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Abstract: Thermotolerant Campylobacter spp. are fecal contaminants of chicken meat with serious
implications for human health. E. coli is considered as hygiene indicator since, in contrast to Campy-
lobacter. spp., the bacterium is generally present in the avian gut. Stress exposure may transiently
cease bacterial division. Therefore, colony forming units (CFU) may underestimate the infection risk
of pathogens. We developed a viability real-time PCR (v-qPCR) for the quantification of viable E. coli
targeting the uidA gene, encoding β-glucuronidase, which is usually detected for phenotypic species
identification. The short- and long-term effects of decontaminating chicken skin on the survival
of both C. jejuni and an ESBL-producing E. coli were evaluated by CFU and v-qPCR. The results
showed that freezing and storage in cool conditions are potentially underestimated by CFU but not
by v-qPCR. The effect of treatment with peroxyacetic acid on survival was consistently detected by
CFU and v-qPCR. v-qPCR analysis detected bacterial survival upon the application of lactic acid,
which awaits further analysis. Interestingly, both bacteria showed similar kinetics of inactivation
upon the application of reduction strategies, suggesting that E. coli might be a complementary hy-
giene indicator. We conclude that v-qPCR can improve food safety under the consideration of some
limitations.

Keywords: VBNC; propidium monoazide; qPCR; food safety; uidA; β-glucuronidase; peroxyacetic
acid; lactic acid; freezing; internal sample process control; IPIU

1. Introduction

Along the poultry production chain, Thermotolerant Campylobacter spp. are frequent
fecal contaminants with serious implications for human health. With 220,682 confirmed
human cases in 2019, Campylobacter infections remain the most common bacterial gastro-
intestinal disease in the European Union [1]. C. jejuni represents the major reported species.
Poultry meat products play a pivotal role as transmitters of sporadic campylobacteriosis
cases in the EU [1]. Escherichia coli is often used as a hygiene indicator for fecal contam-
ination [2,3]. Furthermore, several E. coli strains pose, in addition to Campylobacter, a
risk for consumers due to their virulence and multi-drug resistance traits, complicating
antimicrobial treatments not only of gastric disorders [4–7].

The viability of bacteria is commonly quantified by their capacity to produce colony
forming units (CFU) on agar plates. However, under unfavorable conditions, i.e., upon
stress exposure, bacteria may transiently cease cell division, while potentially maintaining
infectivity [8–12]. In consequence, CFU may lead to an overestimation of the reduction
efficiency of applied decontamination strategies.
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Real-time PCR (qPCR) offers a fast, specific, and culture-independent method for
bacterial quantification. When applied in combination with a DNA-intercalating agent
prior to qPCR, viable/dead differentiation can be achieved in a viability qPCR (v-qPCR).
The agent propidium monoazide (PMA) was shown to be passively excluded from viable
bacteria while efficiently entering dead cells with compromised membranes [13–15]. In
dead bacteria, PMA is cross-linked to DNA upon light exposure and subsequently prevents
DNA amplification during qPCR.

PCR protocols exist for the detection of E. coli without or with the objective to differ-
entiate between viable and dead bacteria. They often utilize the uidA sequence [16–20],
encoding the enzyme β-glucuronidase, which is commonly used for phenotypic species
differentiation. Also genes for serogroups such as O157 [14,21–23] are applied. However,
for an optimal reduction in the dead cell signal, a suitable amplicon length is necessary in
order to maintain efficient amplification and to optimize the chance of PMA binding within
the target sequence [24].

In 2018, the European Commission set a process hygiene criterion into force, limiting
the contamination level of Thermotolerant Campylobacter spp. on chicken carcasses at
slaughterhouses [25]. The ultimate goal is to enhance biosecurity at the farm level and
to significantly reduce fecal contamination by improving slaughter techniques. However,
various decontamination strategies have been discussed, aiming to reduce pathogens
in poultry abattoirs [26–36]. For beef, decontamination with 2–5% lactic acid (LA) is
legally applied and might complement other hygiene measures [37]. Furthermore, an
EFSA scientific opinion presented the option for the decontamination of chicken carcasses
by 0.2% peroxyacetic acid (PAA) [38]. Besides chemical decontamination, freezing was
also proposed as a reduction strategy for Thermotolerant Campylobacter spp. on chicken
meat [39].

In this study, we addressed two central aspects. First, we wanted to evaluate diagnostic
methods for their suitability to detect viable Campylobacter spp. This is most important after
stress exposure, e.g., upon chemical decontamination. Second, we wondered whether E. coli
behaves similar to Thermotolerant Campylobacter spp. concerning survival on chicken skin,
indicating the “easy-to-handle” E. coli as a suitable hygiene indicator. For this purpose,
we designed and characterized a novel v-qPCR that is specific for E. coli with sufficient
viable/dead differentiation power. We also addressed the observation of some authors
who discussed false-positive uidA signals that were attributed to residual E. coli DNA in
recombinant Taq polymerases or other reagents [20,40,41]. The novel v-qPCR was applied
in parallel with a previously validated v-qPCR for Thermotolerant Campylobacter spp. [42]
and CFU determination. They were utilized in order to evaluate the survival of both
Gram-negative bacterial fecal pathogens after the application of reduction strategies on
chicken skin.

2. Results

A v-qPCR for the quantification of viable Thermotolerant Campylobacter spp. was
recently validated [42]. To our knowledge, such a publicly available method, which includes
a suitable target length and an internal sample process control (ISPC) is still missing for
E. coli. Hence, we designed a novel v-qPCR for E. coli using a fragment of the uidA
gene as target. Both methods were then applied to quantify survival in decontamination
experiments using chicken skin.

2.1. Design of a uidA-Targeting qPCR for Quantifying E. coli

For the reliable detection of E. coli, we chose a fragment of the uidA gene, encoding
the β-glucuronidase, which is commonly used for the phenotypic identification of E. coli.
We performed a nucleotide BLAST analysis using the uidA gene of E. coli CFT073 as a
template (https://blast.ncbi.nlm.nih.gov/Blast.cgi; last accessed on 1 May 2022). The
resulting homologous sequences of each E. coli taxon in NCBI and of Shigella spp. (in total
372 sequences) were used to generate a consensus sequence of uidA (Figure 1). Primer and
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probe annealing sites were chosen to align within the highly conserved gene segments and
were verified towards the uidA sequence of our Sanger-sequenced laboratory strains, the
reference strain E. coli DSM 1103, and the field strain ESBL E. coli 10714. The chosen forward
primer (uidA-F1: 5′-TTATTGCCGGGAAAAGTGTAC-3′) and reverse primer (uidA-R2: 5′-
AGCCAGTAAAGTAGAACGGTTTG-3′) in combination with the probe (uidA-P: 5′-JOE-
CTGTTCGCCCTTCACTGCCACTGAC-BBQ-3′) resulted in the amplification of a 513 bp
fragment (Figure 1).
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Figure 1. Consensus sequence of the uidA fragment (residue 331 to 890) after alignment of 372 E. coli
and Shigella spp. sequences. The novel qPCR targets a 513 bp fragment using the oligos uidA-F1 and
uidA-R2 and the probe uidA-P. Example oligo annealing sites of a published qPCR within the depicted
region using an 83 bp fragment [18] are also illustrated. Brown squares indicate non-conserved
positions in uidA. Numbers on the right present the position ruler in uidA.

2.2. Performance of the uidA-Targeting qPCR and Absence of False Positive Signals

For quantification, we produced DNA standards from E. coli and tested the novel
qPCR for performance. The E. coli standards DSM 1103 and ESBL 10714 were amplified
with an average efficiency of 95.5 ± 5.7% (n = 21) and 94.7 ± 6.8% (n = 23), respectively
(Figure 2A). The IPC-ntb2 [43] was included as an internal amplification control (Figure 2B).
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Figure 2. Performance of the uidA-targeting qPCR for E. coli. (A) Example ∆Rn amplification plot
of the uidA target from a decimally diluted genomic DNA standard (E. coli ESBL 10714) and the
IPC-ntb2 as internal amplification control. (B) Correlation between log10-transformed Ct values and
chromosomal copies of DNA standards (E. coli DSM 1103, n = 21 and ESBL 10714, n = 23).
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False positive amplification signals may occur due to residual genomic DNA in the IPC-
ntb2 plasmid preparation or the heterologous Taq polymerase. They might be an obstacle
for the reliable performance of a uidA-targeted qPCR, as addressed previously [20,40,41].
However, no false positive signal of uidA was detected in the negative controls when
25 copies (or 1000 copies) of the amplification control were applied, indicating the absence
of relevant contamination of genomic DNA in the plasmid preparation from the E. coli K12
host (Supplementary Table S2).

In addition, we compared a native Taq polymerase and several recombinant enzymes
or master mixes in terms of efficiently amplifying the E. coli DNA standards and the absence
of false-positive signals. The native Taq polymerase amplified both E. coli genome standards
less efficiently. A reduced sensitivity towards lower E. coli copy numbers was observed
(Supplementary Figure S1). Besides, the uidA channel showed no false-positive amplifica-
tions in the negative control samples using either recombinant enzymes or master mixes
(Platinum Taq Polymerase, AmpliTaq Gold® DNA Polymerase in TaqMan Gene Expression
Master Mix, and HotStarTaq DNA Polymerase in Quanti Tect Multiplex PCR Master Mix),
even at elevated concentrations (Supplementary Table S2). In further experiments we,
therefore, utilized the Platinum Taq Polymerase.

2.3. The Novel uidA-Targeted qPCR Is Sensitive and Specific for E. coli/Shigella spp.

The uidA-based qPCR for E. coli was evaluated for its sensitivity towards the uidA-
positive target strains. In total, we used 150 field strains (142 E. coli) and 19 reference strains
(Table 1).

Table 1. Results of sensitivity and specificity characterization of the uidA-based qPCR.

Reference Strains Results Field Strains Number of Isolates Results

Escherichia coli DSM 1103 positive Escherichia coli, MUG+ 108 positive
Escherichia coli EDL 933 positive Escherichia coli, MUG(+) 12 positive
Escherichia coli DSM 498 positive Escherichia coli, MUG- 22 positive
Shigella sonnei DSM 5570 positive Enterobacter cloacae complex 1 negative

Escherichia albertii DSM 17582 negative Escherichia albertii 2 negative
Escherichia fergusonii DSM 13698 negative Aeromonas jandaei 1 negative
Escherichia hermannii DSM 4560 negative Citrobacter koseri 1 negative
Enterococcus faecalis DSM 20478 negative Hafnia alvei 3 negative

Klebsiella pneumoniae DSM 30104 negative
Proteus mirabilis DSM 4479 negative

Pseudomonas aeruginosa DSM 1117 negative
Staphylococcus aureus DSM 1104 negative
Salmonella enterica DSM 11320 negative

IPC-ntb2 (plasmid) negative
Campylobacter jejuni DSM 4688 negative

Campylobacter jejuni NCTC 11168 negative
Campylobacter sputorum DSM 5363/ISPC negative

Campylobacter coli DSM 4689 negative
Campylobacter lari DSM 11375 negative

MUG, activity to metabolize 4-methylum-belliferyl beta-D-glucuronide; +, positive; −, negative; (+), low activity.

E. coli field strains were selected by serotype diversity, virulence gene composition,
and biochemical characteristics. The field strains were derived from different food and
animal sources (Supplementary Table S1), in particular from poultry and cattle but also
pigs and wild animals. The tested field strains included 54 enteropathogenic E. coli (EPEC)
and 46 Shigatoxin-producing E. coli (STEC) strains (19 stx1 only, 21 stx2 only, and 6 stx1 and
stx2). In total, 18 E. coli STEC field strains belonged to serotype O157:[H7].

From all 142 E. coli field strains and the 4 E. coli and 1 Shigella sonnei reference strains,
positive amplification results were obtained. The novel uidA-based qPCR detected all tested
E. coli/Shigella strains (100% sensitivity), which also included E. coli with a reduced or absent
phenotypic ß-glucuronidase activity, cleaving MUG.
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All tested strains outside the species E. coli/Shigella showed negative results (100%
specificity). It also accounted for the closely related species E. albertii, E. fergusonii, and
E. hermannii, which did not amplify. Hence, the uidA target, the designed oligos, and the
probe appeared to be suitable for identification of E. coli and Shigella spp. strains.

2.4. Combining the Novel qPCR with a Pre-Treatment Step Using PMA Allows the Differentiation
of Viable and Dead E. coli

Viable E. coli (DSM 1103 and ESBL 10714) cells were produced by culturing bacteria in
BHI until the stationary phase. E. coli were killed by 5% H2O2 under low osmotic conditions
at 50 ◦C. The absence of CFU was checked after enrichment of at least 106 killed bacteria in
BHI and subsequent streak-plating. When exposing artificially inactivated E. coli to 50 µM
PMA, a reduction power of >3.5 log10/mL due to the PMA treatment was observed relative
to viable bacteria, which is well-suited to differentiate viable from dead cells by v-qPCR
(Figure 3).
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Figure 3. Differentiation of viable and dead E. coli adjusted to 106 log10/mL PBS, either derived from
a stationary culture (n = 4) or after inactivation (n = 15).

2.5. Storage of Chicken Skin in Refrigeration and Freezing Conditions

Since chicken products are either stored in refrigeration conditions or frozen, we
evaluated the cooling/freezing effect on viable C. jejuni and E. coli over time. For this
purpose, we spiked Campylobacter-free chicken skin samples with both species and analyzed
intact and potentially infectious units (IPIU) by v-qPCR and CFU over a period of 3 days to
3 weeks.

In skin samples stored at 4 ◦C, initial CFU of C. jejuni were maintained stable within
3 days and declined afterwards gradually by around 2 log10/mL to reach 3.0± 0.7 log10/mL
after three weeks (Figure 4A, dashed blue line). E. coli CFU were stable during 7 days and
declined thereafter by around 1 log10/mL to reach 3.8 ± 0.3 log10/mL after three weeks
(Figure 4B, dashed blue line). In contrast to CFU, viable v-qPCR counts (IPIU) from cooled
samples remained stable at approximately 5 log10/mL for both species, without any decline
throughout the experiment (Figure 4, solid blue lines).

Freezing reduced the CFU of C. jejuni and E. coli after 3 days by 1.5 and 1.2 log10/mL,
respectively (Figure 4, dashed orange lines). Subsequently, the CFU decreased only
marginally. After 3 weeks of frozen storage, the CFU had declined by 2.1 and 1.6 log10/mL
for C. jejuni and E. coli, respectively. The loss of IPIU was lower than of CFU. Freezing for
three weeks reduced intact C. jejuni (IPIU) to some extent, by around 1 log10/mL. E. coli
IPIU were reduced even less, by 0.4 log10/mL (Figure 4, solid orange lines). The overall
DNA content remained at a constantly high level of around 5 log10/mL, indicating the
presence of some dead cells (Figure 4, dotted orange lines).
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Figure 4. Effect of cooling and freezing on CFU and viability by v-qPCR (IPIU). (A) C. jejuni DSM 4688;
(B) E. coli ESBL 10714. Orange,−25 ◦C; blue, 4 ◦C; dashed lines, CFU; solid lines, viable bacteria (IPIU)
counts; dotted lines, total DNA. Means ± standard deviations are illustrated from three independent
experiments.

2.6. Effect of Chemical Treatment on the Survival of C. jejuni and ESBL-Producing E. coli on
Chicken Skin

We quantified the effect of chemical decontamination on chicken skin that was initially
spiked in parallel with C. jejuni and an ESBL-producing E. coli strain (Figure 5).

Pathogens 2022, 11, x FOR PEER REVIEW 6 of 17 
 

 

Freezing reduced the CFU of C. jejuni and E. coli after 3 days by 1.5 and 1.2 log10/mL, 

respectively (Figure 4, dashed orange lines). Subsequently, the CFU decreased only mar-

ginally. After 3 weeks of frozen storage, the CFU had declined by 2.1 and 1.6 log10/mL for 

C. jejuni and E. coli, respectively. The loss of IPIU was lower than of CFU. Freezing for 

three weeks reduced intact C. jejuni (IPIU) to some extent, by around 1 log10/mL. E. coli 

IPIU were reduced even less, by 0.4 log10/mL (Figure 4, solid orange lines). The overall 

DNA content remained at a constantly high level of around 5 log10/mL, indicating the 

presence of some dead cells (Figure 4, dotted orange lines). 

 

Figure 4. Effect of cooling and freezing on CFU and viability by v-qPCR (IPIU). (A) C. jejuni DSM 

4688; (B) E. coli ESBL 10714. Orange, −25 °C; blue, 4 °C; dashed lines, CFU; solid lines, viable bacteria 

(IPIU) counts; dotted lines, total DNA. Means ± standard deviations are illustrated from three inde-

pendent experiments. 

2.6. Effect of Chemical Treatment on the Survival of C. jejuni and ESBL-Producing E. coli on 

Chicken Skin 

We quantified the effect of chemical decontamination on chicken skin that was ini-

tially spiked in parallel with C. jejuni and an ESBL-producing E. coli strain (Figure 5). 

 

Figure 5. Experimental setup of chemical decontamination of chicken skin. 

Skins were treated with the respective chemical solution for 3 min and short-term 

neutralized in PBS. The final rinse in PBS was analyzed for CFU and by v-qPCR. The 

chemical solutions PAA (0.5%) and LA (1% and 5%) were evaluated in comparison to a 

control in which the chemical solution was replaced by water. The initial pathogenic load 

Figure 5. Experimental setup of chemical decontamination of chicken skin.

Skins were treated with the respective chemical solution for 3 min and short-term
neutralized in PBS. The final rinse in PBS was analyzed for CFU and by v-qPCR. The
chemical solutions PAA (0.5%) and LA (1% and 5%) were evaluated in comparison to a
control in which the chemical solution was replaced by water. The initial pathogenic load
was assessed by an analysis of untreated samples. The treatment of chicken skin with water
for 3 min resulted in a slight but not significant decrease in the initial contamination by
≤0.5 log10/mL CFU or IPIU in E. coli and C. jejuni (Figure 6).

In both species, PAA (0.5%) caused a highly significant complete loss of CFU. Con-
sistently, the absence of a v-qPCR signal or a low residual signal was observed, with
reductions of >3.5 log10/mL upon PMA treatment. When compared with the exclusively
dead cell internal sample process control (ISPC) included in each sample, this indicated the
presence of a rest signal from dead cells (Figure 6).



Pathogens 2022, 11, 706 7 of 17

Pathogens 2022, 11, x FOR PEER REVIEW 7 of 17 
 

 

was assessed by an analysis of untreated samples. The treatment of chicken skin with wa-

ter for 3 min resulted in a slight but not significant decrease in the initial contamination 

by ≤0.5 log10/mL CFU or IPIU in E. coli and C. jejuni (Figure 6). 

In both species, PAA (0.5%) caused a highly significant complete loss of CFU. Con-

sistently, the absence of a v-qPCR signal or a low residual signal was observed, with re-

ductions of >3.5 log10/mL upon PMA treatment. When compared with the exclusively 

dead cell internal sample process control (ISPC) included in each sample, this indicated 

the presence of a rest signal from dead cells (Figure 6). 

 

Figure 6. Effect of different chemical treatments of chicken skin on CFU and IPIU analyzed by v-

qPCR. (A) C. jejuni DSM 4688; (B) E. coli ESBL 10714. Light orange, v-qPCR_all (total DNA); orange, 

v-qPCR_viable (IPIU); grey, CFU. Significance was evaluated by Tukey’s multiple comparison. In-

tervention groups were compared to water-treated samples for each analysis method. The means ± 

standard deviations are depicted from at least three independent experiments. ns, not significant (p 

> 0.05); * 0.05 > p > 0.01; *** p < 0.001. #, rest signal of dead cells. 

LA significantly reduced CFU of both species compared to water-treated samples in 

a concentration-dependent manner. Immediate reductions of 1.1 and 1.7 log10/mL CFU 

were observed by treatment with 1% LA for C. jejuni and E. coli, respectively (Figure 6). 

When 5% LA was applied, no colonies or only single colonies were detected (≥4 log10/mL 

reduction). In contrast, v-qPCR signals only slightly declined upon LA treatment, with a 

maximum decrease of 0.7 log10/mL for E. coli by treatment with 5% LA (Figure 6). 

During survival experiments with chemical treatments, the pH was measured of the 

decontamination solution (right before use), the neutralization bath (after use), and the 

chicken skin rinse (Table 2). After treatment with 1% LA (and 0.5% PAA), samples passed 

the neutralization bath, which remained close to neutral in pH (7.0). Consistently, the re-

spective chicken rinses were only slightly acidified, indicating that neutralization showed 

a sufficient effect. Only in the case of 5% LA treatment, the neutralization bath measured 

an acidified pH of 4.5–5.5 after use and the actual skin rinses were measured at pH 4.0 to 

5. 

  

Figure 6. Effect of different chemical treatments of chicken skin on CFU and IPIU analyzed by
v-qPCR. (A) C. jejuni DSM 4688; (B) E. coli ESBL 10714. Light orange, v-qPCR_all (total DNA);
orange, v-qPCR_viable (IPIU); grey, CFU. Significance was evaluated by Tukey’s multiple compari-
son. Intervention groups were compared to water-treated samples for each analysis method. The
means ± standard deviations are depicted from at least three independent experiments. ns, not
significant (p > 0.05); * 0.05 > p > 0.01; *** p < 0.001. #, rest signal of dead cells.

LA significantly reduced CFU of both species compared to water-treated samples in
a concentration-dependent manner. Immediate reductions of 1.1 and 1.7 log10/mL CFU
were observed by treatment with 1% LA for C. jejuni and E. coli, respectively (Figure 6).
When 5% LA was applied, no colonies or only single colonies were detected (≥4 log10/mL
reduction). In contrast, v-qPCR signals only slightly declined upon LA treatment, with a
maximum decrease of 0.7 log10/mL for E. coli by treatment with 5% LA (Figure 6).

During survival experiments with chemical treatments, the pH was measured of the
decontamination solution (right before use), the neutralization bath (after use), and the
chicken skin rinse (Table 2). After treatment with 1% LA (and 0.5% PAA), samples passed
the neutralization bath, which remained close to neutral in pH (7.0). Consistently, the
respective chicken rinses were only slightly acidified, indicating that neutralization showed
a sufficient effect. Only in the case of 5% LA treatment, the neutralization bath measured
an acidified pH of 4.5–5.5 after use and the actual skin rinses were measured at pH 4.0 to 5.

Table 2. pH 1 measurements.

Treatment Decontamination Solution
(Before Use)

Neutralization Bath
(PBS, after Use) Chicken Skin Rinse

LA, 1% 2 7 6 (5.5–7)
LA, 5% 1.5 5 (4.5–5.5) 4 (4–5)

PAA, 0.5% 5 7 6.5
MilliQ water 5 (4.5–5) 7.5 7–7.5

tap water 7.5 7.5 7–7.5
1 pH was evaluated using pH strips. pH stated as median and range (min–max).
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2.7. Long-Term Effects of Lactic Acid Treatment

Since we observed a discrepancy between the CFU and v-qPCR signals upon LA
decontamination, we wondered how decontamination affected the CFU and the v-qPCR
signals in a long-term experiment. Would CFU recover and how would the signal kinetics
of the v-qPCR behave over time, i.e., was a decay of the membrane and a subsequent entry
of PMA over time detectable? Therefore, we stored LA-treated samples at 4 ◦C for 1 day up
to 3 weeks and regularly quantified CFU and the v-qPCR signal (Figure 7).
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culturability (CFU) in (A) C. jejuni DSM 4688 and (B) E. coli ESBL 10714. Dashed lines, CFU; solid
lines, v-qPCR_viable (IPIU); dotted lines, v-qPCR_all (total DNA). Blue, water control; yellow, 1% LA;
red, 5% LA. The means ± standard deviations of at least three independent experiments are shown.

Water-treated control samples (Figure 7, in blue) resembled in pattern in the untreated
cooled samples mentioned above (Figure 4). As observed before, the LA treatment led to an
immediate rapid loss of CFU, but the v-qPCR signals remained initially high. A recovery
of CFU was not observed within the experimental time of three weeks. Instead, we even
observed a complete loss of CFU, i.e., 1% LA fully abolished CFU in C. jejuni within a day
and in E. coli within three days.

The viable v-qPCR signals were reduced over time to some extent but inversely to
the applied concentration of LA. The decrease in the viable v-qPCR signal was lower after
treatment with 5% LA than when 1% LA was applied. In 1% LA-treated samples, the
viable v-qPCR signal for E. coli was lost after 3 weeks, when it measured 2.3 log10/mL for
C. jejuni. The overall DNA content (without PMA) remained stable for both species and
was independent of the intervention and time point tested. These results suggested that
after lactic acid treatment, membrane permeability does not indicate bacterial death, which
awaits further studies.

3. Discussion

Our study was focused on two main aspects. On the one hand, we wondered whether
CFU underestimates the survival of Thermotolerant Campylobacter spp. on chicken skin
upon storage or chemical decontamination. On the other hand, the question was addressed
as to whether E. coli can serve as a hygiene indicator to mimic Thermotolerant Campylobacter
on chicken skin. The latter bacterium is much easier to diagnose for routine laboratories
and might compensate for technical pitfalls in Campylobacter detection.

3.1. Establishing a Novel uidA-Based v-qPCR for the Quantification of Viable E. coli

In order to reliably quantify viable E. coli, we decided to design a novel uidA-based
v-qPCR with a target fragment optimized in length. The activity of the targeted enzyme,
β-glucuronidase, is also utilized in E. coli identification [44–46]. Yet, about 3% to 6% of
E. coli strains remain phenotypically β-glucuronidase-negative [45,47], especially among
E. coli O157 [48]. Among our tested E. coli field strains, cultural β-glucuronidase activity



Pathogens 2022, 11, 706 9 of 17

was absent in 22 strains and reduced in 12 strains when evaluated with the substrate
4-methylum-belliferyl beta-D-glucuronide (MUG) by routine testing on Fluorocult E. coli
0157:H7 agar. As expected, the uidA-based qPCR was superior since all E. coli strains tested
positive. In an exclusivity and inclusivity study, we ascertained the appropriate sensitivity
and specificity of the qPCR.

As usually performed in our Campylobacter-qPCR studies, we quantified using a
stable DNA standard with a known chromosomal copy number [42,49,50]. This allowed
absolute quantification and yielded approximately 95% amplification efficiency (Figure 2).
In addition, the v-qPCR was controlled by an ISPC. The ISPC monitors a sufficient reduction
in the dead cell signal. It is influenced simultaneously by matrix and potential DNA losses
in each individual sample. In this study, the ISPC also guaranteed reliable crosslinking to
PMA in samples with slightly decreased pH. With this method at hand, viable and dead
E. coli were differentiated to a high degree since the signal of dead cells was reduced by at
least 3.5 log10/mL upon PMA treatment (Figure 3). In combination with our previously
developed v-qPCR for Thermotolerant Campylobacter spp. [42], we quantified the survival
of both C. jejuni and an ESBL-producing E. coli field strain on chicken skin upon the
application of different reduction strategies. Theoretically, the sensitivity of the novel
qPCR is 100 copies per ml of chicken skin rinse since our standard curve reliably detected
10 copies per PCR reaction and 10% of the DNA was used per sample.

3.2. Effect of Cooling and Freezing

Reductions of 1–2 log10 CFU C. jejuni on chicken meat have been observed due to
freezing. Therefore, freezing is suggested as a suitable reduction strategy [39]. In our study,
CFU initially declined in a similar way and maintained over time at a comparable level, as
observed previously [29,31,51–53].

Freezing and cooling were investigated by culture-independent quantification meth-
ods in the past [54]. Moreover, differences in the recovery of E. coli on selective and
non-selective media were observed after the cooling of meat [55]. The results are in line
with our study, with only slight CFU reductions for C. jejuni but stable numbers of intact
cells detected by v-qPCR under cooling conditions. Moreover, freezing appeared to under-
estimate the survival of both pathogens, however, to a lower degree than cooling. Our data
showed that C. jejuni and E. coli reacted similarly in physical storage conditions. Hence,
cooling and freezing appeared to overestimate reduction strategies. In conclusion, the data
suggested an advantage to control the efficiency of those strategies by culture-independent
v-qPCR in addition to CFU.

3.3. PAA Treatment

The immediate effects of 0.5% PAA and 1% and 5% LA were evaluated in comparison
to water-treated and untreated control samples by both CFU and v-qPCR. Intriguingly, the
reduction effects were remarkably similar for both Gram-negative species. Water-treated
versus untreated samples showed only minor insignificant reductions in both IPIU and
CFU. Upon treatment with PAA, IPIU corresponded very well to CFU. PAA is a reagent
with oxidizing properties [56], likely leading to loss of cell membrane integrity. It confirms
a direct effect on cell membrane integrity and indicates the ultimate loss of cell viability. We
conclude that v-qPCR can measure bacterial survival very well upon PAA treatment and
can be applied for such samples in practice, which would overcome problems in cultivation
and speed up diagnostics. Zhang et al. [57] and Nagel et al. [58] achieved 1–1.3 log10
CFU reductions compared to water-treatment on chicken parts with a short-term (~20 s)
immersion in 0.12% PAA. As expected, our reductions by 0.5% PAA and 3 min of incuba-
tion were much higher, demonstrating cell membrane effects at maximal CFU-reducing
conditions. However, these concentrations are not thought to be applied on the product
itself, since a maximum of 0.2% PAA is recommended by EFSA for chicken products [38].
Moreover, color changes were observed on chicken skin. However, as a surface disinfectant
in poultry production facilities, PAA at high concentrations might be an efficient agent for
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pathogen reduction. Reductions in E. coli CFU were high (>4.2 log10) upon the application
of 0.5% PAA for 1 min in a surface disinfecting experiment on steel disks without food
matrix components [59]. Lower but effective reductions of 1.2–1.3 log10 were found in that
study in the presence of a matrix-mimicking yeast-albumin agar. Interestingly, our data
showed an even higher reduction effect on both E. coli and C. jejuni by 0.5% PAA in the
presence of natural matrix, as found in abattoirs. Our prolonged incubation time may
partly explain the differences.

3.4. LA Treatment

CFU reductions due to LA treatment observed in previous studies are generally in
line with our results. When naturally contaminated broiler carcasses were submerged
in 1.5% LA during slaughter, a reduction of 1.2 log10 CFU of C. jejuni per carcass was
measured [60] compared to a water control. Dipping breast pieces with skin for 10 min
into 1% or 3% LA reduced C. jejuni by 1.3 and 2.0 log10 most probable number (MPN),
respectively [61]. Reductions on broiler legs were lower. Anang et al. [28] studied E.
coli O157:H7 re-inoculated on purchased, ethanol/heat-decontaminated chicken breast
pieces. CFU were reduced with 2% LA by 1.6 or 2.4 log10/g, when treated for 10 or 30 min,
respectively.

In our study, LA treatment reduced CFU either partially by 1.1 to 1.7 log10/mL (1% LA)
or nearly fully (5% LA) after 3 min of dip treatment. We observed that IPIU, in contrast to
CFU, remained only marginally affected in both species, upon immediate measurement.
These data suggested that LA affected colony formation, but not cell membrane integrity.
Theoretically, it leaves the possibility of a part of the cells entering a viable but non-
culturable (VBNC) state. Hence, we wondered if, upon storage, sub-lethal injury entailed
long-term effects, measurable as accelerated loss of integrity of the membrane.

Indeed, initial CFU loss increased with storage time after 1% LA treatment, until
complete loss of culturability. Riedel et al. [62] applied 2.5% LA for 1 min to C. jejuni on
chicken skin. Compared to water, this dipping treatment initially only slightly reduced
C. jejuni by 0.7 log10 CFU/ml. However, upon additional storage for 24 h at 5 ◦C, CFU
declined by 2.8 log10/mL significantly. Thus, our study also confirms a certain accelerated
loss of viable cells over time after treatment with 1% LA. This is, as loss of integrity of the
inner cell membrane necessarily implies death. However, in 5%-LA-treated chicken skins,
not completely neutralised by PBS, loss of intact bacteria was lower over time.

LA is a strong acid with a relatively low pKa value [63]. It is reported to acidify the
cytoplasm of neutrophilic bacteria, leading to the denaturation of cell components and the
impairment of their functions [64,65]. Indeed, contact to 3% LA led to an immediate drop
in internal pH and a progressive loss of CFU in C. jejuni [66]. Besides, it was suggested
that LA caused permeabilization of the outer membrane of Gram-negative bacteria [67].
Therefore, LA may not have necessarily harmed the inner membrane integrity at first
instance. Meanwhile, cell activity was probably strongly abolished. The recovery of the
pH gradient after lactic acid exposure and incubation in nutrient broth under microaerobic
conditions at 4 ◦C indicated the integrity of the inner membrane and the principal capacity
to regain growth properties in C. jejuni [66]. The resuscitation of sublethally injured
E. coli after exposure to low LA concentrations (<0.1%) was dependent on the medium
composition and metal ion availability due to an enhanced oxidative stress response [68,69].
Thus, the selective agar needed for the detection of food pathogens might be suboptimal
for the recovery of sublethally injured bacteria. Hence, these aspects call for clarifying the
viable state after lactic acid decontamination monitored by DNA-intercalating agents alone.
Alternative viability markers and, in particular, animal models may help to answer the
question of whether v-qPCR had reached its limit.
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4. Materials and Methods
4.1. Strains and Growth Conditions

E. coli strains DSM 1103 (DSMZ strain collection, Braunschweig, Germany) and an
extended-spectrum ß-lactamase (ESBL) field strain, specifically ESBL 10714, from chicken
meat were grown from a −80 ◦C cryoculture (MAST Group Ltd, Bootle, UK) in brain–heart
infusion (BHI, Becton Dickinson, Franklin Lakes, NJ, USA) at 37 ◦C and 180 rpm. The
preculture was subcultured by an inoculation of an initial OD600 of 0.01 and incubation until
a stationary phase to an OD600 of 4.5 ± 0.5. Bacteria were diluted using phosphate-buffered
saline (PBS, pH = 7.4) to an OD600 of 1, corresponding to about 9 log10 bacteria per ml,
and kept at 5 ± 1 ◦C in a cooling rack (CoolBoxTM, Corning Inc., Corning, NY, USA) until
further use.

Further reference and field strains used for inclusivity and exclusivity evaluations of
the qPCR were grown either on tryptic soy agar (TSA, Merck KGaA, Darmstadt, Germany)
or Columbia agar supplemented with 5% sheep blood (ColbA, Oxoid, Thermo Fisher
Scientific Inc., Waltham, MA, USA). Reference strains, usually obtained as lyophilisates
from strain collections, were passaged once and cryo-conserved. Our laboratories are
accredited and regularly prove the identity of strains.

C. jejuni DSM 4688 (DSMZ strain collection, Braunschweig, Germany) was grown
from a −80 ◦C cryoculture on ColbA at 42 ◦C in a microaerobic incubator (5% O2, 10% CO2,
85% N2; Binder GmbH, Tuttlingen, Germany) for 24 ± 4 h. The cells derived from an
18 ± 2 h subculture and were suspended in peptone water (PW, Merck KGaA, Darmstadt,
Germany) to an OD600 of 0.2, corresponding to about 9 log10 bacteria per mL [13], and kept
at 5 ± 1 ◦C in a cooling rack until further use.

CFU determination was performed according to ISO 16649-3:2015 for E. coli and
ISO 10272-2:2017 for C. jejuni with the following modifications. Tryptone bile x-glucuronide
agar (TBX, Oxoid, Thermo Fisher Scientific Inc., Waltham, MA, USA) was used for spread-
plating E. coli, which were incubated for 24 h at 37 ◦C under aerobic conditions. mCCDA
was used for C. jejuni and incubated for 48–72 h at 42 ◦C in a microaerobic atmosphere
(5% O2, 10% CO2, 85% N2). The MUG activity of E. coli strains was checked on Fluorocult
E. coli O157:H7 Agar (Merck KGaA, Darmstadt, Germany).

4.2. DNA Extraction and qPCR

DNA from the survival experiments was extracted using the GeneJet Genomic DNA
Purification kit (Thermo Fisher Scientific Inc., Waltham, MA, USA) according to the manu-
facturer’s instructions and eluted in 100 µL of elution buffer. DNA for the sensitivity and
specificity analysis of the uidA-based qPCR was extracted from the strains using either
the GeneJet Genomic DNA Purification kit or the RTP Bacteria DNA Mini Kit (Stratec,
Birkenfeld, Germany). The latter DNA was generally diluted 1:1000 in H2O before use.
DNA from the samples of the survival experiments was analyzed undiluted for maximum
sensitivity.

The qPCR analysis was performed on an ABI Prism 7500 (Life Technologies, Thermo
Fisher Scientific Inc., Waltham, MA, USA) in duplicate for each sample. For each reaction,
10 µL of DNA eluate and 15 µL of master mix were used. The three targets, the 16S
rRNA of Thermotolerant Campylobacter, the 16S rRNA of the ISPC (C. sputorum), and
the uidA of E. coli, were each analyzed as duplex qPCRs, including the amplification
control IPC-ntb2 [43]. The former two Campylobacter targets were performed as previously
described [49].

For E. coli, the master mix contained 1× Platinum Taq buffer, 2.5 mM MgCl2, each
dNTP at 0.2 mM, 0.06× ROX, the uidA-F1 and uidA-R2 each at 500 nM, oligos IPC-ntb2-fw
and IPC-ntb2-re at 300 nM, the dark-quenched probes FAM-uidA-probe-BBQ and TAMRA-
IPC-ntb2-probe-BBQ each at 100 nM (TIB Molbiol, Berlin, Germany), and 2 U of Platinum
Taq DNA Polymerase (Invitrogen, Thermo Fisher Scientific Inc., USA). The IPC-ntb2
plasmid was added at 25 copies per reaction to the master mix. An initial denaturation and
activation of the hot start polymerase activity at 95 ◦C for 3 min was followed by 45 cycles
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of denaturation at 95 ◦C for 30 s, annealing/elongation and detection of the fluorescent
signals at 60 ◦C for 1 min, and an additional incubation at 72 ◦C for 30 s. If indicated,
other Taq polymerases, such as a native Taq Polymerase from Thermus aquaticus (Invitrogen,
Thermo Fisher Scientific Inc.), the AmpliTaq Gold® DNA Polymerase (TaqMan Gene
Expression Master Mix, Life Technologies, Thermo Fisher Scientific Inc.), and HotStarTaq
DNA Polymerase (Quanti Tect Multiplex PCR Master Mix, Qiagen, Hilden, Germany) were
used according to the manufacturer’s protocol.

4.3. Preparation of Quantification Standards for qPCR

We prepared DNA quantification standards for the uidA-based qPCR from the E. coli
strains DSM 1103 and E. coli ESBL 10,714 as previously described for C. jejuni [42]. In short,
strains from liquid BHI cultures were pelleted by centrifugation for 5 min at 16,000× g.
The DNA was extracted using the GeneJet Genomic DNA Purification kit according to
the manufacturer’s manual. The DNA was quantified using the Qubit 3.0 Fluorometer
(Life Technologies, Thermo Fisher Scientific Inc., USA). A volume of 40 µL, containing
26.3 ng of genomic DNA or 2,500,000 E. coli chromosomal equivalents per µL, was added
to each DNA stable tube (Biomatrica, San Diego, CA, USA). After a thorough mixing of
the DNA-stabilizing reagent, 2 µL aliquots were dried overnight in 0.5 mL reaction tubes
under the working bench and stored at room temperature. Just before qPCR analysis, an
aliquot of E. coli DNA was reconstituted in 200 µL of H2O (corresponding to 50,000 genome
copies per µL). Using 10 ng/µL salmon sperm DNA (Invitrogen, Thermo Fisher Scientific
Inc., USA), the reconstituted aliquot was decimally diluted to 50 copies per reaction. A final
5-fold dilution yielded 10 copies per reaction. The five different standards were applied in
duplicate during each qPCR run.

For quantifying the genome equivalents of Thermotolerant Campylobacter and the ISPC,
we applied similar genome standards of the strains C. jejuni NCTC 11,168 and C. sputorum
DSM 5363 as described previously [49]. These quantification standards were applied as
50,000, 5000, 500, 50, and 5 copies per reaction in duplicate. The uidA gene is present as a
single copy gene in the E. coli chromosome, while the 16S rRNA targets are present in the
C. jejuni and C. sputorum genome as three identical copies.

4.4. Survival Experiments with Chicken Skin

Campylobacter-free skin was produced from ROSS 308 chickens reared and slaughtered
at the institute’s facilities. The absence of Campylobacter was checked by ISO 10272-1:2017
and by real-time PCR after enrichment in Bolton broth [70]. E. coli background flora was
quantified on TBX agar with a mean of 3.76 ± 0.46 log10 per g of skin. Samples stored
at −80 ◦C were thawed, rinsed twice with MilliQ water, cut to 1 ± 0.1 g portions, and
stored at −20 ◦C until use. For each data point of the experiment (per condition and time
point), a separate skin sample of 1 g was used. The CFU and v-qPCR were analyzed from
the same skin sample rinse. All skins were retrieved from the same batch of slaughtered
chickens. For inoculation, aliquots were placed into 9 × 12.5 cm closable plastic bags
(RUBIN, Rossmann, Hannover, Germany) and kept on ice until inoculation.

For survival evaluation, 0.5 mL of each bacterial inoculation suspension of either
E. coli or C. jejuni (7–7.3 log10 per ml PW) (see Section 4.1) were both applied to each 1 g
skin sample. After manual massaging for one minute, the inoculated skin samples were
incubated at room temperature for 30 min.

Chemical solutions were prepared just before application. The pH was measured
using pH indicator strips (Merck KGaA, Darmstadt, Germany). The final solutions were
as follows: 0.5% peroxyacetic acid (PAA, Wofasteril SC super 1 + 1, Kesla Pharma Wolfen
GmbH, Bitterfeld-Wolfen, Germany; pH 5.0) and 1% and 5% lactic acid (LA, Sigma-Aldrich,
Merck KGaA, Darmstadt, Germany, pH 2 and pH 1.5, respectively). As a water control,
either Milli-Q water (Merck KGaA, Darmstadt, Germany) or tap water was used.

Each skin sample was placed into a separate 20 mL chemical solution for 3 min with
an occasional inversion of the tube. Subsequently, the sample was neutralized for 10 s
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in 20 mL of PBS (single-use). Thereafter, 5 mL of PBS was added to the sample in a new
plastic bag, which was massaged for 1 min. Rinse aliquots were taken for CFU and v-qPCR
analysis.

The effects of cooling and freezing were evaluated at 5 ◦C and at −25 ◦C. The long-
term effect of the LA treatment was evaluated by storing the samples at 5 ◦C for 1 day to
3 weeks.

4.5. Viable/Dead Differentiation by v-qPCR

For the quantification of C. jejuni, the v-qPCR was conducted as previously de-
scribed [42]. In short, two 1 mL rinse aliquots were analyzed. One aliquot contained
no PMA, which served for the quantification of the overall DNA content. The other aliquot
contained PMA for quantifying viable bacteria (IPIU). The ISPC—C. sputorum dead cell
control—allowed the monitoring of the dead cell signal reduction by PMA as well as DNA
losses during DNA extraction for each sample individually. The aliquot measuring the
overall DNA content received 10 µL of the C. sputorum dead cell control (ISPClow) and was
centrifuged for 5 min at 16,000× g and 4 ◦C. After discarding the supernatant, the bacterial
pellet was stored at −20 ◦C until DNA extraction and qPCR analysis (see Section 4.2). The
aliquot measuring viable bacteria (IPIU) first received 10 µL of the concentrated ISPChigh
and was pre-incubated for 10 min at 30 ◦C with gentle shaking at 700 rpm. Subsequently,
50 µM PMA was added, and the sample was incubated for another 15 min at 30 ◦C in the
dark. Crosslinking occurred afterwards for 15 min using the PhAST Blue photo-activation
system at 100% light intensity (GenIUL, Terrassa, Spain). Subsequent to the inactivation of
the PMA-reactive azide groups by light, 10 µL of the ISPClow were added, and the sample
was centrifuged for 5 min at 16,000× g and 4 ◦C. The bacterial pellets were stored at−20 ◦C.
Control samples accompanied the procedure as described previously [42].

Dead E. coli were obtained as follows: A bacterial suspension of 9 log10 cells per mL
(see Section ??) was centrifuged at 16,000× g for 5 min. The cell pellet was resuspended in
1:10 diluted PBS supplemented with 5% H2O2 at a cell density with an OD600 of 0.5 and
incubated at 50 ◦C for 60 min. Killed bacteria were centrifuged at 16,000× g for 5 min,
washed once, and resuspended in PBS to an OD600 of 0.1, corresponding to around 108 dead
bacteria/mL. The absence of growth was checked by adding 10 µL of this suspension to
10 mL of BHI and incubating overnight at 37 ◦C with shaking at 180 rpm. The enrichment
broth was subsequently streaked on TSA.

4.6. Data Handling

The qPCR data were analyzed using a pre-version of the Microsoft Excel data analysis
sheet (Stingl et al. 2021) [42]. The CFU and v-qPCR outcomes were log10-transformed. The
absence of a CFU or qPCR signal was defined as −0.1 log10/mL. Statistical significance
was tested by one-way ANOVA followed by Tukey’s multiple comparison post hoc test.
For each quantification method, intervention groups were analyzed for the statistical
significance of their difference compared to the water-treated control group. Statistics were
performed in Graph Pad Prism v5.01.

5. Conclusions

The current quantification of microbial contaminants in food is limited, as pathogens
are underestimated when transiently inactive. Here, we designed and established an ISPC-
controlled v-qPCR for E. coli and applied a previously validated respective method for
Campylobacter spp. Using two selected strains, we showed that, depending on the inacti-
vation method used, artificially killed cells can also be principally quantified by v-qPCR.
Furthermore, E. coli and C. jejuni behaved similarly upon immediate quantification. The
results of our study are restricted to the tested strains. Therefore, further characterization
of multiple E. coli and C. spp. strains might be considered in future approaches. The
method showed high viability upon lactic acid treatment and awaits further studies on the
infectivity of these bacteria in animal models or by alternative viability markers. However,
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we conclude that for improved food safety, v-qPCR methods should complement microbial
cultivation.
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