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Abstract
In vertebrates, intraocular pressure (IOP) is required to maintain the eye into a shape allow-

ing it to function as an optical instrument. It is sustained by the balance between the produc-

tion of aqueous humour by the ciliary body and the resistance to its outflow from the eye.

Dysregulation of the IOP is often pathological to vision. High IOP may lead to glaucoma,

which is in man the second most prevalent cause of blindness. Here, we examine the impor-

tance of the IOP and rate of formation of aqueous humour in the development of vertebrate

eyes by performing allometric and scaling analyses of the forces acting on the eye during

head movement and the energy demands of the cornea, and testing the predictions of the

models against a list of measurements in vertebrates collated through a systematic review.

We show that the IOP has a weak dependence on body mass, and that in order to maintain

the focal length of the eye, it needs to be an order of magnitude greater than the pressure

drop across the eye resulting from gravity or head movement. This constitutes an evolution-

ary constraint that is common to all vertebrates. In animals with cornea-based optics, this

constraint also represents a condition to maintain visual acuity. Estimated IOPs were found

to increase with the evolution of terrestrial animals. The rate of formation of aqueous

humour was found to be adjusted to the metabolic requirements of the cornea, scaling as

V 0:67
ac , where Vac is the volume of the anterior chamber. The present work highlights an inter-

dependence between IOP and aqueous flow rate crucial to ocular function that must be con-

sidered to understand the evolution of the dioptric apparatus. It should also be taken into

consideration in the prevention and treatment of glaucoma.

Introduction
Sight has been a key selective advantage in the evolution of species. The most elementary eyes
evolved in early organisms more than 600 million years ago [1]. They involve at least one pho-
toreceptor in the vicinity of shading pigment, and only allow for light detection [2]. More

PLOSONE | DOI:10.1371/journal.pone.0151490 March 18, 2016 1 / 25

OPEN ACCESS

Citation: Zouache MA, Eames I, Samsudin A (2016)
Allometry and Scaling of the Intraocular Pressure and
Aqueous Humour Flow Rate in Vertebrate Eyes.
PLoS ONE 11(3): e0151490. doi:10.1371/journal.
pone.0151490

Editor: Juan Carlos del Alamo, University of
California San Diego, UNITED STATES

Received: September 9, 2015

Accepted: February 29, 2016

Published: March 18, 2016

Copyright: © 2016 Zouache et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The authors have no support or funding to
report.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0151490&domain=pdf
http://creativecommons.org/licenses/by/4.0/


complex image-forming eyes evolved during the Cambrian explosion, around 540 million
years ago [1]. They include an additional refractive element in front of the photoreceptor layer,
which allow for increased light collection and enhanced optical performance [3]. While eyes
fundamentally provide the same information about light intensity and wavelength [4], they
occur in a variety of designs, shapes and sizes across animal phyla [3–5]. Morphological evi-
dence suggests that eyes are polyphyletic and have evolved independently at least 40 times [6].
However, this is challenged by molecular experiments [7]. To date, the evolution of eyes
remains largely subject to uncertainty [1, 3, 4].

Some of the most complex eyes are found among vertebrates. Vertebrate eyes are formed by
concentric layers of tissue enclosing a fluid filled chamber (Fig 1A). Anteriorly, the dioptric
apparatus responsible for scattering and directing light towards the photoreceptors is com-
posed of the cornea and an epithelial lens [8]. The relative refractive power of the cornea and
lens varies across vertebrates. In man, the cornea constitutes the main refractive element of the
eye, while the lens (along with aqueous and vitreous humours) accounts for close to a third of
the eye’s refractive power. It also contributes to accommodation for fine focusing [6]. In addi-
tion to its refractive function, the cornea can act as a protection for the eye, a light filter or a
nutritive device [9–11].

In order to be used as optical instruments, it is crucial that vertebrate eyes remain turgid. This
is achieved through the application of an intraocular pressure (IOP) on the internal surface of
the eye cup. In man and various other vertebrates, the maintenance of an appropriate IOP is also
important to preserve the curvature of the cornea, and therefore to retain visual accuracy [12]. In
all vertebrates, the IOP is maintained by the equilibrium between the rate of formation of aque-
ous humour and the resistance to its drainage. Aqueous humour is produced by the ciliary body.
It then flows around the iris to the trabecular meshwork and Schlemm’s canal (for primates) or
angular aqueous plexus (for non-primates) (Fig 1B) [13]. The aqueous humour acts as a blood
surrogate to the avascular cornea and lens, providing nutrition, regulating homeostasis and

Fig 1. Schematic diagrams of a human eye (A) and the conventional aqueous flow pathway (B). The human eye (A), which is fairly representative of
the vertebrate eye, is composed of concentric layers of tissue enclosing a fluid filled chamber. Light is scattered towards the back of the eye by the cornea
and lens. Phototransduction is carried out in the retina. Most of the light is focused on an area centralis, which here coincides with the fovea. The intraocular
pressure is maintained by the equilibrium between the formation of aqueous humour and the resistance to its outflow from the eye. Produced by the ciliary
body, the aqueous humour flows around the iris into the anterior chamber and is drained through the trabecular meshwork and Schlemm’s canal (B).

doi:10.1371/journal.pone.0151490.g001

Allometry of the Intraocular Pressure and Aqueous Humour Flow Rate

PLOS ONE | DOI:10.1371/journal.pone.0151490 March 18, 2016 2 / 25



clearing metabolic wastes. As a result, in addition to maintaining the IOP, the inflow and outflow
of aqueous humour are crucial to maintain a turnover rate sufficient to support the metabolic
requirements of the dioptric apparatus [14]. In man, the trabecular meshwork and Schlemm’s
canal formmost of the entire resistance to aqueous humour outflow from the eye [14, 15].

Even though the set of elements composing the eye are common to all vertebrates, signifi-
cant structural variations are observed across species. These variations are likely to be the result
of an adaptation to differences in habitat or function rather than expressions of phylogenetic
evolution [8]. Physical constraints common to all vertebrates are also likely to have played an
important role in the formation of the ocular system of each species; however, they remain
largely unexplored. Allometric and scaling analyses allow for the identification of such con-
straints, having for instance been used to predict the relationship between metabolic rate and
body mass [16–20], between physiological rates, body size and life history traits [21] and
between habitat loss and biodiversity [22]. In the eye, they have so far largely been limited to
anatomical characteristics [23–26].

The relationship between IOP and the structure of the vertebrate eye has so far seen little
investigation. It has been suggested that the IOP may be one of the factors regulating ocular
growth at least in young mammals and birds [27, 28]. The aim of the present work is to exam-
ine the importance of the IOP and rate of formation of aqueous humour in the development of
vertebrate eyes and to identify evolutionary constraints that are common to all vertebrates. In
addition to underlining functional constraints that have shaped the vertebrate eye, the present
work is important to build a better understanding of the dynamics of the IOP and aqueous
humour flow rate. Dysregulation of the IOP is often pathological to ocular function. High IOP
may cause damage to the optic nerve and lead to glaucoma, which is in man the second leading
cause of blindness [29, 30]. In the present study, a series of models and scaling laws based on
the functional importance of the dioptric apparatus are developed, and predictions from the
model are compared with a dataset obtained through a systematic review.

Analysis

Relation between IOP and aqueous humour formation rate
The conventional aqueous flow pathway, represented in Fig 1B, includes an inflow at the ciliary
body and an outflow through the trabecular meshwork and Schlemm’s canal or the angular
aqueous plexus. Most of the aqueous humour ultimately leaves the eye through the episcleral
vein. A small portion of the aqueous humour may enter the sclera and ultimately leave the eye
either through the supraciliary space or the choroidal circulation. This outflow is commonly
referred to as uveo-scleral outflow [31]. The steady balance between inflow and outflow of
aqueous humour is described by Goldmann’s equation. By denotingP the intraocular pressure
(the notations used in this analysis are listed in Table 1), the rate of formation of aqueous
humour Q satisfies

Q ¼ KðP� PevÞ þ Fu; ð1Þ
where K is a bulk permeability, Pev is the episcleral venous pressure and Fu represents the uveo-
scleral outflow, which is taken to be insensitive to pressure variations [32, 33].

Scaling analysis
Variations in the focal length of the eye and corneal curvature during head movement.

In the course of head movement, the eye is subject to a force that exerts a pressure on it and
slightly distorts it. The IOP plays an important role in ensuring that the corneal curvature, here
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denoted R, and the focal length of the eye, here denoted f, remain relatively constant under this
force. The focal length of the eye is largely related to the radius of curvature of the cornea R.
The pressure change over the height or length of the eye due to acceleration scales as ρaR,
where ρ is the density of water and a is the acceleration of the eye. The ratio of this pressure dif-
ference due to the IOP is ρaR/P. When the radius of curvature of the cornea changes by X, f
changes by a comparable amount. The presence of a vertical or horizontal pressure difference
therefore causes the curvature of the cornea to change by a ratio

X=R � raR=P: ð2Þ

Maintenance of the focal length of the eye and corneal curvature during movement.
The focal length of the eye is impaired if it changes by a distance that scales with the size of the
focal region. The size of the focal region Ifocal scales with the size of the eye, and satisfies

Df < Ifocal � lR; ð3Þ

where λ* 1/20. Thus the IOP must be sufficiently large to satisfy

raR=P � X=R < l; ð4Þ

or

P > raR=l: ð5Þ

This shows that the IOP is essentially an order of magnitude greater than the pressure drop
across the eye due to acceleration caused by gravity or head movement.

Minimal IOP across vertebrates. Having arrived at Eq (5), the next step is to estimate how
the product aR varies across species. The size of an animal approximately scales as L* (M/ρb)

1/3,
where ρb is the density of the body (typically, ρb is similar to the density of water)[34]. Associated
with the movement of an animal is a characteristic time scale T. By denotingU = L/T the charac-
teristic speed of the movement, the power associated with animal movement isMaU, which has
dimensionsML2/T3. Mechanical energy is lost by radiation, heat flux through breathing or loss

Table 1. List of notations used in the scaling and statistical analyses.

Parameter Notation

Intraocular pressure Π

Estimated Intraocular pressure �Π

Aqueous humour flow rate Q

Episcleral venous pressure Pev

Ocular focal length f

Radius of curvature of the cornea R

Density of water ρ

Density of the body of an animal ρb

Acceleration a

Volume of the anterior chamber Vac

Body mass M

Time scale T

Characteristic size L

Characteristic speed U

Flux of mechanical energy per unit area H

doi:10.1371/journal.pone.0151490.t001

Allometry of the Intraocular Pressure and Aqueous Humour Flow Rate

PLOS ONE | DOI:10.1371/journal.pone.0151490 March 18, 2016 4 / 25



through the skin. Each of these losses occur over an area scaling as L2. Since the flux per unit area
of mechanical energyH is similar in most vertebrates, the power associated with animal move-
ment balances as

ML2=T3 � L2H: ð6Þ

By substituting in the value ofM, we have L* T(ρb/H)
1/3, which means that the speed of the

movement of an animal

U ¼ L=T � ðrb=HÞ1=3 ð7Þ

shows a weak dependence on the size of the animal, as supported by [35]. As a result,

aR � ðL=TÞ2 � ðrb=HÞ2=3 ð8Þ

is also weakly dependent on the size of the animal. By combining Eqs (5) and (8), we obtain a cri-
terion that the IOP must satisfy, namely

P >
r
l

rb

H

� �2=3

: ð9Þ

This inequality gives an estimate of the minimum value of the IOP across vertebrates. Since a
high IOPmay lead to structural and functional damage to the optic nerve, the constraint would
typically be an equality constraint as it then conforms to the minimum pressure required for
keeping the focal plane in place. In man, the typical IOPmay be estimated by substituting in typi-
cal values for the acceleration of the eye occurring during walking, running or just movement of
the head. Since the typical vertical acceleration of the head is 0.3−0.5 × g [36], which scales as g,
the IOP must satisfy:

P > rgRhuman=l � ð103kg=m3Þ � ð10m=s2Þ � ð0:01mÞ � 20

� 2000Pa ¼ 15mmHg:

This value is within the range of the IOPmeasured in healthy human eyes (Fig 2E).
Scaling of the rate of formation of aqueous humour. In addition to maintaining the IOP,

the formation of aqueous humour supports the metabolic requirements of the cornea and lens.
Corneas are typically formed of a few noncellular and cellular layers, for which aqueous humour
constitutes the primary supply of oxygen and glucose [37]. Compared with the cornea, the lens
has a low metabolic rate [38, 39] so that the contribution of the aqueous humour to lens metab-
olism is negligible. Therefore, it is expected that the rate of formation of aqueous humour is pro-
portional to the area of the cornea. Since the area of the cornea scales as V2=3

ac , where Vac is the
volume of the anterior chamber, the aqueous humour flow is expected to scale as

Q � V0:67
ac : ð10Þ

Systematic review
The objective of the systematic review was to determine typical IOPs, rates of formation of
aqueous humour and volumes of the anterior chamber among healthy adult vertebrates.

Data sources. Searches were undertaken on PubMed, Scopus and BioOne databases from
their inception to 31st August 2015. A list of journals specialised in veterinary ophthalmology
was established and their respective databases of articles were searched manually. The terms
‘intraocular’, ‘intraocular pressure’, ‘tonometry’, ‘aqueous humour’, ‘ophthalmic examination’
and ‘ocular parameters’ were searched individually and then combined with ‘species’,
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‘vertebrate’, ‘amphibian’, ‘bird’, ‘mammal’, ‘fish’, ‘reptile’, ‘terrestrial’ and ‘aquatic’. Reference
lists were hand-searched and citations of articles of interest were screened. Conference
abstracts were included. Additionally, a list of books on veterinary ophthalmology and compar-
ative physiology of the eye was established and each of them was searched manually.

Inclusion criteria. Since the IOP varies significantly between juvenile and adult animals
[40–43], studies reporting IOP only for juvenile animals were excluded. If IOPs were reported
separately for juvenile and adult animals, only values for the adult group were considered.
Studies were eligible for inclusion if they reported more than one measurement, the mean and
standard deviation, 95% confidence interval (CI) or median and range of the IOP in adult ani-
mals regardless of their sex or the eye (left or right) in which the measurement was taken. Stud-
ies where the size of the sample was not reported were excluded. Studies reporting IOPs in
genetically modified animal strains were excluded. Studies reporting the rate of formation of
aqueous humour were only included if they also specified the mean volume of the anterior
chamber in the group of animals sampled. Studies designed to test the effect of pharmacologi-
cal compounds on IOP and/or rate of formation of aqueous humour were excluded unless they
included an untested control group. In this case, only measurements carried out on the control
group were extracted. For each species, the typical body mass was extracted either from the
studies reporting the IOP or the rate of formation of aqueous humour or from published and
unpublished sources.

Data abstraction. Data was collected with a customised data extraction form (Tables A–E
in S1 File). In cases where median and range were reported, mean and standard deviation were
infered using published formulas [44]. Within each studies, if more than one IOP was reported
for the same group, mean and standard deviations were combined. For each species, if more
than one study reported IOPs, rate of formation of aqueous humour or volume of the anterior
chamber then the weighted mean and weighted standard deviation were computed.

Fig 2. Estimated intraocular pressure (�Π) in amphibians. IOPs were collected through a systematic review (S1 Table and Table A in S1 File). The studies
the data was extracted from, the sample sizeN, the observed IOP and the 95% confidence interval (CI) are indicated for each species.

doi:10.1371/journal.pone.0151490.g002
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Statistical analysis and testing of predictions from the scaling analysis
Characteristics of the IOP among vertebrates. The statistical analysis was carried out

using the software R [45]. A main outcome measure of the systematic review was the raw mean
IOP in the five classes of vertebrates: amphibians, birds, fish, mammals and reptiles. IOPs in
the different classes of vertebrates were estimated by pooling the IOP in the different species
using a random-effect model [46]. Forest plots were used to visualise the IOP among the differ-
ent classes of vertebrates and within the whole dataset. The I2 statistic was used to assess the
heterogeneity of the IOP within each class of vertebrate and across the whole dataset. The effect
of vertebrate classes on the heterogeneity of the IOP was investigated by including the animal
classes in the model as moderators. The significance of the effect was assessed by performing a
Wald-type χ2-test.

Weak dependence between IOP and body mass. From Eq (9), the IOP is expected to
have a weak dependence on body mass. This was tested by performing a non-parametric
hypothesis test for pairwise statistical correlation between IOP and body mass based on Ken-
dall’s rank correlation (τ) accounting for ties [47]. Kendall’s rank correlation was computed
separately for each group of vertebrates and for the whole dataset. The rank correlation was
considered statistically significant at p� 0.05.

Scaling of the rate of formation of aqueous humour. In order to test Eq (10), rates of for-
mation of aqueous humour were fitted to a power-law of the form Q ¼ aVb

ac, where α and β are
two dependent variables. The error structure of the dataset was determined by calculating the
relative likelihood of multiplicative and additive errors. This was achieved by computing the
values of a second order variant of Akaike’s information criterion (AICc), which corrects for
small sample size [48, 49]. The goodness of the fit was assessed by computing the coefficient of
determination r2.

Results

Characteristics of the IOP among vertebrates
IOPs were extracted for 110 species of vertebrates (7 species of amphibians [50], 42 species of
birds [40, 51–66], 3 species of fish [67, 68], 48 species of mammals [41, 42, 69–119] and 10 spe-
cies of reptiles [43, 120–127]). For the majority of them, only one study per species satisfied the
inclusion criteria. Among all vertebrates present in the study, the mean IOP was found to lie
between 4.89 and 32.8 mmHg (Figs 2–6). The lowest estimated IOP was found among amphib-
ians ( �PAmphibians ¼ 6.29 mmHg, Fig 2). The estimated IOPs of fish and reptiles were found to be

respectively �PFish = 7.93 mmHg and �PReptiles ¼ 10.07 mmHg (Figs 4 and 6). The estimated IOP

among birds and mammals were the largest ( �PBirds = 14.94 and �PMammals = 17.75 mmHg respec-
tively) (Figs 3 and 5). The characteristics of the IOP in each class of vertebrates are summarised
in Fig 7.

A high level of heterogeneity was found in all classes of vertebrates (I2 > 95%, with I2 =
99.70% across vertebrates) apart from amphibians. Including the different classes of vertebrates
as moderators to the model accounted for 33.76% of the heterogeneity in effect (p< 0.001).

Dependence of the IOP to body mass
Among the species present in the study the typical body mass varied over 6 orders of magni-
tude (from Plains Spadefoot Toad to Rhinoceros) while the typical mean IOP was found to lie
between 4.89 and 32.8 mmHg (Fig 8). The rank correlation between IOP and body mass was
found to be weak in birds and mammals (τ = 0.26, p = 0.015 and τ = 0.12, p = 0.23 respectively)
and moderate in reptiles (τ = 0.39, p = 0.39); however, the effect was statistically significant in
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birds only (Table 2). In amphibians, IOP and body mass were found to be strongly negatively
correlated (τ = −0.62); however, the effect was not statistically significant (p = 0.085). For all
vertebrates, a weak statistical dependence between the IOP and body mass was found (τ =
0.296, p< 0.001). This is in agreement with Eq (9), which shows that the IOP has a weak
dependence on body mass among vertebrates.

Scaling of the aqueous humour flow rate
Nine studies satisfied the inclusion criteria of the systematic review. Apart from human where
two studies were used, the mean rate of formation of aqueous humour and the mean volume of
the anterior chamber were extracted in only one study per species (Table 3). Since there was
similar support for additive normal and multiplicative log-normal error structures (AICc =

Fig 3. Estimated intraocular pressure (�Π) in birds. IOPs were collected through a systematic review (S2 Table and Table B in S1 File). The studies the
data was extracted from, the sample sizeN, the observed IOP and the 95% confidence interval (CI) are indicated for each species.

doi:10.1371/journal.pone.0151490.g003
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9.59 and 8.50 respectively), the value of the dependent variables α and β were obtained through
model averaging [49]. This yielded α = 0.064 (95% CI [0.046,0.26]) and β = 0.67 (95% CI
[0.41,0.73]), which is in support of Eq (10). The fit is plotted on a logarithmic scale in Fig 9.

Discussion
In this paper, a scaling analysis of the IOP and the rate of formation of aqueous humour were
carried out in order to identify evolutionary constraints common to all vertebrate eyes and fur-
ther the understanding of the physiology of the dioptric apparatus. Predictions from the scaling
analysis were tested using IOPs and rates of formation of aqueous humour from a pool of ver-
tebrates collected through a systematic review. It was shown that in order to maintain the focal
length of the eye and the curvature of the cornea during head or body movement, the IOP
needs to be an order of magnitude greater than the pressure drop across the eye that results
from movement. An estimate of the minimal value of the IOP among vertebrate was deter-
mined, and it was shown that the IOP is weakly dependent on body mass. An allometric analy-
sis of the rate of formation of aqueous humour showed that it scaled to V0:67

ac . This was in good
agreement with data collected through the systematic review.

Quality of the data collected through systematic review
The analysis carried out in the present work constitutes the first attempt at characterising varia-
tions in the IOP and aqueous flow rate among vertebrates. One limitation pertains to the quality
and consistency of the data collected from the literature, which is contingent on the methods
used to make measurements. In most studies the IOP was assessed using commercially available
tonometers, which vary by the type of tonometry that they are based on and their respective
readings. Rebound tonometry was proven to provide significantly different measurements when
compared to applanation tonometry [58, 127]. Statistically significant differences in readings
from two of the most commonly used tonometers (TonoVet1 and TonoPen XL1) have also
been reported [55, 56, 60]. Furthermore, some tonometers require an animal-specific calibration
from the manufacturer, which may not be available at the time of measurement. Since the
method used to measure the IOP is likely to be affected by the size of the eye and the thickness
and curvature of the cornea [131], this may lead to incorrect measurements.

Fig 4. Estimated intraocular pressure (�Π) in fish. IOPs were collected through a systematic review (S3 Table and Table C in S1 File). The studies the data
was extracted from, the sample sizeN, the observed IOP and the 95% confidence interval (CI) are indicated for each species.

doi:10.1371/journal.pone.0151490.g004
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The aim of the systematic review was to collect typical IOPs for healthy adult species of ver-
tebrates; therefore, some aspects of the variations in IOP within each group of vertebrates were
not included in the study. While in healthy animals the IOP is generally not significantly differ-
ent in the left and right eye [40, 41, 43, 53, 56–59, 64–66, 69, 74–76, 79, 85, 88, 91, 92, 98, 103,
111, 114, 114, 117, 122–127, 132] or in males and females [41, 43, 56, 58, 63, 65, 69, 74, 75, 79,
85, 88, 91, 92, 103, 114, 121–124, 126, 132, 133], it has been found to change with position in

Fig 5. Estimated intraocular pressure (�Π) in mammals. IOPs were collected through a systematic review (S4 Table and Table D in S1 File). The studies
the data was extracted from, the sample sizeN, the observed IOP and the 95% confidence interval (CI) are indicated for each species.

doi:10.1371/journal.pone.0151490.g005
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Fig 7. Estimated intraocular pressure (�Π) across vertebrates. IOPs were collected through a systematic review (S1–S5 Tables and Tables A–E in S1
File). The number of species included in the study, the estimated IOP and the 95% confidence interval (CI) are indicated for each class of vertebrates.

doi:10.1371/journal.pone.0151490.g007

Fig 6. Estimated intraocular pressure (�Π) in reptiles. IOPs were collected through a systematic review (S5 Table and Table E in S1 File). The studies the
data was extracted from, the sample sizeN, the observed IOP and the 95% confidence interval (CI) are indicated for each species.

doi:10.1371/journal.pone.0151490.g006
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flamingos and bats. [59, 60, 114]. These variations are also present in man, and have been asso-
ciated with changes in episcleral pressure [134, 135]. The IOP was also found to change with
age in some species [41, 56, 63]. While no statistical correlation between IOP and body weight
was found in raptors [53], Long-Eared Hedgehog [88] and juvenile Yacare Caiman [133], a
moderate statistically significant negative correlation was found in Gulf-Coast Box Turtles and
Three-Toed Turtles [125].

Measurements of the rate of formation of aqueous humour are sparse as compared to the
IOP, and are mostly restricted to laboratory animals. This is not surprising as it involves

Fig 8. Log-log plot representing the evolution of the IOP (Π) with typical bodymass in vertebrates. The IOP was found to correlate weakly with body
mass across all vertebrates (τ = 0.296, p < 0.001).

doi:10.1371/journal.pone.0151490.g008

Table 2. Kendall’s rank correlation (τ) and 2-sided p-value for IOP and bodymass among vertebrates.
Kendall’s rank correlation could not be computed for fish because typical IOPs were found in three species
only.

τ 2-sided p-value

Amphibians -0.62 0.085

Birds 0.263 0.015

Fish – –

Mammals 0.12 0.23

Reptiles 0.389 0.18

All vertebrates 0.296 5.36 ×10−6

doi:10.1371/journal.pone.0151490.t002
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Table 3. Means of the rate of formation of aqueous humour (Q) and the volume of the anterior chamber (Vac) with respective standard deviations in
various vertebrates. The systematic review yielded measurements ofQ and Vac in eight species only, all of themmammals. Only one study per species
(apart from human) satisfied the inclusion criteria.

Species Common name Sources Sample size
(eyes)

Mean Q (μl.
min−1)

Standard Deviation
(μl.min−1)

Mean
Vac(μl)

Standard
Deviation (μl)

Aotus trivirgatus Owl Monkey [128] 16 2.75 0.46 317 67

Felis Catus Cat [81] 15 3.98 0.05 479 n.i.

Homo sapiens
sapiens

Human [89, 90] 154 2.08 0.009 183.36 84.21

Macaca
fascicularis

Cynomolgus Monkey [129] 7 1.6 3.66 74 n.i.

Macaca mulatta Rhesus Macaque [97] 24 1.68 0.02 144.54 12.82

Mus musculus Mouse (Swiss White) [100] 8 0.18 0.05 5.9 0.5

Oryctolagus
cuniculus

Rabbit (New Zealand
White)

[130] 4 2.25 0.56 250 n.i.

Rattus norvegicus Rat (Lewis) [116] 10 0.35 0.11 15.65 3.3

doi:10.1371/journal.pone.0151490.t003

Fig 9. Log-Log plot representing the evolution of the rate of formation of aqueous humour (Q) with the volume of the anterior chamber (Vac) in
various vertebrates. A fit (plain line) was obtained through model averaging. The rate of formation of aqueous humour was found to scale asQ � V0:67

ac ,
which is in agreement with scaling Eq (10).

doi:10.1371/journal.pone.0151490.g009
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measuring the flushing rate of a dye from the eye, and therefore requires prolonged and some-
times difficult animal handling. The number of values used in the present analysis could have
been increased by including studies that did not report the mean volume of the anterior cham-
ber in the group of animals where aqueous humour flow rate was measured. However, this
inclusion criteria was important as the volume of the anterior chamber varies greatly not only
between animals, but also between genetically modified strains of the same species [136].

Since the evaluation of the IOP is used to diagnose glaucoma in animals, the data collected
in the present study is of important value to veterinary ophthalmologists. Although in man the
IOP is routinely measured in the clinics, its evaluation in animals is not systematic. Reference
IOPs have yet to be produced for several species, and it is often necessary to compare measure-
ments in an animal to other species from a similar group to diagnose pathologies.

Limitations of the statistical analysis
The statistical analysis of the data collected through the systematic review was carried out to
support the scaling analysis, which formulated fundamental functional constraints applicable
to all vertebrates. A limitation of the statistical analysis pertains to the small number of values
found for amphibians, fish and reptiles as compared to birds and mammals. More measure-
ments over a broader range of animals would make the estimated IOPs more representative
within each animal group. This is particularly true of fish as only three species were present in
the study.

An underlying assumption of the statistical analysis used to test Eqs (9) and (10) is that the
IOP, the body weight, the rate of formation of aqueous humour and the volume of the anterior
chamber in each species are independent. This assumption is challenged by the fact that species
share an evolutionary history [137]. Despite being a non-parametric test [138], the significance
of Kendall’s rank correlation may be affected by the phylogenetic relationship that animals
share. The regression between rate of formation of aqueous humour and volume of the anterior
chamber assumes that both variables follow a bivariate distribution, which may not be realistic
in the context of evolution.

The fact that the IOP of closely related vertebrates such as Impalas and Thompson’s gazelle
(Antilopinae subfamily, both IOPs below 8mmHg), Scimitar-Horned Oryx and the Wildebeest
(Hioppotraginae subfamily, both IOPs close to 15 mmHg) and Horse and Zebra (Equidae fam-
ily, both IOPs above 24 mmHg) lies within a similar range has led some to hypothesise that the
IOP has phylogenetical similarities. However, the IOP of the closely related Llama and Alpacas
(Camelidae family) and Scimitar-Horned Oryx and Arabian Oryx lie within different ranges
[69]. Furthermore, the IOP among genetically modified strains of zebrafish vary by an order of
magnitude [139], while significant differences in the volume of the anterior chamber have been
observed in two genetically modified mice [136]. While the present work offers valuable func-
tional explanations for some aspects of the shape of the vertebrate, future statistical analysis
taking into account the phylogeny of species of vertebrates [140] would further strengthen our
conclusions and clarify the phylogenetic component of the IOP.

Evolutionary constraints associated with the IOP
The present analysis shows that the value of the IOP needs to be adjusted in order to maintain
the focal length of the eye during movement. This constitutes an evolutionary constraint that
applies to all vertebrates. As such, it has played an important role in shaping the structure of
vertebrate eye in all the ecosystems that it adapted to. To the best of our knowledge, this evolu-
tionary constraints has never been emphasised before.
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In most terrestrial species, the cornea constitutes the main refractive element of the eye. The
light scattered and directed towards the retina by the dioptric apparatus needs to be focused on
the focal region of the eye for clear vision [6]. In many species, this focal region coincides with
an area of the retina having distinctive anatomical characteristics such as the highest concen-
tration of cones. This area takes various shapes in different animals, forming either a “band-
like” area called a visual streak or a circular area called area centralis (some birds have two area
centralis, one of them located in the periphery of the eye for improved peripheral vision) [141].
In man, the area centralis, highlighted in Fig 1A, coincides with the fovea, and is about 200–
400 μm in diameter [142].

In species relying predominantly on the cornea to control the focusing of light onto the
focal region (typically in terrestrial species), scalings Eqs (5) and (9) represent conditions that
must be satisfied in order to maintain visual accuracy, and therefore constitute a second evolu-
tionary constraint associated with the IOP. It is important to stress that this constraint is con-
tingent on the relative importance of the lens in vision, which varies among animals. Even
though in species with lens-based optics (such as fish) the effectiveness of the dioptric appara-
tus requires the maintenance of the focal length of the eye, clear vision is mostly determined by
the design of the lens [6, 8, 143].

Evolutionary constraints associated with aqueous humour flow
The rate of formation of aqueous humour was expected to scale as V0:67

ac . This was found to be
in good agreement with data extracted from the literature. Controversy remains over the accu-
racy and fundamental basis of metabolic scaling laws. Kleiber’s law suggests that basal meta-
bolic rate scales toM3/4, whereM is the body mass [16, 17]. Although it has shown good
agreement in many studies [19, 144], some have argued that the basal metabolic rate rather
scales toM2/3[18, 20, 145]. Others have suggested that the relationship between mass and meta-
bolic rate is not a pure power law [146]. Perhaps remarkably, the metabolic supply to the diop-
tric apparatus does not have the same fractal-based supply limitations that have been proposed
as an explanation for general physiological scaling [147]. The scaling of the aqueous humour
flow rate to the metabolic requirement of the cornea suggests that alternative structural con-
straints are at play in the maintenance of the dioptric apparatus.

In the context of the evolution of the vertebrate eye, given the importance of aqueous
humour dynamics in the maintenance of the IOP, scaling Eq (10) points towards a fine tuning
between the volume of the anterior chamber, the surface area of the cornea and the turnover
rate and resistance to outflow of aqueous humour. This constitutes a fundamental evolutionary
constraint that is likely to have shaped the dioptric apparatus in all vertebrates. The present
work shows that variations in the surface area of the cornea, which may arise from functional
adaptations to certain ecosystems, require modifications of the rate of formation of aqueous
humour (which may affect the structure of the ciliary body) and therefore possibly of the anat-
omy and physiology of the trabecular meshwork and Schlemm’s canal/angular aqueous plexus.
It may also necessitate adjustments of other structures of the eye to possible changes in the IOP.

More measurements in a wider range of vertebrates would provide additional support for the
analysis carried out here and further the understanding of the tuning between IOP,Q and Vac.

IOP in the evolution of the vertebrate eye
From the aspect of the structure of the eye, vertebrates can be divided into three different great
groups: the ichthyopsida composed of fish and amphibians, the sauropsida formed by reptiles
and birds and themammalia. The vertebrate eye initially evolved for vision in shallow water. It
has over time adapted itself for vision in a wide range of habitats, from the abyss and deep sea
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to the air [8]. Measurements collected from the literature suggests that the IOP increased with
the evolution of terrestrial vertebrates. The estimated IOP was indeed found to be smaller in
amphibians and reptiles as compared to birds and mammals (Fig 10). The analysis carried out
here shows that this rise is only weakly related to changes in the average body mass of animals.
It could be a consequence of the transition from lens-based to cornea-based optics, which
accompanied the evolution of terrestrial life and is likely to have been associated with a weak-
ening of the power of the lens as compared to the cornea [6]. This transition may have

Fig 10. Simplified phylogenic tree of the vertebrate family (A) and estimated IOP within each group (B). The diagram was not plotted to scale. The
sample sizeN and the 95% confidence interval (CI) is indicated for each group. The estimated IOP appears to have increased with the evolution of terrestrial
animals.

doi:10.1371/journal.pone.0151490.g010
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necessitated an overall increase in the radius of curvature of the cornea (scaling Eq 5), which
from our analysis would explain this increase in the average IOP.

Specialisation and habitat/ecosystem
The evolution of the vertebrate eye has occurred along separate lines and has been largely deter-
mined by the ecosystems in which animals have developed. The eyes of amphibians share a
number of characteristics with fish eyes, but also show many terrestrial adaptations. The eyes of
reptiles and birds are completely adapted to aerial vision. The mammalian eye has evolved from
a primitive reptilian source and adapted itself to almost every ecosystem, including a return to
aquatic vision [6, 8]. For instance, specific adjustments of the eye for water and air vision have
been found in penguins [148–150]. This evolution along separate lines is somehow visible when
examining the IOP within each animal group. The IOP of aquatic birds and mammals is for
instance closer to the IOP of respectively non-aquatic birds and mammals than it is to fish. This
points towards an adaptation of the bird and mammalian eye to aquatic ecosystems while pre-
serving some of their respective features. It is also in support of the idea that an evolution along
separate lines produced different eye structures suitable to the same ecosystem or habitat [6, 8].

The high heterogeneity in IOP observed among vertebrates suggests that it is weakly depen-
dent of the environment in which each species has evolved. This is explained by the fact that
the evolutionary constraint, namely that the IOP is required to overcome deformation due to
head movement, is essentially the same in every ecosystem or habitat. However, specialisation
of the visual function in certain ecosystems may have necessitated further adaptation of the
IOP. The data collected in the present analysis suggests that the IOP is for instance higher in
animals adapted to saltwater as compared to animals adapted to freshwater (Fig 11). The eye of
seawater animals may have to withstand higher changes in pressure resulting from deep diving,
which would in the light of the present analysis explain why their IOP is comparatively higher.
This difference could also be caused by losses of water ocurring on the surface of the cornea of
sea animals [143], which could be compensated for by increasing the rate of formation of aque-
ous humour. From Goldmann’s Eq (1), at equivalent episcleral venous pressure and bulk per-
meability, this would require an increase of the IOP.

The variations in IOP within each vertebrate group may also be partly explained by the exis-
tence of visual mechanisms (specific to some animals) that necessitate alterations of the IOP.
In cetaceans, it has been hypothesised that accommodation is achieved by axial displacement
of the lens resulting from changes in the IOP [151], which may explain the comparatively
larger IOP observed in aquatic mammals as compared to other mammals. In arctic reindeers,
the IOP, which was found to be significantly larger in winter than in summer, plays an impor-
tant role in the changes in visual function associated with the adaptation to continuous sum-
mer light and continuous winter darkness [152]. The present work will hopefully pave the way
to further analysis of these types of adaptations.

Relevance for other sensory organs
The evolutionary constraints on the eye are likely to be similar to that of other closely related sen-
sory organs, such as the semicircular canals of the inner ear. The inner ear senses unsteady move-
ment by the deflection of hairs on the inside of the semicircular canals. In the same way that IOP
is independent of the mass of the animal, the size of the semicircular canals of jawed vertebrates
or gnathostomes are also independent of mass [35]. Various complex constraints and models
have been proposed in the past to estimate the size of the inner ear and relative independence to
M. The simplest explanation is that it senses the movement of velocity of the head which scales
as L/T, which as was shown in the present work is weakly dependent on the mass of the animal.
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Conclusion
Using scaling and allometric analyses, the present work has highlighted fundamental evolu-
tionary constraints in the development of the vertebrate eye, and further characterised the
interdependence between the rate of formation of the aqueous humour, the metabolic require-
ments of the dioptric apparatus and the IOP. Importantly, the present study shows that ani-
mals need to be carefully selected when developing animal models for eye pathologies such as
glaucoma. Even though the IOP lies within a range similar to all vertebrates, the rate of forma-
tion of aqueous humour is specific to each animal and changes between species. Given the
interdependence between IOP and aqueous flow rate, it is essential to develop animal models
having physiological characteristics similar to humans.
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Fig 11. Observed IOP in vertebrates adapted to aquatic vision. The IOP appears to be lower in aquatic animals adapted to freshwater as compared to
seawater. However, the group of animals adapted to saltwater is here limited to mammals. Among all the species adapted to fresh and saltwater the residual
heterogeneity is I2 = 90.09%. Including saltwater and freshwater adaptations to the model as moderators accounts for 88.95% of the heterogeneity in effect.
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