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ABSTRACT

Heterogeneity in genetic networks across different
signaling molecular contexts can suggest molecular
regulatory mechanisms. Here we describe a com-
parative chi-square analysis (CP�2) method, consid-
erably more flexible and effective than other
alternatives, to screen large gene expression data
sets for conserved and differential interactions.
CP�2 decomposes interactions across conditions
to assess homogeneity and heterogeneity.
Theoretically, we prove an asymptotic chi-square
null distribution for the interaction heterogeneity
statistic. Empirically, on synthetic yeast cell cycle
data, CP�2 achieved much higher statistical power
in detecting differential networks than alternative
approaches. We applied CP�2 to Drosophila
melanogaster wing gene expression arrays col-
lected under normal conditions, and conditions
with overexpressed E2F and Cabut, two transcrip-
tion factor complexes that promote ectopic cell
cycling. The resulting differential networks suggest
a mechanism by which E2F and Cabut regulate
distinct gene interactions, while still sharing a
small core network. Thus, CP�2 is sensitive in de-
tecting network rewiring, useful in comparing
related biological systems.

INTRODUCTION

Numerous methods have been developed for biological
network reconstruction, which remains challenging
owing to data insufficiency (1). Rather than reconstructing

full networks, a shift has been to identify differential inter-
action patterns across noisy biological networks (2), as
they can be linked directly to differences in molecular
mechanisms. For example, a co-signaling molecule in a
T cell can interact with more than one ligand or
counter-receptor and consequently may either stimulate
or inhibit immunological functions dependent on a
specific molecular context (3). A majority of methods to
detect such network rewiring are based on differential cor-
relation—the difference between gene–gene correlation
coefficients (4). Generalizing to difference between other
statistics obtained separately for each condition, the dif-
ference between S-scores, based on a modified t-statistic,
was used to identify differential interactions (5). Such a
difference-between-statistics paradigm, comparing statis-
tics of patterns but not directly the patterns themselves,
is either insensitive or prone to noise. Correlation is a
function of both noise and interaction parameters.
Unequal noise across conditions can lead to zero differen-
tial linear correlation despite distinct slopes (Figure 2).
This constitutes the insensitivity deficiency of difference-
between-statistics. On the other extreme, reconstruct-then-
compare (RTC) (6)—reconstructing interaction patterns
first, and then comparing the patterns for difference—
ignores uncertainty in the patterns, and false positives
tend to arise due to noise. Ouyang et al. (7) overcame
these problems by characterizing homogeneity and hetero-
geneity of parametric interaction patterns while also con-
sidering uncertainty for continuous data.
To balance between sensitivity to interaction patterns

and robustness to noise, we present a comparative chi-
square analysis (CP�2) to hunt for homogeneous and het-
erogeneous nonparametric interaction patterns from
discrete data. An interaction is an association from one
or more parent variables (e.g. transcript quantities of
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several genes) to a child variable (e.g. another gene’s tran-
script quantity), represented by the generalized truth table
(gtt)—a discrete nonparametric function mapping parent
variables to a child variable (8). Nonparametric represen-
tation enables detection of complex nonlinear interactions,
thus more flexible than parametric approaches including
differential correlation (4). A pair of interactions is
conserved if both have an identical gtt involving the
same parent and child variables; otherwise, it is defined
as differential. By decomposing a pair of interactions to
measure their homogeneity and heterogeneity, we deter-
mine whether interactions are conserved or differential.
We show the heterogeneity statistic to be asymptotically
chi-square distributed. In a simulation study comparing
two pairs of cell cycle models for the budding and
fission yeasts, we demonstrate that CP�2 is statistically
more powerful than RTC. Broadly, CP�2 is applicable
to systems with qualitative states such as Boolean
networks and discrete dynamic Bayesian networks for
comparing interactions under uncertainty.

MATERIALS AND METHODS

Comparative chi-square analysis of interactions

The CP�2 framework is illustrated in Figure 1. The input
to CP�2 is observations of nodes, e.g. gene expression, in
networks under two or more conditions (Figure 1a). We
assume that the networks, of a same set of nodes, may
differ in either wiring or strength of interactions. Let
D1, . . . , DK be data sets measuring values of nodes in K
networks. The output is differential or conserved inter-
actions for each node across the networks (Figure 1c).
We first create a contingency table Ck from Dk. Each
row index in a contingency table is a specific combinator-
ial realization of one or more parent variables. Each
column index is a specific value the child variable can
take. The observed pattern in a contingency table repre-
sents how the parent variables interact with the child
variable. The chi-square of a contingency table is a dis-
crepancy measure between the observed and expected
counts in its cells when parent and child variables are in-
dependent. The individual interaction strength �2k,
computed from Ck, measures parent–child association
separately for condition k. Summing up �2k over k, we
obtain the total strength �2t , and by further breaking
it into to homogeneity �2c and heterogeneity �2d, we estab-
lish a decomposition rule central to our framework
(Figure 1b):

�21+� � �+�
2
K ¼ �

2
t ¼ �

2
c+�

2
d ð1Þ

Under the null hypothesis of noninteracting homogen-
eity across conditions, �2t is asymptotically chi-squared
because it is the sum of independent chi-squares in the
K conditions (9). �2c is asymptotically chi-squared, as it
is computed on a single pooled contingency table. We
prove that �2d is also chi-squared. By statistical significance
of these test statistics, differential or conserved inter-
actions are decided.

Interaction homogeneity and heterogeneity via
decomposition

By three chi-square tests, we assess total strength, strength
of homogeneity and strength of heterogeneity for inter-
actions across K conditions. For a node X, or child, of
Q discrete levels in the networks, we evaluate its hypothet-
ical parent sets �1, . . . ,�K under K different conditions
via chi-square statistics on contingency tables formed
between the parents and the child. We first identify the
smallest super parent set � ¼ �1 [ . . . [�K. Let R be
the number of combinations of discrete levels in P. Let
nij,k be the number of observations in entry ði, jÞ of R�Q
contingency table Ck with sample size nk under condition
k. We compute K chi-squares with degrees of freedom
(d.f.) vk ¼ ðR� 1ÞðQ� 1Þ to assess the strength of an
interaction under each condition by

�2k ¼
XR

i¼1

XQ

j¼1

ðnij,k � �nij,kÞ
2

�nij,k
, k ¼ 1, . . . ,K ð2Þ

where the expected count in entry (i, j) of Ck is

�nij,k ¼
1

nk

XQ

q¼1

niq,k

XR

r¼1

nrj,k, k ¼ 1, . . . ,K ð3Þ

under the null hypotheses that no interaction exists
between the given parents and child in each condition. If
both nij,k and �nij,k are zero for a cell, the cell contributes
zero to �2k. Summing up �2k’s, we obtain the ‘total strength’
of interaction

�2t ¼ �
2
1+� � �+�

2
K ð4Þ

as our first chi-square statistic, measuring evidence of
active interactions under ‘some’ of the K conditions, re-
gardless of differential or conserved. The null hypothesis is
that no active interaction exists between any parent sets
and the child in ‘any’ condition. Under the null hypoth-
esis, �2t asymptotically follows a chi-square distribution

with d.f. vt ¼
PK

k¼1 vk and P-value pt.
To measure the overall agreement of the interactions

among all K conditions, we develop a homogeneity test.
Then we fill in an R�Q contingency table Cpool using par-
ent superset P and child values from D1, . . . , DK. Thus,

entry (i,j) of Cpool contains nij ¼
PK

k¼1 nij,k observations.
We now compute our second �2 statistic as the ‘strength of
homogeneity’:

�2c ¼
XR

i¼1

XQ

j¼1

ðnij � �nijÞ
2

�nij
ð5Þ

where the expected count in entry (i, j) of Cpool is

�nij ¼
1

PK

k¼1

nk

XQ

q¼1

niq
XR

r¼1

nrj ð6Þ

under the null hypothesis that there is no consistent
pattern among the interactions between all parent sets
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(a)

(b)

(c)

Figure 1. Overview of CP�2. (a) Observations are collected for a network in two contexts. Observed trajectories (shown as tables under each
network) are input to the analysis. (b) By the decomposition rule, after adding individual interaction strengths, we obtain the total strength, �2t , of a
pair of interactions, and decompose it to homogeneity �2c and heterogeneity �2d. The decomposition is applied on every potential pair of interactions.
A pair of interactions showing the best fit to each condition is chosen for each node based on �21 and �22. (c) Interactions showing strong hetero-
geneity are differential and those showing strong homogeneity but insignificant heterogeneity are conserved. These interactions constitute the output.
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and the child in all K conditions. Under this null hypoth-
esis, �2c asymptotically follows a chi-square distribution
with d.f. vc ¼ ðR� 1ÞðQ� 1Þ and P-value pc.
To measure the strength of deviation of each interaction

from the homogeneous component of all interactions, we
define the ‘strength of heterogeneity’ by

�2d ¼ �
2
t � �

2
c ð7Þ

as our third �2 statistic, where j�2dj is chi-square
distributed with d.f. vd ¼ vt � vc and P-value pd, under
the null hypothesis that there are no interactions in any
contingency table. �2d measures differential interactions
not due to row or column marginal distributions, as ex-
plained in Supplementary Methods S3.1. The asymptotic
chi-square distribution of �2d is derived from the following
theorem:

THEOREM 1.
Under the null hypothesis of K homogeneous noninter-
acting R�Q contingency tables, the heterogeneity

statistic �2d ¼
PK

k¼1 �
2
k � �

2
c is asymptotically chi-square

distributed with ðK� 1ÞðR� 1ÞðQ� 1Þ degrees of
freedom.

Here is a sketch of the proof: (i) Normalize each con-
tingency table by subtracting cell means and dividing the
standard deviation based on a multinomial distribution of
the cell counts. (ii) Transform each normalized contin-
gency table to a matrix of identically and independently
distributed (i.i.d.) standard normal variables by using row-
and column-Helmert matrices. (iii) Apply the above two
steps on the pooled contingency table and obtain a matrix
of i.i.d. standard normal variables. (iv) Show that in each
cell the sum of normal variables squared minus the square
of the pooled normal variable for the same cell is a quad-
ratic form in the normal variables. We prove this quad-
ratic form to be chi-square distributed. (v) The
heterogeneity chi-square can then be represented as the
sum of these independent chi-square variables in each
cell, and is thus also chi-square distributed. A complete
proof is given in Supplementary Methods S3.1.
Combining Equations (4) and (7), we obtain the ‘statis-

tical decomposition rule for discrete interactions’:

�21+. . .+�2K ¼ �
2
t ¼ �

2
c+�

2
d ð8Þ

with

v1+. . .+vK ¼ vt ¼ vc+vd ð9Þ

which states that the total strength of interactions, as sum-
mation of strengths of each individual interaction, can be
decomposed into a strength of homogeneity and a
strength of heterogeneity. This rule provides the guiding
principle underpinning the CP�2 framework.
Parents in a gene interaction, assumed given so far, are

often unknown. In our software, the network topology
can be either externally provided through an open user
interface or the program can internally learn the
network topology using various criteria. We can learn
network topologies by maximizing network conservation

or differentiation if such preference can be justified in
advance. Our experience indicates that for networks
without a prior tendency toward being conserved or dif-
ferential, a network topology maximizing fitting to the
data for each condition performed the best as
demonstrated in our yeast cell cycle simulation study.
We also allow the network topologies to differ across con-
ditions but such options are effective only when sufficient
data are provided to support the increased complexity.

CP�2 assumed independent two- (or multiple-)sample
design, where samples are independent in each condition.
This is often satisfied when each biological individual is
used exactly once under only one treatment/condition.

Drosophila wing gene expression data and preprocessing

Cell cycle exit occurs in the Drosophila wing at 24 h after
puparium formation (h APF) under normal conditions.
When E2F or Cabut (Cbt) are overexpressed, wing cells
go through at least one extra cycle and instead exit the cell
cycle at 36 h APF (10). We therefore used Nimblegen
Drosophila expression microarray to study gene expression
in the fly wing in response to overexpression of Cbt or E2F
at both the normal exit time, 24 h APF and the delayed
exit time 36 h APF. RNA sample preparation and data
normalization are described in Supplementary Methods
S3.5.

To filter out transcripts that were not significantly dif-
ferentially expressed in the experiments, we used two-way
analysis of variance on time (24 h/36 h), condition (E2F+/
Cbt+/wild type) and their interaction. This resulted in
6711 transcripts out of the total 15 473 retained for com-
parative analysis. To align the analysis with other biolo-
gical evidence, we compiled a priority list of 4653
transcripts, from the total 15 473, selected for gene
ontology terms suggesting roles in controlling gene expres-
sion, developmentally important signaling pathways or
functions in cell cycle control. A total of 3768 priority
transcripts are statistically significantly differentially ex-
pressed and thus included in the 6711 set.

Observations of many transcripts are apparently
linearly correlated likely owing to either the small
sample size (24) for a large number of priority transcripts
(3768) or truly linearly correlated biological function. To
avoid favoring by chance anyone of them as a parent to a
child, we group them into linearly correlated clusters to
serve as parents. When an interaction from a parent
cluster to a child gene is identified, all members in the
parent cluster are considered candidates to a potential
biological interaction. By hierarchical variable clustering,
the 3768 priority transcripts formed 491 groups of linearly
correlated genes and 34 groups of a single transcript,
based on 24 observations at time points 24 h APF and
36 h APF, with four replicates under three conditions.
As transcripts in a same cluster are either positively or
negatively linearly correlated, in quantization to be done
next, each transcript in the same cluster as parents
(including those negatively correlated) would lead to
similar chi-square values for a given child. Thus we
consider them mathematically equivalent in the context
of CP�2 and only choose a cluster representative for
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further analysis. The cluster representative is a transcript
with largest median correlation coefficients with all other
transcripts in the same cluster.

Next, we discretized continuous gene expression data to
three discrete levels of low, intermediate and high.
Discretization is achieved by a joint-likelihood quantiza-
tion using sequential dynamic programming (11). The
average estimated noise level is 0.22 over all quantized
transcripts (Supplementary Figure S3). The maximum
likelihood estimation of noise level is described in
Supplementary Methods S3.3.

The above preprocessing generates the input to CP�2

analysis, including three files of gene expression levels
under the conditions of E2F+, Cbt+ and the wild type
control, respectively. Each file contains eight discrete
samples with value 0, 1 or 2 for each of the 7202
(=491+6711) transcripts. Each file also specifies that
only representatives of the 525 clusters of priority tran-
scripts can be used as a parent (potential regulator) for a
child transcript (any of the 7202).

Highlighting differential gene interaction networks
in fruit fly wing development

We performed CP�2 analysis across the three experimental
conditions E2F+, Cbt+and the normal wild type. Cbt and
E2F delay cell cycle exit and cause ectopic cell cycles by
regulating distinct but largely overlapping sets of genes
(Supplementary Figure S1). Thus, we hypothesized that
overexpression of E2F or Cbt gives rise to differential
gene interactions in reference to the wild type unperturbed
state.

In evaluating each potential parent–child relationship,
the parent candidates were chosen from the priority gene
clusters, and the potential children include every transcript
and priority gene cluster. We inspected the parent–child
relationships at the same time point, at a zero Markovian
order. The maximum number of parents per child was set
to 1 as the sample size does not provide a sufficient stat-
istical power to detect interactions with more parents. We
did not allow change in parent identity for the same child
in interactions to anticipate strength change in gene inter-
actions. All differential interaction P-values were adjusted
by the Benjamini–Hochberg method (12) to account for
the multiple testing effect by controlling the false discov-
ery rate.

We obtained a network topology that maximized the fit
to both E2F+and Cbt+data sets, capturing active inter-
actions in both data sets regardless of conserved or differ-
ential. Then for each interaction in this active network, we
classified it into one of three groups: (i) Conserved
between E2F+and Cbt+but differential from control, if
and only if pd(E2F+ and Cbt+ versus control) � �,
pd(E2F+ versus Cbt+) > � and pc(E2F+ versus Cbt+)
� �; (ii) Differential between E2F+ and control and dif-
ferential between E2F+ and Cbt+, if pd(E2F+, control)
� � and pd(E2F+, Cbt+) � �; and (iii) Differential
between Cbt+ and control and differential between
E2F+ and Cbt+, if pd(Cbt+, control) � � and pd(E2F+,
Cbt+) � �. All these differential interactions require stat-
istically significant change in the distribution of each

involved gene, which we call working zone change as
detailed in Supplementary Methods S3.2.

Motif finding in Drosophila differential gene networks

For the chosen genes that are differential between E2F+
or Cbt+and the control, sequences upstream of the tran-
scriptional start site was obtained using the UCSC
Drosophila Genome Browser (13) or Regulatory
Sequence Analysis Tools (14). Sequences were entered
into Multiple EM for Motif Elicitation (MEME) (15)
and the top five scoring motifs (of widths 6–12 bases)
were obtained. Using MEME we looked for motifs
enriched in gene clusters displaying differential inter-
actions with working zone changes as well as the top
200 most strongly E2F1 and Cbt co-upregulated genes.
The rationale was that we could identify motifs specific
to E2F and Cbt target gene sets that overlap in the co-
regulated target gene clusters. TOMTOM (16) was used to
compare the MEME identified motifs to known
Drosophila motifs. As proof of principle, we were able to
readily identify two distinct E2F binding sites. On exam-
ination of Cbt regulated genes, we identified a novel
Drosophila Mad-like motif (Supplementary Figure S2).

RESULTS

Sensitivity of CP�2 to interaction heterogeneity over
alternative approaches

We first evaluated the sensitivity of CP�2 to interaction
heterogeneity over differential correlation and RTC.
In several conceptual examples shown in Figure 2, the

differential correlation method can be completely insensi-
tive to some truly heterogeneous interaction patterns
because each pair of patterns has identical correlation
coefficients.
RTC is an intuitive alternative for comparing inter-

actions. We illustrate it with the generalized logical
network reconstruction algorithm we developed previ-
ously based on chi-square testing (8). Using the same
basic chi-square statistic enables a fair experiment to
study interaction comparison strategies. RTC first recon-
structs a gtt for each node using parents with a smallest
P-value of �21 for the first network, and generates in iso-
lation another gtt based on �22 for the second network.
Then it compares the difference between each pair of re-
constructed gtts to declare a conserved or differential
interaction. An interaction is conserved if its gtts are the
same across two conditions and at least one gtt is signifi-
cant (P-value � �, a false-positive threshold). An inter-
action is differential if the two gtts are different and at
least one is significant. If both are insignificant, the inter-
action is inactive or null. Such direct gtt comparison
ignores data uncertainty.
A second set of examples in Figure 3 illustrates a

decisive advantage of CP�2 in sensitivity to interaction
heterogeneity over differential correlation and RTC at a
small sample size. We created a pair of conserved and four
pairs of differential Boolean interactions. Each inter-
action, with two parents and one child, forms a 4-bit
truth table. The four pairs of differential interactions
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have increasing heterogeneity from 1 to 4 bits in their truth
tables. With these 10 truth tables, we simulated data sets of
a small sample size 8 at the noise level of 0.2 using a noise
model defined in Supplementary Methods S3.3. Both the
sample size and the noise level of 0.2 are consistent with the
Drosophila gene expression data set (Supplementary Figure
S3). Then, we applied the three methods on the simulated
data sets. The receiver operating characteristic (ROC)
curves and area under ROC curves (AUCs) are qualitative
and quantitative indicators of the performance. Figure 3
shows that the sensitivity of CP�2 becomes progressively
pronounced as interaction heterogeneity increases and is
maximized when the truth tables differ the most at 4 bits:
the gain of CP�2 in AUC is remarkably 31% over differ-
ential correlation or 55% over RTC.

Benchmarking robustness to noise on yeast cell cycle
networks

We benchmarked the performance of CP�2 on comparing
two pairs of gene networks in budding and fission yeast,
respectively, against RTC and differential correlation,
using ROC curves at four noise levels (Figure 4). The
two pairs of cell cycle gene networks are plotted in
Supplementary Figures S6 and S8 and the corresponding
generalized logic rules are described in Supplementary
Figure S7, S8, S10 and S11. The first pair of budding

yeast models (17,18) is similar in network topology; the
second pair of fission yeast models (18,19) differs consid-
erably in both network topology and logic. Altogether
there are 13 differential and 7 conserved interactions in
the two pairs. From each model, we simulated a number
of trajectories, each lasting 2–13 time points, to cover all
states of the networks. Then we added various levels of
independent random noise to each gene in every state of
each trajectory using the noise model defined in
Supplementary Equation (S28). The noise does not
modify the length of the trajectory. The trajectory pairs
are input to CP�2 to obtain differential and conserved
interactions.

In Figure 4, we define a true positive as a pair of true
differential interactions declared as such involving no false
parents. A false positive is a pair of true nondifferential
interactions declared as differential. A true negative is a
pair of true nondifferential interactions declared as such.
A false negative is a pair of true differential interactions
declared either with incorrect parents or as nondifferen-
tial. Here, nondifferential refers to either conserved or null
interactions. At each noise level, we collected accumulated
results against the groundtruth. Then we plotted ROC
curves for detecting differential interactions. The
increase in AUC from RTC or differential correlation to
CP�2 is evident at the noise levels of 0.2 and 0.25, consist-
ent with what we encountered in biological data.
Specifically, CP�2 improved the AUC by �5.5% from
differential correlation and by �13–25% from RTC.
Therefore, CP�2 is more robust to noise in detecting dif-
ferential interactions than its alternatives. Full detail of
the yeast cell cycle simulation study is provided in
Supplementary Methods S3.4.

Cbt regulates distinct and overlapping gene interactions
with E2F in cell cycle

We then extended CP�2 to examine in vivo genetic inter-
actions in response to the ectopic expression of two
transcription factors that promote cell proliferation in
the wings of Drosophila melanogaster. The Drosophila
wing is used to study cell cycle control because it is
highly homogeneous and normally undergoes a well-
characterized naturally synchronous cell cycle exit to
become permanently postmitotic during metamorphosis
(10,20,21). Consistent with its role in promoting the cell
cycle, the E2F complex is a well-established target for
negative regulation by tumor suppressor proteins such as
Retinoblastoma (22) and is positively regulated by onco-
genes such as SV40 Large T and Adenovirus E1A (23). We
have found the E2F complex to regulate the expression of
a number of cell cycle regulators, chromatin modifiers and
other factors comprising the ‘E2F transcriptional
program’ in the fly wing (24). Activation of the E2F
complex can delay the process of cell cycle exit and
cause ectopic cycling in the wing by promoting the expres-
sion of hundreds of cell cycle regulators, chromatin modi-
fiers and other factors (24). Surprisingly, we have recently
found that overexpression of another, unrelated zinc
finger transcription factor Cbt (25–27), not previously
known to play a role in cell cycle regulation, can also

(a)

(b)

(c)

(d)

Figure 2. Conceptual limitations of differential correlation: (a) anti-
correlation, (b) shift, (c) reflection and (d) nonlinear interaction
patterns. Only anti-correlation in (a) can be detected by differential
correlation, while CP�2 detected all four differential interactions. (a)
Anti-correlation. Detectable by differential correlation: 1:0� ð�1:0Þ ¼
2 6¼ 0, and by CP�2: pd=4.9e-6. (b) Shift. Undetectable by differential
correlation: �0:87� ð�0:87Þ ¼ 0. Detectable by CP�2: pd=0.0050. (c)
Reflection. Undetectable by differential correlation:
�0:80� ð�0:80Þ ¼ 0. Detectable by CP�2: pd=0.0060. (d) Nonlinear.
Undetectable by differential correlation: 0� 0 ¼ 0. Detectable by CP�2:
pd=5.0e-5.
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delay cell cycle exit and cause ectopic cycling. We have
thus applied CP�2 to detect differential genetic inter-
actions that might mediate the overlapping, yet distinct
transcriptional outputs to these two transcription factors.

In addition to their many shared transcriptional targets,
Cbt and E2F also regulate a distinct nonoverlapping
group of transcripts (Supplementary Figure S1) and
have differing effects on the level of cell proliferation,
tissue patterning and apoptosis in the wing. Thus
comparing responses to their overexpression provides an
ideal opportunity to examine both conserved and differ-
ential interactions in vivo. We applied CP�2 on the corres-
ponding expression array data collected with
overexpression of E2F (E2F+), Cbt (Cbt+) and the
normal wild type (control). We found that E2F+ and
Cbt+ are associated with different sets of differential
gene interactions from the control, albeit sharing a small
portion involved in promoting proliferation. Specifically,

we identified 111 unique differential interactions in E2F+
versus the control (Figure 5a), 14 differential interactions
from the control but conserved between the E2F+ and
Cbt+ conditions (Figure 5b), and 4 unique differential
interactions in Cbt+versus control (Figure 5c).
BioGRID (28) searches confirmed five predicted inter-

actions (CG3008 !Ebi, CG8247 !Dah, Ntf-2
!CG6084, CG9938 ! tos and sub !ncd) and eight
genes (DREF, CycA, brm, dap, Ebi, CG13900, Rbf2
and CG13806) known to interact with E2F. These 13
interactions, marked with dashed lines in Figure 5, are
discussed for their biological function in Supplementary
Table S1. An evaluation of the evidence suggests that they
underpin a network of genes for proliferation by acting
cooperatively to promote S-phase and mitosis in response
to ectopic E2F or Cbt activity. Figure 5 also predicted
parent–child interactions for genes that do not have any
known interactions within BioGRID. Importantly, the 14

Figure 3. Sensitivity to interaction heterogeneity. CP�2 shows decisive advantage in sensitivity to heterogeneity on data sets with sample size (8) and
noise level (0.2) consistent with the Drosophila gene expression data set. The true positives are based on four pairs of differential Boolean interactions
with two parents, and the false positives are based on one pair of conserved interactions. As interaction heterogeneity increases from 1 (top left), 2
(top right), 3 (lower left) to 4 (lower right) bits, the improved performance of CP�2 in AUC contrasts sharply with the either stagnant or
deteriorating performance of differential correlation or RTC.
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gene interactions shared by E2F and Cbt (green nodes in
Figure 5b) were conspicuous within this group, suggesting
a potential coherent core network modulated to promote
proliferation (Supplementary Results). Interestingly, our
analysis revealed novel interactions that suggest a role
for RIO kinases in modulating the function of a transcrip-
tional repressor Ebi, on cell cycle genes (29). We also un-
covered several negative cell cycle regulatory loops
predicted to limit proliferation that are uniquely engaged
when E2F is activated, but not when Cbt is activated. This
is consistent with our previous research demonstrating
that E2F, when aberrantly active, also induces robust
cell cycle negative-feedback mechanisms to limit
abnormal proliferation (24).
To seek further support that the regulatory role of Cbt

is distinct from E2F, we identified a novel Mad-like motif
(Supplementary Figure S2) in Cbt-regulated and Cbt/E2F

co-regulated genes, but not enriched in E2F-only
regulated genes. It is striking that this novel motif has
such a strong similarity to the Mad binding motif
(E�value < 3:4� 10�5), as Cbt and its closest mammalian
homolog, KLF10 or TIEG1, are known to impinge on the
transforming growth factor b (TGF-b) signaling pathway
that converges on the Mad transcription factor (25,27,30).
One possibility is that Cbt may bind the identified Mad-
like site directly to regulate gene transcription, or it may
interact with a DNA binding partner, such as Mad, to
regulate target gene expression.

DISCUSSION

E2F and Cbt regulate a largely overlapping, yet distinct,
set of cell cycle genes (Supplementary Figure S1). The
newly discovered function of Cbt as a cell cycle regulator

Figure 4. Robustness to noise in comparative analysis of two pairs of yeast cell cycle models. Data were simulated from the four yeast cell cycle
models at increasing noise levels (0: no noise, 0.5: maximum possible noise). CP�2 again performs better in AUC than differential correlation or RTC
at the intermediate noise levels of 0.2 and 0.25, most consistent with what was observed in Drosophila gene expression data. When noise is at 0.35,
their distinction nearly diminishes. Here, ROC curves become flat and cannot reach a true positive rate of 1 owing to a no-false-parent requirement.
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potentially provides cells with a mechanism for E2F-
independent control of cell cycle genes. Cbt is a member
of the highly conserved specificity protein/Krüppel-like
factor (SP/KLF) family of transcription factors
(25,26,31). The ability of Cbt to induce ectopic cell prolif-
eration suggests that it could have oncogenic function.
However, the most immediate mammalian homologs of

Cbt, KLF10 and KLF11 (members of the TIEG family)
are known primarily as cell cycle repressors (32).
In mammals, KLF10 and KLF11 are expressed rapidly
following induction of TGF-b signaling and function as
effectors of TGF-b signaling (30,33–39) with overexpres-
sion recapitulating TGF-b–induced cell cycle exit
(30,36,39,40). In contrast, in Drosophila the TGF-b

(a)

(b) (c)

Figure 5. Differential gene networks detected when proliferation is promoted in Drosophila wings by two perturbed transcription factors E2F and
Cbt. Adjusted pd-values for each detected differential interaction are marked on corresponding edges. All gene nodes are differentially expressed. Blue
nodes are not children in any significant differential interactions detected, but are parents in other significant differential interactions. Dashed lines
are known gene interactions obtained from BioGRID. (a) Unique significant differential interactions (dark tan) due to overexpression of E2F. (b)
Consistent significant differential interactions (green) due to overexpression of E2F or Cbt. (c) Unique significant differential interactions (red) due to
overexpression of Cbt.
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family member Dpp plays a well-known role in promoting
proliferation and growth in the developing Drosophila
wing (41) and Cbt has been shown to act positively
on Dpp-signaling in this context (27). In addition,
ectopic activity of other members of the SP/KLF fam-
ily has been linked to a variety of cancerous phenotypes
(42–45).
The Cbt-associated motif we identified (Supplementary

Figure S2) is present in the promoters of many Cbt and
E2F co-regulated genes, as well as in Cbt-only regulated
genes. The sequence of the putative Cbt motif is consistent
with known DNA-binding data for Drosophila Cbt as well
as mammalian homologs, which bind GC-rich promoter
sequences (46,47). Additionally, this motif resembles a
Mad-like motif and Cbt was recently shown to enhance
transcriptional activation of direct Dpp target genes (27).
Importantly, recent work has suggested that Drosophila
Cbt acts primarily as a transcriptional repressor (48),
which runs counter to our simplest hypothesis that Cbt
directly binds this motif to activate genes induced on
Cbt overexpression. However, we cannot rule out the pos-
sibility that Cbt acts indirectly, perhaps via repression of
another factor, acting on this motif. Further work
exploring these relationships between Cbt, the cell cycle
and the TGF-b signaling pathway may help elucidate a
new relationship between developmental signaling
pathways and cell cycle control.
The computational complexity of CP�2 is linear in both

the number of conditions and the number of edges in the
network, if network topology is given. If network
topology must be learned from the data, the computa-
tional complexity increases to be linear in the number of
conditions, polynomial in the number of nodes and expo-
nential in the maximum number of parents per node.
Exact fast chi-square algorithms exist for binary variables
with two parents (49). The implementation of CP�2

already supports parallel computing using the Message
Passing Interface protocol (50). In future biological ex-
perimental design, where two or more genes are simultan-
eously disrupted in a network of thousands of genes, fast
and probably approximate implementation of CP�2 will
be necessary.
The CP�2 method has profound implications for

analyzing biological networks. Making minimal assump-
tions about underlying mechanisms, discrete
nonparametric contingency tables are preferable in those
systems without known parametric forms of interactions.
It strikes a balance between differential correlation that
irreversibly compresses interaction patterns and the
noise-prone RTC, and offers practical benefits beyond
existing differential co-expression methods suggested by
our benchmarking. The usefulness of CP�2 is
demonstrated here through identifying heterogeneous
gene interaction patterns between E2F and Cbt transcrip-
tion factors in regulating the cell cycle. Applicable to
assays where multiple molecules are measured across mo-
lecular contexts, CP�2 thus has the potential to underscore
diversity in molecular mechanisms implicating complex
interaction patterns in differential network biology.

AVAILABILITY

Software is implemented in C++ and freely available to
noncommercial users at www.cs.nmsu.edu/�joemsong/
software/CPX2.
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The data in this publication have been deposited in
NCBI’s Gene Expression Omnibus (51) and are accessible
through GEO Series accession number GSE30484
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE30484).
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