in (5) and (6). The distance measures with respect to both burst

height and burst duration are considered for the first four measured bursts and hence, includ-

ing median and standard deviation, they account for 16 components in the objective function.

The distance with respect to the burst count is, similarly as their height and duration, mea-

sured in terms of relative difference in mean and standard deviation. Denoting by pcount(X)

and pcount(Y) the distribution of detected bursts in the model and in the data we computed dis-

tance measures in mean and standard deviation like in (5) and (6) and included them in the

objective function. In the computation we took the relative number of failed path computa-

tions, r0(X), into account. To avoid parameter ranges that cause instabilities during the param-

eter estimation we included this rate as a separate component increasing the value of the

objective function.
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Population mean and standard deviation. The mean and standard deviation of the nuc/

cyt SMAD2 ratio across the simulated and measured cell population account for two further

components of the objective function. At any fixed point in time these quantities can be com-

puted employing the snapshot distribution across all cells. Thus, for populations X and Y time-

dependent means and variances mt
X;m

t
Y ; s

t
X; s

t
Y can be considered. The global distances of the

populations with respect to mean and standard deviation sum the differences over time and

take relative values using the formulas

dmeanðX;YÞ ¼
P

tjm
t
X � m

t
Y jX

t

jmt
Xj þ

X

t

jmt
Y j
; dstdðX;YÞ ¼

P
tjs

t
X � s

t
Y jX

t

jstXj þ
X

t

jstY j
:

ð7Þ

Weighting. A balanced weighting of the introduced distance measures with respect to sin-

gle-cell characteristics and population statistics allowed us to compare measured and simu-

lated populations in terms of their response to TGF-β stimulation. In particular, we

considered the height and duration of the first four bursts and weighted burst height, burst

duration, burst count and standard deviation of the observable equally. To prevent deviations

from the population mean and failed path computations in the parameter estimation we

assigned large weights to the corresponding components. Moreover, we weighted differences

in median and mean higher than differences in standard deviation.

In more detail, for measurement data Y and model results X, we defined the output of the

objective function as the vector

dðX;YÞ ¼ ðd1;med
heightðX;YÞ; . . . ; d4;med

heightðX;YÞ;
1

2
d1;std
heightðX;YÞ; . . . ;

1

2
d4;std
heightðX;YÞ;

d1;med
dur ðX;YÞ; . . . ; d4;med

dur ðX;YÞ;
1

2
d1;std
dur ðX;YÞ; . . . ;

1

2
d4;std
dur ðX;YÞ;

4 dmean
countðX;YÞ; 2 d

std
countðX;YÞ; 80 riðXÞ; 40 dmeanðX;YÞ; 4 dstdðX;YÞÞ;

and considered as scalar distance the sum over its squared components.

Path computation

For efficient and accurate numerical approximation of the model (1), (2), (3) we employed a

method based on the Itō-Taylor formula of strong order γ = 1.5 from [79]. The formula

includes the control parameter θ, which we chose θ = 1/2 resulting in a semi-explicit scheme

that can both handle the stiff reaction terms of the SMAD signaling model and resolve the

dynamics accurately without the need to compute second-order derivatives. Its deterministic

counterpart is known as the Crank-Nicolson-method and commonly used for parabolic differ-

ential equations. The scheme in its full form reads

Lnþ1 ¼ Lnþ
Dt
2
fLðtnþ1; Lnþ1;Y

1

nþ1
; . . . ;YN

nþ1
;P1

nþ1
; . . . ;PNnþ1

Þ

þ
Dt
2
fLðtn; Ln;Y

1

n; . . . ;YN
n ;P

1

n; . . . ;PNn Þ

yik;nþ1
¼ yik;nþ

Dt
2

fkðtnþ1; Lnþ1;Y
k
nþ1
;Pknþ1

Þ þ fkðtn; Ln;Y
k
n;P

k
nÞ

� �
þ Gi

k;n

pij;nþ1
¼ pij;nþ

yk Dt
2

2pij;0 � p
i
j;nþ1
� pij;n

h i
þ sj

ffiffiffiffiffiffi
pij;n

q
DWi

j;n

þ
sj

4
ðDBij;nÞ

2
� Dt

h i
þHi

j;n;
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for i = 1, . . ., N, k = 1, . . ., 22 and j 2 S. Here Ln, yik;n and pij;n denote approximates of the ligand,

the dynamic concentrations and the stochastic kinetic parameters at time instance tn = nΔt.
Moreover, Δt refers to the time increment and DBij;n ¼

ffiffiffiffiffi
Dt
p

Mi
j;n, where Mi

j;n are independent

and identically distributed normal random variables with expectation zero and variance one.

The high-order correction terms Gi
k;n andHi

j;n require the generation of further random vari-

ables and its formulas are given in S4 Table.

To solve the nonlinear systems in each time step, we used an adaptive Newton method,

where the Newton-error is individually computed for each cell. If this error fell below the error

tolerance the corresponding cell was removed from the system in the next Newton iteration.

This was iterated until convergence was achieved in each cell. This technique significantly

reduced the computational costs. We optimized the performance further by employing a

sparse Jacobian that we symbolically pre-computed offline. To handle the stiff reactions caused

by the step-like addition of the TGF-β stimulus we employed small time increments of size

Δt = 0.04 in the stimulation phase, which included only a minor part of the total time interval.

For the remaining time steps we switched to Δt = 0.6 for fast and robust computations.

Although our model leads to non-negative protein concentrations and kinetic parameters,

the scheme cannot guarantee non-negativity. To avoid nonphysical parameters in simulations

we applied clipping and set computationally obtained negative state variables to zero. Further,

in the case of kinetic parameters equal to zero we ignored the high-order corrections in the

scheme for the next time step. We experimentally verified the strong convergence of the result-

ing scheme and observed a strong order higher than 1, see Fig 4A.

Simulations of restimulation experiments

In restimulation experiments (Fig 7), the system is subjected twice to a 5 pM TGF-β stimulus

at 0 and 6h. To simulate these experiments, the concentration of external ligand in the model

was raised from 0 to 5 pM at the beginning of the experiment, and from the value at the time

point before 6h to 5 pM at t = 6h. The restimulation experiment was performed using a differ-

ent charge of recombinant TGF-β when compared to the dose-titration experiments used for

model fitting and validation (Figs 5 and 6). Thus, the initial peak amplitudes of the signal 1h

after stimulation were slightly different between both types of experiments (compare Figs 6A

and 7A), likely because different ligand charges have slightly different biological activities. To

account for this ligand differences in our simulations, the forward and backward reaction rates

of ligand binding (P49 and P20, clf. S1 Table) were adapted and a dose factor changing the effec-

tive external ligand concentration was introduced. To avoid an over-adaptation, only data-

points the second stimulus in the restimulation experiments were used in the estimation of

these ligand-adjustment parameters.

Supporting information

S1 Fig. Autocorrelation of nuc/cyt SMAD2 ratio. Autocorrelation functions of the nuc/cyt

SMAD2 ratio for both the experimental data and the respective simulations (after subtracting

the trend) for all 5 considered doses. Autocorrelations for model and data have similar trajec-

tories and reach values close to 0 at similar times fitting within the range considered as inter-

mediate time scale in our definition of bursts (grey shaded area). https://doi.org/10.6084/m9.

figshare.19064561.

(TIFF)

S2 Fig. Autocorrelation of dynamic variables in the model. Autocorrelations of individual

species within the pathway in the model after subtracting time averages in case of stimulation
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with 100 pM TGF-β. The autocorrelation trajectories vary among each other, they mostly drop

fast in the first 120 minutes but then approach 0 only slowly. In species with slower decay of

self-similarity like nuclear and cytoplasmic unphosphorylated SMAD2, the noise led to faster

decay. In species with faster decay of self-similarity on the other hand, like nuclear phosphory-

lated SMAD2 and heterotromer, it led to slower decay. In both cases the stochasticity brings

the signal closer to the autocorrelation of the nuc/cyt SMAD2 ratio. No species alone shows an

autocorrelation similar to the one of the SMAD2 nuc/cyt ratio (compare S1 Fig). https://doi.

org/10.6084/m9.figshare.19064630.

(TIFF)

S3 Fig. Best-fit OU model. Single cell and population average of nuc/cyt SMAD2 ratio for 100

pM TGF-β stimulation predicted by the OU internalisation model (see S5 Table). In compari-

son to the CIR internalisation model qualitatively similar bursting is observed in the single

cells (compare Fig 3A). https://doi.org/10.6084/m9.figshare.19064663.

(TIFF)

S4 Fig. Prediction of SMAD7 knockout. SMAD7 knockout prediction by reducing the

parameter of SMAD dependant feedback induction in the internalization model to 30% of its

original value in case of a single stimulation with 100 pM TGF-β. Using burst analysis, the

model predictions were compared to data from a SMAD7 knockout experiment. Simulation

data and burst analysis is presented analog to Fig 5. The population average is well described

by the model prediction. Furthermore, the model predicts a slight increase in the mean burst

count, amplitude and duration in the SMAD7 knockout. Moreover the burst amplitude and

duration variance is predicted to increase. Most of these predictions are indeed observed quali-

tatively in the SMAD7 knockout compared to wildtype data, although the effect sizes are not

very large. The prediction was similarly accurate to those of 5 pM and 25 pM doses of TGF-β
(compare Fig 6). https://doi.org/10.6084/m9.figshare.19064687.

(TIFF)

S5 Fig. Comparison to full and hybrid stochastic simulation techniques. We applied τ-leap-

ing SSA and a hybrid SSA solver to the TGF-β model in case of stimulation with 100 pM TGF-

β using the COPASI toolbox [80] and the model from [81]. In a direct comparison between τ-
leaping SSA and the internalization CIR model by running 375 paths on the same hardware,

the CIR internalization model performed nearly 100x faster (2.2 sec/path vs. 210 sec/path).

The hybrid approach combined SSA with a Runge-Kutta method and selected the stochasti-

cally treated species based on the number of particles, which also correlates with the expected

variance. The publicly available hybrid solver has been much slower than our approach. Simu-

lation data and burst analysis is presented analog to Fig 5. While the computationally expen-

sive SSA reproduced experimental data relatively accurately, the hybrid approach failed to

accurately describe the population average and underestimated the number of bursts. Unlike

in the CIR internalization model, in both the full SSA and the hybrid method, the nuc/cyt

SMAD2 ratio tends to stick to the level before stimulation once the trajectory reached this level

again and subsequent stochastic events were less frequently observed. This behaviour was even

more prominent in the hybrid model. Moreover the full SSA model predicts a higher number

of bursts with high amplitude, in comparison to both data and CIR internalization model,

which all attain a similar maximum level. Both SSA models overestimate the heights of later

bursts, which was not observed in the CIR internalization model. The predicted bursts thus

vary significantly from the ones observed in the experimental data and those predicted by the

CIR internalization model. https://doi.org/10.6084/m9.figshare.19064702.

(TIFF)
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S6 Fig. Bursts in the nuc/cyt SMAD2 ratio are caused by anti-correlated changes in nuclear

and cytoplasmic SMAD2. To validate that the bursting events in the nuc/cyt SMAD2 ratio do

not arise from technical artefacts, we analyzed the behavior of cytoplasmic as well as nuclear

SMAD2 pools in trajectories of single cells. If the bursts are related to nuclear translocation,

the two pools must be negatively correlated in single cells during bursting events. Even though

over all cells and considered time points, nuclear and cytoplasmic SMAD2 are positively corre-

lated, in the progress of the initial burst, they are indeed negatively correlated. In the scatter

plot on the left each trajectory is represented by a blue dot and a red dot encoding nuclear and

cytoplasmic SMAD2 at the time before and within a burst event respectively. The histogram

on the right shows the distribution of angles of the line connecting the initial state to the burst

peak in the cell population, clearly indicating that for most cells, the increase in nuclear

SMAD2 matched the decrease of the cytoplasmic SMAD2. This excludes the existence of glob-

ally correlated measurement noise and suggests that nuclear and cytoplasmic SMAD2 is nega-

tively correlated within bursts. https://doi.org/10.6084/m9.figshare.19064699.

(TIFF)

S7 Fig. Comparison to alternative vesicle model. To assess the role of receptor sorting into

vesicles we considered an alternative model. This vesicle model assumed the receptors to be

attributed to a particular area on the cell surface. We randomly decided whether each vesicle

got internalized or not. For each vesicle that gets internalized, all attributed receptors were

internalized, independent of their binding states. For simplicity, after internalisation, the

receptors are assumed to be released and recycled or degraded according to the ODE model.

Thus the underlying hypothesis of vesicles is not yet consistently translated into the new

model. Still, even without parameter fitting, the number of bursting events agreed well to the

experimental data. Simulation data and burst analysis is presented analog to Fig 5. While the

variance predicted by this model is clearly underestimated, the average height and duration of

bursting events were well predicted (see also S8 Table). The variance of the burst properties

though, were underestimated. While the results of the vesicle model are promising, further

research and modeling are required to better describe the data. https://doi.org/10.6084/m9.

figshare.19064675.v1.

(TIFF)

S8 Fig. Ligand degradation. The free ligand concentration in the CIR internalization model

in case of stimulation with 100 pM TGF-β for different population sizes (left) and their differ-

ence from a reference ligand concentration computed by assuming population size n = 750

(right). Temporal fluctuations in the ligand concentration average out for large population

sizes. https://doi.org/10.6084/m9.figshare.19064666.

(PDF)

S1 Table. Kinetic model parameters. Description of the kinetic parameters used in the model

and their names in the code. Indications are given when kinetic parameters are used to intro-

duce noise in a block model. The Parameters P25–P29 are used for input scaling and are there-

fore not considered kinetic parameters. https://doi.org/10.6084/m9.figshare.20012480.

(PDF)

S2 Table. Dynamic variables and model equations. Description of the dynamic variables and

their corresponding right hand sides used in the model Eqs (1) and (2). For brevity, the depen-

dence of the dynamic concentrations on i (indicating the cell) is omitted in the descriptions of

f1, . . ., f22. The Hill form in the feedback induction was introduced based on the assumption,

that DNA-bounded and unbounded SMAD heterotrimers quickly reach an equilibrium, see
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[7]. Details about the kinetic and experimental parameters used here can be found in S1 and

S3 Tables. https://doi.org/10.6084/m9.figshare.20012225.

(PDF)

S3 Table. Parameters for experimental conditions and substitutions in the model descrip-

tions. Parameters of experimental conditions that were used in the model (see S2 Table). The

parameter E1 describes the dose dependent bolus induction. The Parameters E2, E3, E4 and E5

describe the production of TGFBR1, TGFBR2, SMAD2 and SMAD4, respectively. Unbinding

from complexes is determined by E6 (TGFBR1 from activated complex of TGF-β, TGFBR1

and TGFBR2 (y7)), E7 (TGFBR2 from activated complex of TGF-β and TGFBR2 (y6)) and E8

(SMAD7 from inactivated complex of TGF-β, TGFBR1, TGFBR2 and SMAD7 (y9)). The

parameter E9 introduces a short delay in some reactions for numerical stability. https://doi.

org/10.6084/m9.figshare.20012702.

(PDF)

S4 Table. High order corrections for the path computation scheme. Formulas of the high

order corrections used in the numerical scheme. Mi
j;n and N i

j;n denote independent identically

distributed standard normal random variables. https://doi.org/10.6084/m9.figshare.20012735.

v1.

(PDF)

S5 Table. Comparison between the CIR and the OU model. Distance measurements of the

OU internalisation model in comparison to the CIR internalisation and the deterministic

model to experimental data for a stimulation with 100 pM TGF-β (compare Table 1). The

best-fit parameters from fitting the CIR internalisation model were used in the OU internalisa-

tion model. Parameters could not be a priori estimated for the OU internalisation model due

to instabilities caused by negative stochastic parameter values. The components of the objec-

tive function in the OU internalization model are consistent and comparable albeit of an

increased magnitude in comparison to the results of the CIR internalization model. https://

doi.org/10.6084/m9.figshare.19064483.

(PDF)

S6 Table. Log-likelihood and Akaike information criterion of block models. In analogy to

simultaneous fitting of an error model proposed in [82], the scaling of the residuals of our cost-

function was re-normalized by introducing the rescaling factors sk for the components of the

objective function rk minimizing ∑k(rk/sk)2 + 2 log(sk). Factors for all components referring to

burst height and those referring to burst duration were assumed equal, respectively. This re-

scaled cost-function met the requirements on the variance of the residuals to calculate the log-

likelihood (LL) and the Akaike information criterion (AIC) of the block models in case of the

100 pM TGF-β stimulation. The AIC ratio was computed with respect to the AIC of the internal-

ization block model and indicates that the internalization model outperforms the other models

also taking the degrees of freedom into account. https://doi.org/10.6084/m9.figshare.19064558.

(PDF)

S7 Table. Comparison to full and hybrid stochastic simulation techniques. Distance mea-

surements of τ-leaping SSA and a hybrid SSA solver (see S5 Fig) in comparison to the CIR

internalization and the deterministic model to experimental data for a stimulation with 100

pM TGF-β (compare Table 1). Distance in terms of burst statistics of both τ-leaping SSA and

hybrid SSA is increased in comparison to the CIR internalization model. https://doi.org/10.

6084/m9.figshare.19064621.

(PDF)
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S8 Table. Comparison to alternative vesicle model. Distance measurements of the vesicle

model (see S7 Fig) in comparison to the CIR model and the deterministic model relative to

experimental data for stimulation with 100 pM TGF-β (compare Table 1). While the number

of bursts predicted by the vesicle model matches the experimental data, the fit in standard

deviation and population average is increased compared to the CIR model. https://doi.org/10.

6084/m9.figshare.19064660.

(PDF)
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