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Abstract

Introduction The expression of the oestrogen receptor (ER) is
one of the more important clinical parameters of breast cancer.
However, the relationship between the ER and its ligand,
oestradiol, and the enzymes that synthesise it are not well
understood. The expression of mRNA transcripts of members
of the oestradiol metabolic and signalling pathways including
the ER was studied in detail.

Method mRNA transcripts for aromatase (CYP19), 17-
B-hydroxysteroid dehydrogenase |, 17-B-hydroxysteroid dehydro-
genasell, ERo, ERp, steroid sulfatase (STS), oestradiol
sulfotransferase (EST), cyclin D, (CYCLD17) and ERBB2 were
fluorometrically quantified by competitive RT-PCR using an
internal standard in 155 breast carcinomas. In addition, the
transcripts of CYP19 were analysed for alternative
splicing/usage of exon 1 and an alternative poly A tail.

Results A great variability of expression was observed, ranging
from 0 to 2376 amol/mg RNA. The highest levels were observed
for STS and EST, and the lowest levels (close to zero) were
observed for the 17-B-hydroxysteroid dehydrogenase iso-

enzymes. The levels of mMRNA expression were analysed with
respect to clinical and histopathological parameters as well as
for disease-free survival. High correlation of the mRNA
expression of STS, EST and 17-B-hydroxysteroid dehydrogenase
in the tumours suggested a common regulation, possibly by their
common metabolite (oestradiol). Hierarchical clustering analysis
in the 155 patients resulted in two main clusters, representing
the ERoar-negative and ERa-positive breast cancer cases. The
mRNA expression of the oestradiol metabolising enzymes did not
follow the expression of the ERa in all cases, leading to the
formation of several subclasses of tumours. Patients with no
expression of CYP19 and patients with high levels of expression
of STS had significantly shorter disease-free survival time
(P>0.0005 and P<0.083, respectively). Expression of ERf
mRNA was a better prognostic factor than that of ERc in this
material.

Conclusion Our results indicate the importance of CYP19 and
the enzymes regulating the oestrone sulfate metabolism as
factors of disease-free survival in breast cancer, in addition to
the well-known factors ER and ERBB2.
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Introduction

Large-scale expression analysis of mRNA has proven a
powerful tool for morphological classification of tumours of
the breast [1] as well as for prediction of disease outcome

[2,3]. Expression studies of tens of thousands of tran-
scripts give exciting possibilities to draw molecular por-
traits of tumours [1] within a given range of expression
levels, but are less informative for the absolute amounts of

bp = base pairs; E1S = oestrone sulfate; ER = oestrogen receptor; EST = oestradiol sulfotransferase; HER = human epidermal receptor; HSD = 17-
B-hydroxysteroid dehydrogenase; PCR = polymerase chain reaction; RT = reverse transcriptase; STS = steroid sulfatase; TKAT = tumor category.


http://www.biomedcentral.com/info/about/charter/

single transcripts. At the same time, intratumoural mRNA
expression of enzymes involved in the oestradiol metabo-
lism has been studied in separate reports on different
materials for single genes such as aromatase (CYP79)
[4], steroid sulfatase (STS) [5] and 17-B-hydroxysteroid
dehydrogenase | (HSD7) [6]. It is difficult, however, to see
how these genes are expressed in concert. In the present
article, we attempt to quantify the mRNA expression of a
number of genes in the oestradiol pathway (Fig. 1) simulta-
neously by fluorimetric quantitation of RT-PCR using
gene-specific internal RNA standards.

Aromatase (CYP19, 15g21) is a key enzyme of the
pathway (Fig.1) and its activity determines the local
oestrogen level. Aromatase expression has been sug-
gested to play a role in neoplastic proliferation in both
human breast and endometrial carcinomas [7]. Tissue-
specific regulation of expression has been studied by
several groups, and a switch from an adipose-specific
exon 1 (exon 1b or exon |.4) promoter used in nontumour
breast tissues to the ovary-specific exon 1 (exon 1c or
exon 1.2) has been observed in breast cancer tissue [8,9].
Our previous data show that the alternative switch from
the usual adipose tissue promoter to an apparently
stronger ‘ovary’ promoter correlates significantly to the
CYP19 mRNA expression level (P<0.001) [4]. Toda and

Figure 1
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colleagues described alternative RNA processing using
different poly A signals of aromatase mRNA in human pla-
centa [10]. In the current investigation, we looked for such
poly A variants in breast carcinomas.

HSD1 (17q) catalyses the final conversion of oestrone to
oestradiol (Fig.1). The reverse inactivation of the oestro-
genic 17-B-oestradiol to oestrone is catalysed by
17B-hydroxysteroid-dehydrogenase Il (HSD2) (6g24) in the
human breast as well as in the endometrium [11,12]. Since
oestradiol is the most potent oestrogenic end product and
since this reaction finalises several pathways by which
oestrone can be created, a possible difference in the activity
of the enzyme could be of importance for oestrogen levels.

Sulfatation, catalysed by oestradiol sulfotransferase (EST),
is an important pathway in the biotransformation of steroid
hormones. Oestrone sulfate is the predominant form of
oestrogen found in the circulation in women and could
thus serve as a precursor for active oestrogens in target
tissues by removal of the sulfate group through the action
of endogenous STS [13,14].

Two isoforms of the human oestrogen receptor (ER)
occur, ERa and ERp, each with distinct tissue and cell
patterns of expression (reviewed in [15]). Oestrogen
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binds to the ER, which modulates the transcription of a
series of genes, including genes coding for a number of
growth factors such as insulin-like growth factor 1 and
transforming growth factor alpha [16,17]. These genes
are part of the main gene cluster that defines the group to
the luminal subtype A and subtype B breast carcinomas
[1]. Oestrogen has been shown to cause upregulation of
oncogenes such as c-myc through binding to its receptor,
and through the Src/p21ras/mitogen-activated protein
kinase pathway of c-fos and c-jun, leading to stimulation of
breast cancer cell proliferation [18]. Oestradiol has
recently been shown to modulate breast cancer cell apop-
tosis [19], while androgens have been shown to downreg-
ulate bcl-2 protooncogene expression, providing an
alternative mechanism for their inhibitory effect on breast
cancer cell growth [20]. ERf has been measurable in
normal breast tissue but was very low in breast carcino-
mas, suggesting that ERf3 might control the ERo-mediated
mitogenic activity of oestrogens [21]. Numerous splice
variants of ERf3 have also been described.

Additional proteins under growth factor regulation, includ-
ing the cell cycle protein cyclin D, and ligands for the
human epidermal receptor (HER) family, have been shown
to interact with the oestrogen receptor either by direct
binding or by recruiting co-activators of the SRC-1 family
to the ER in the absence of oestrogen itself [22,23].

In the present article, we report a high-precision mRNA
expression profile of the genes coding for the enzymes
metabolising oestradiol, or coding for its most important
receptors ERo and ERp, as well as modifiers of hormonal
response such as cyclin D, and HER-2, coded by ERBB2
(Fig. 1, thick arrows) from the same tumours. Internal stan-
dards were constructed by insertion of 20-30 bp fragments
into in vitro synthesised transcripts for every gene: aro-
matase (CYP19), HSD1, HSD2, ERe, ERpB, STS and EST.
To examine additional factors of ER regulation, independent
of the presence of oestrogen, we included into our analysis
cyclin D, (CYCLDT1) and ERBB2. These well-characterised
prognostic factors of breast cancer are known to activate
the ER or be activated by the ER [24,25].

Materials and methods

Immunohistochemistry

Frozen sections were prepared from fresh tumour tissue
and immunostaining for ER protein was performed, applying
the avidin—biotin peroxidase complex method. The antibod-
ies were from DAKO (batch M7047; DakoCytomation, Inc.
Carpinteria, CA, USA). All series included positive and neg-
ative controls. Only cells with nuclear staining were scored
as positive. The number of immunopositive cells was semi-
quantitatively estimated: grade +, 5-10% positive cells;
grade ++, 11-50% positive cells; and grade +++, > 50%
positive cells. For each sample at least 100, usually more
than 1000, tumour cells were analysed.

RNA was prepared from fresh frozen tumours from a con-
secutive series of 155 breast cancer patients admitted to
the City Hospital of Oslo with a mean age at diagnosis of
65 years (range 28-87 years). The samples were col-
lected in the period 1989-1993 and the ethical proce-
dures followed the present day standard. A letter to the
patients asking them to donate blood and a tumour speci-
men was sent, and those patients who consented partici-
pated in the study.

Tumour status and lymph node status were characterised
based on the pathology reports according to the 1988
tumour node metastasis classification. Fresh frozen
tumour tissue (20-50 mg) was dissected and powdered
in liquid nitrogen in steel mortars. The powder was then
immediately (while still frozen) transferred to 2ml screw-
capped tubes with 0.5ml Trisol TM (Gibco-BRL, Grand
Island, NY, USA). Total RNA was prepared by standard
procedures using isopropanol precipitation. Fluorometric
quantitation was performed to determine the absolute
mRNA contents using fluorescent dye-labelled primers in
the presence of an internal standard for each gene:
CYP19, HSD1, HSD2, ERa, ERp, STS, EST (SULT1A3),
cyclin D,, ErbB2 and B-actin. To prepare the internal stan-
dard RNA, the modified cDNAs for each gene were con-
structed by inserting 20-30bp DNA fragments between
the two PCR primer sites. The internal standard RNAs
were synthesised in vitro with T7 RNA polymerase using
the modified cDNA as templates. Total RNAs mixed with a
known amount of internal standard RNAs were subjected
to reverse transcription with RAV-2 transcriptase (Takara
Shuzo Co., Kyoto, Japan) and a gene-specific amplifica-
tion at 42°C for 40 min. The resulting cDNAs were ampli-
fied by PCR using fluorescence-labelled (FAM; Perkin
Elmer Co., Foster City, CA, USA), gene-specific, sense
primers. Fluorescent PCR products were electrophoresed
in a 2% agarose gel and were analysed with a Gene
Skanner 362 Fluorescence Fragment Analyzer (ABI;
Perkin Elmer Co.). The amount of aromatase mRNA was
calculated from the peak areas of the fluorescent products
by the internal standard method and was corrected on the
basis of B-actin mRNA.

Alternative exon 1 of aromatase

The utilisation of alternative exons 1 of the aromatase gene
was investigated by RT-PCR using sense primers specific
for exons 1a, 1b, 1c, 1d and a fluorescent dye (FAM)-
labelled antisense primer specific for exon 3, according to
the previously described protocol [26].

Alternative poly A tail of aromatase

One common fluorescent-labelled primer (5-FAM AGC
AAC ATT CAT AGT CTT TG) and the poly A-specific
primers 5-CCA CAC TAA TTG AGC TAA GC-3’ (long
transcript) and an equimolar mix of 5’-(T),; GAACA-3’ and
5’-(T),;GGGAA-3’ (short transcript) were used to simulta-
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Descriptive statistics of mRNA expression of oestrogen metabolising enzymes (amol/mg RNA) in the tumours of a set of 155

breast cancer patients

Transcript Mean Median Minimum Maximum Standard deviation
Aromatase (CYP19) 59.24 12.2 0.00 750.00 13.92
17B-Hydroxysteroid dehydrogenase | 0 0.0 0.00 0.95 0.10
17B-Hydroxysteroid dehydrogenase |l 0 0.0 0.00 0.27 0.00
Oestrogen receptor o 4.31 1.2 0.00 29.50 6.20
Oestrogen receptor 0.16 0.0 0.00 2.33 0.28
Steroid sulfatase 335.09 204.5 0.00 2376.34 391.18
Oestradiol sulfotransferase 124.49 104.6 0.00 436.00 94.34
Cyclin D, 0.46 0.2 0.00 4.73 0.68
ERBB2 0.38 0.0 0.00 7.23 1.10

neously amplify two different RT PCR products with length
352 bp and 422 bp, respectively. cDNA derived from the
variant short transcript [27] inserted at an EcoRl site in a
pUC118 vector was used as the positive control for ampli-
fying the alternative poly A site.

Statistical analysis

Clinical parameters as well as mRNA levels and data on
alternative splicing were collected in a SPSS file (SPSS
Inc., Chicago, IL, USA), where the initial descriptive statis-
tics, cross tab (chi-square test) and Pearson correlation
analysis were performed. Survival analysis was performed
using Kaplan—Meier plots in SPSS with log-rank statistics.
The follow-up interval was 12 years (around 140 months;
the disease-free survival was in months to first recurrence,
the longest being 111 months). Patients were under
observation every 6 months for the first 5 years, then once
a year for the next 2-3 years. After that the information
about the patients’ status was collected in the Cancer
Registry of Norway and updated every year. Hierarchical
clustering and visualisation were performed using
EPCLUST (http://ep.ebi.ac.uk/ep/epclust/). mRNA levels
were calculated relative to the median, and clustering
analysis of levels above/below the median was performed.

Results

mRNA expression

Competitive RT-PCR was used to quantify the amounts of
mRNA of nine different transcripts as well as B-actin in
breast carcinomas. In the series of 155 tumour samples
two independent quantitations from the same mRNA
preparations were performed for CYP19 (aromatase),
giving a correlation of r=0.811 (P<0.0001). Quantitation
of mMRNA of the ERa by competitive RT-PCR was in con-
cordance with the immunohistochemistry data for total
ERoa: protein (P<0.0001). The absolute amount of each of

the studied transcripts (amol/mg RNA) gave a high corre-
lation to that adjusted by B-actin, suggesting a uniformity
of the samples and the mRNA preparation procedures. A
great variability of expression among the patients was
observed, ranging from 0 to 2376 amol/mg RNA, with the
highest levels being observed for STS and EST, and the
lowest levels (close to zero) observed for both HSD isoen-
zymes (Table 1).

Correlations of expression levels of the various transcripts
were studied using Pearson correlation (Table 2). A high
correlation was observed between the expression of EST
and STS (r=0.252, P<002). While the levels of EST cor-
related with those of ERa (r=0,550, P<0.0001), the
levels of STS correlated with ERS (r=274, P<0.001).
Expression of HSD7 mRNA levels also correlated with
both EST and STS mRNA expression (P<0.003 and
P<0.0001, respectively). Furthermore, mRNA levels were
calculated as relative to the median and clustering analysis
of levels above/below the median was performed (Fig. 2).
Two distinct clusters of the ER-positive and ER-negative
samples were observed. The mRNA expression of the
oestradiol metabolising enzymes, however, did not follow
the expression of the ER in all cases, leading to the forma-
tion of several subclasses of tumours. Cyclin D, fell into
the same cluster together with EST and ER«
(P<0.0001).

mRNA expression and clinical and histopathological
parameters

Expression of mRNA was then studied in relation to differ-
ent clinical and histopathological parameters: tumour size
(tumor category [TKATI]), lymph node status, distant
metastases, stage of disease, site, and histological type
(Table 3). Data were analysed in two ways using the
SPSS data editor: by comparing the levels of the different
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Table 2

Pearson correlation of the expression levels of mRNA coding for oestradiol metabolising enzymes

CYP19 STS HSD1 HSD2 EST ERo. ERB ERBB2 Cyclin D,
CYP19 1 0.081 -0.051 -0.054 0.021 -0.057 0.065 -0.071 -0.047
STS 1 0.333** 0.027 0.252** 0.045 0.274** 0.215** 0.195*
HSD1 1 -0.051 0.242** 0.107 0.047 0.003 0.164*
HSD2 1 -0.065 -0.144 0.050 -0.022 0.000
EST 1 0.550** -0.082 0.089 0.422**
ERa 1 -0.089 -0.104 0.502**
ERB 1 -0.031 -0.029
ERBB2 1 0.010
Cyclin D, 1

Data presented as significance (two-tailed). CYP19, aromatase; STS, steroid sulfatase; HSD1, 17f3-hydroxysteroid dehydrogenase I; HSD2, 17f3-
hydroxysteroid dehydrogenase Il; EST, oestradiol sulfotransferase; ERc, oestrogen receptor o; ERp, oestrogen receptor B. *Correlation significant
at the 0.05 level (two-tailed). **Correlation significant at the 0.01 level (two-tailed).

Table 3

Mean values of mRNA expression of oestrogen metabolising enzymes (amol/mg RNA) in relation to the clinical and
histopathological parameters of a set of 155 breast cancer patients

Clinical parameter n CYP19 STS HSD1 HSD2 EST ERa ERpB
Age
<5Oyears 48 37.60 316.3 0.0027 0.0250 140.49 2.20 0.22
>50years 107 84.30 347.3 0.0198 0.0080 100.28 4.96 0.14
Stage
| 81 77.50 265.7 0.0136 0.0970 93.81 4.60 0.20
Il 57 45.90 304.5 0.2580 0.1170 135.22 4.70 0.16
1l 17 13.60 382.1* 0.0970 - 122.98 2.04 0.13

Tumour category

1 61 73.30 285.3 0.0140 0.0120 98.30 4.20 1.19
2 55 67.80 223.7 0.0273 0.1090 113.30 4.70 0.16
3 29 14.30 409.1 0.0090 - 139.20 3.60 0.15
4 10 6.3*** 446.3** 0.0140 - 194.8*** 2.70 0.04

Lymph node status

1 90 30.80 303.7 0.0260 0.0980 128.60 5.40 0.18

2 65 47.00 409.2 0.0150 0.1260 119.72 2.80 0.17
Histology

Ductal 87 63.40 384.1 0.0210 0.0110 119.32 4.64 0.17

Lobular 16 45.90 262.5 0.0160 0.0094 121.64 4.34 0.16

CYP19, aromatase; STS, steroid sulfatase; HSD1, 17f3-hydroxysteroid dehydrogenase |; HSD2, 17f-hydroxysteroid dehydrogenase II; EST,
oestradiol sulfotransferase; ERa, oestrogen receptor o; ER, oestrogen receptor . *P < 0.01 (stage lll versus stage I). **P < 0.01 (tumour
category 3 and 4 versus tumour category 1 and 2). ***P < 0.05 (tumour category 3 and 4 versus tumour category 1 and 2).

transcripts between the different clinical categories using ~ comparing their distribution among the clinical categories
box plots, and by categorising these levels into two cate-  using cross tabs. mRNA levels of STS and EST were sig-
R0 gories (below and above the median) or into quartiles and  nificantly higher in patients with TKAT 3 and TKAT 4 than
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in those patients with TKAT 1 and TKAT 2 (P<0.01)
(Table 3) and with higher stage of the disease (P<0.01).

mRNA expression of CYP19 aromatase

A considerable difference in the expression of CYP719 was
observed. Twenty-five per cent of the tumours had no
expression of aromatase at all, and 23% had overexpres-
sion of the transcript (50-800 CYP19 mRNA amol/mg
RNA). A surprisingly high fraction of postmenopausal
women (25%, in contrast to only 5% among pre-
menopausal women in our study) did not express CYP19
in their tumours. These results are of importance for the
strategies for treatment with aromatase inhibitors in post-
menopausal patients.

A switch from the usual adipose tissue promoter to an
apparently stronger ‘ovary’ promoter has been previously
observed in these samples and was associated with the
levels of mRNA expression (P<0.0001) [4]. We also
detected an alternative poly A tail in 15 of the tumour
samples. The type of poly A tail was not associated to
either alternative use of promoter, or mRNA levels.

mRNA expression and disease-free survival

The levels of MRNA expression were also analysed as
factors for disease-free survival. Patients with expression
of tumour aromatase (CYP79) had a better prognosis than
patients with no expression of this transcript (P<0.0005)
(Fig.8a). Furthermore, patients whose aromatase gene
was using the normal adipose tissue promoter had longer
survival than those patients with a switch of promoters.
Lack of expression of aromatase was by far the strongest
prognostic factor in this material of the predominantly early
stages of breast cancer. High levels of expression of STS
were also strongly correlated with short disease-free sur-
vival (P<0.03) (Fig.3b). Expression of ER3 mRNA was a
better prognostic factor than that of ERa in these tumours
(Fig.3c,d). ErbB2, whose amplification and overexpres-
sion is a well-documented modifier of survival, was also a
strong prognostic factor in our material (P<0.01) (Fig. 4).

mRNA expression and menopausal status

Given that the biosynthesis of oestradiol and its metabo-
lism are very different in premenopausal and post-
menopausal women, we analysed the differences in the
expression of the enzymes studied according to
menopausal status (see Additional files). While all the
main findings presented in Table 2 were also found in the
postmenopausal group, which was also larger in size,
some of the correlations were lost in the premenopausal
group. Most notably lost was the correlation of mRNA
expression of cyclin D, with several of the oestradiol syn-
thesising enzymes and EST with STS. Multiple correla-
tions were observed in the postmenopausal group,
suggesting a tighter coregulation of the oestrogen synthe-
sis enzymes at the mRNA level in the tumours of post-
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Figure 3
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menopausal breast cancer patients than in those of pre-
menopausal breast cancer patients. Additional experi-
ments will be conducted to address this interesting topic.

Discussion

Endogenous oestradiol is synthesised in the ovarian gran-
ulosa cells of premenopausal breast cancer patients or in
the stromal adipose cells of the breast of postmenopausal
breast cancer patients, and is synthesised in minor quanti-
ties in peripheral tissue. These cells, as well as breast
cancer tissue, express all the necessary enzymes for the
synthesis of oestradiol (CYP17, CYP11a, CYP19 and
HSD), as well as enzymes of its further metabolism such
as EST and oestrogen sulfotransferase. We have con-
ducted a study to absolutely quantify the mRNA levels of
the transcripts of several important proteins in the synthe-

sis of oestradiol: CYP19 (aromatase), HSD1, HSD2,
ERo, ERB, STS and EST. Two other breast cancer-related
regulators, cyclin D, (CYCLD1) and ERBB2, have also
been included in the study.

The hierarchical clustering analysis revealed two main
clusters (the ER-positive and ER-negative tumours of the
breast), in concordance with results from large-scale
microarray analysis. The mRNA expression of oestrogen
metabolising genes did not directly follow the expression
of the ER: we observed a cluster of ER-positive tumours
with low (below median) expression of these enzymes, as
well as ER-negative tumours with high expression of
oestradiol synthesising enzymes. This information may
help to further nuance the prediction of response to hor-
monal treatment in addition to ER status.



Figure 4

Survival Functions

[ ERBB2CAT
a 2
©
g 8 + 2-censored
5
) o 1
£
o 7 N N N "'H':"‘ + 1-censored
-20 0 20 40 60 80 100

DISFREE

Disease-free survival of breast cancer patients as a function of mMRNA
expression of ERBB2 below (curve 1) and above (curve 2) the median.
P=0.011.

Our results of increased levels of EST mRNA were in con-
cordance with metabolic data in vivo showing high con-
centrations of the product of sulfotransferase activity
(oestrone sulfate [E1S]) in tumours of the breast [13,28].
Similar data from fibroadenomas and breast cysts [29]
suggest that oestrone and oestradiol can be converted to
E1S within the breast cysts in vivo at remarkably high
speed. Furthermore, the formation of E1S (EST activity)
was shown to be upregulated by a number of growth
factors, such as the epidermal growth factor, insulin-like
growth factor type 1, and acidic and basic fibroblast
growth factors in the ER-positive MCF7 cells but not in the
ER-negative MDA-MB-231 cells. The cytokines tumour
necrosis factor alpha and interleukin-1b also increase the
sulfate formation in ER-positive cell lines but not in ER-neg-
ative cell lines [30]. We can indirectly confirm this ER
dependence in humans in vivo because the expression of
mRNA of EST in the breast cancer tissue correlated with
the ER expression in our sample material. The amounts of
STS and ERoc mRNA seemed to be coregulated in the
present study and in another independent cohort of breast
cancer patients analysed in our laboratory (data not
shown). They also correlated with mRNA levels of HSD1.
This observation possibly reflects that all three enzymes
have a common substrate (oestradiol) and could be under
common regulation depending on the oestradiol levels.

The very low mRNA levels of HSD1 and HSD2 strongly
suggest a post-translational mechanism of protein stabilisa-
tion because high protein expression and metabolic activity
of HSD1 have been previously reported in breast cancer
tissue [31]. It has been shown that the HSD1 activity in the

Available online http://breast-cancer-research.com/content/6/2/R46

endometrium is elevated during the secretory phase, as
compared with the level during the proliferative phase, and
that the elevation is in response to progesterone via the
progesterone receptors. GATA-3 responsive sequences
have been identified in the 5 flanking regulatory area of
HSD1 [32]. Comparing patterns of gene expression in
cells with or without expression of the ER by the human
cDNA array revealed clustering of a transcription factor
GATA-3 together with ER. This was hypothesised to regu-
late, in association with the ER, genes critical to the
hormone-responsive breast cancer phenotype [33]. Spe-
cific HSD oxidation—reduction activity has been discussed
to play a role in the transition from hormone dependence to
hormone independence of breast cancer [34].

Expression of STS has previously been shown to be a
strong prognostic factor for disease-free survival in breast
cancer [5,13] and in ovarian cell adenocarcinoma [35].
The steroid sulfatase is an important target for the devel-
opment of new drugs for the treatment of endocrine-
dependent breast cancers. One such compound,
2 methoxyoestrone-3-O-sulfamate, was shown to inhibit
the growth of MCF-7 cells by causing arrest in the G(2)/M
phase and apoptosis [36]. Previous analysis has shown a
strong inverse relationship between the length of the
disease-free interval and the plasma levels of E1S and the
ratios of E2/E1 and E1S/E1 in postmenopausal patients
with recurrent disease [37].

The previously reported high correlation of the expression
of CYP19 (aromatase) mRNA and the switch from the
adipose tissue-specific promoter to the ovary-specific pro-
moter was confirmed in this new independent measure-
ment [4]. Furthermore, in the present study the alternative
usage of exon 1 was also associated with shorter disease-
free survival. However, the patients with worse prognosis
had no expression of CYP19 mRNA at all. This is a some-
what paradoxical result since the present data and our
previous data [4] suggest that, in the course of the
disease, a switch of promoter occurs and results in higher
expression levels. The process, however, may occur in a
given time frame of the disease on the way to hormone-
independent breast cancer.

The poor prognosis of patients with null expression of aro-
matase may also reflect prior treatment exposures of the
patients. This is a consecutive series of patients, predomi-
nantly stage | and stage ll, who had received a standard
treatment of tamoxifen. Those patients who responded
poorly were offered treatment with an aromatase inhibitor.
We have no exhaustive data on treatment response in
order to verify whether patients with null aromatase
expression in their tumour respond poorly to such stan-
dard therapeutic procedure. Further studies designed to
particularly address treatment response may be neces-
sary. A recent study showed that failure of the antitumour
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activity of tamoxifen in patients with breast cancer is actu-
ally determined by both the levels of and the interaction
between the ER coactivator amplified in breast cancer-1
(AIB1) and the epidermal growth factor-related protein
human epidermal receptor (HER, coded by ERBB2) [38].
Members of the HER family are attractive therapeutic
targets because they are overexpressed and/or deregu-
lated in many solid tumours. Activation of HER1/epidermal
growth factor receptor mediated through ligand binding
triggers a network of signalling processes that promote
tumour cell proliferation, migration, adhesion and angio-
genesis, and that decrease apoptosis. Various
approaches are being investigated to target members of
the HER family, particularly HER1/epidermal growth factor
receptor and HER2 (ERRB2).

Conclusion

Expression studies of tens of thousands of transcripts give
exciting possibilities to draw molecular portraits of tumours
within a given range of expression levels, but they are less
informative for the absolute amounts of single transcripts.
Our results complement these data by providing absolute
quantitative analysis of physiologically important genes with
very low expression levels, such as ERf} and the hydroxys-
teroid dehydrogenases, which remain ‘invisible’ by the
high-density hybridisation arrays. These results also point
to the importance of CYP19 (aromatase) and the enzymes
regulating the oestrone sulfate metabolism as factors of
disease-free survival in breast cancer, in addition to well-
known factors such as the ER and ERBB2.

Additional files

The following Additional files are available online:

Additional file 1

A word document that contains two tables for
correlation between mRNA expression of oestradiol
metabolising enzymes in A. premenopausal breast
cancer patients and B. postmenopausal breast cancer
patients. A tighter co-regulation of the oestrogen
synthesis enzymes at mRNA level was observed in the
tumors of post-menopausal than pre-menopausal breast
cancer patients. These results are however preliminary
and additional experiments will be conducted to address
this interesting topic.

See http://breast-cancer-research.com/content/
supplementary/bcr746-S1.doc

Additional file 2

Clustering analysis of levels of mMRNA in premenopausal
women. Hierarchical clustering and visualization was
performed using EPCLUST (http://ep.ebi.ac.uk/EP/
EPCLUST/). mRNA levels were calculated as relative to

median and clustering analysis of levels above/below
median was performed.

See http://breast-cancer-research.com/content/
supplementary/bcr746-S2.bmp

Additional file 3

Clustering analysis of levels of mMRNA in
postmenopausal women. Hierarchical clustering and
visualization was performed using EPCLUST
(http://ep.ebi.ac.uk/EP/EPCLUST/). mRNA levels were
calculated as relative to median and clustering analysis
of levels above/below median was performed.

See http://breast-cancer-research.com/content/
supplementary/bcr746-S3.omp

Competing interests
None declared.

Acknowledgements

The authors would like to thank Grethe Grenaker for technical skills in
conducting the poly A tail analysis and Dr Sharon Savage for improving
the readability of the text. This work was supported by research grant
D99061/004 by the Norwegian Cancer Society, and grant
122772/310 of the Research Council of Norway. Special thanks to the
Sasakawa Fund for collaboration between Japan and Scandinavia.

References

1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees
CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Perga-
menschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale
AL, Brown PO, Botstein D: Molecular portraits of human breast
tumours. Nature 2000, 406:747-752.

2. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H,
Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H,
Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-
Dale AL: Gene expression patterns of breast carcinomas dis-
tinguish tumor subclasses with clinical implications. Proc Nat/
Acad Sci USA 2001, 98:10869-10874.

3. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M,
Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber
GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend
SH: Gene expression profiling predicts clinical outcome of
breast cancer. Nature 2002, 415:530-536.

4. Kristensen VN, Harada N, Yoshimura N, Haraldsen E, Lonning PE,
Erikstein B, Karesen R, Kristensen T, Borresen-Dale AL: Genetic
variants of CYP19 (aromatase) and breast cancer risk. Onco-
gene 2000, 19:1329-1333.

5.  Utsumi T, Yoshimura N, Takeuchi S, Ando J, Maruta M, Maeda K,
Harada N: Steroid sulfatase expression is an independent
predictor of recurrence in human breast cancer. Cancer Res
1999, 59:377-381.

6. Suzuki T, Moriya T, Ariga N, Kaneko C, Kanazawa M, Sasano H:
17Beta-hydroxysteroid dehydrogenase type 1 and type 2 in
human breast carcinoma: a correlation to clinicopathological
parameters. Br J Cancer 2000, 82:518-523.

7. Berstein LM, Imyanitov EN, Suspitsin EN, Grigoriev MY, Sokolov
EP, Togo A, Hanson KP, Poroshina TE, Vasiljev DA, Kovalevskij AY,
Gamajunova VB: CYP19 gene polymorphism in endometrial
cancer patients. J Cancer Res Clin Oncol 2001, 127:135-138.

8. Simpson ER, Michael MD, Agarwal VR, Hinshelwood MM, Bulun
SE, Zhao Y: Cytochromes P450 11: expression of the CYP19
(aromatase) gene: an unusual case of alternative promoter
usage. FASEB J 1997, 11:29-36.

9. Harada N, Utsumi T, Takagi Y: Tissue-specific expression of the
human aromatase cytochrome P-450 gene by alternative use
of multiple exons 1 and promoters, and switching of tissue-
specific exons 1 in carcinogenesis. Proc Nat/ Acad Sci USA
1993,90:11312-11316.


http://breast-cancer-research.com/content/supplementary/bcr746-S1.doc
http://breast-cancer-research.com/content/supplementary/bcr746-S2.bmp
http://breast-cancer-research.com/content/supplementary/bcr746-S3.bmp
http://ep.ebi.ac.uk/EP/EPCLUST/
http://ep.ebi.ac.uk/EP/EPCLUST/
http://ep.ebi.ac.uk/EP/EPCLUST/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Toda K, Terashima M, Mitsuuchi Y, Yamasaki Y, Yokoyama Y,
Nojima S, Ushiro H, Maeda T, Yamamoto Y, Sagara Y, Shizuta Y:
Alternative usage of different poly(A) addition signals for two
major species of mMRNA encoding human aromatase P-450.
FEBS Lett 1989, 247:371-376.

Yang S, Fang Z, Gurates B, Tamura M, Miller J, Ferrer K, Bulun
SE: Stromal PRs mediate induction of 17beta-hydroxysteroid
dehydrogenase type 2 expression in human endometrial
epithelium: a paracrine mechanism for inactivation of E2. Mo/
Endocrinol 2001, 152:2093-2105.

Sasano H, Suzuki T, Takeyama J, Utsunomiya H, Ito K, Ariga N,
Moriya T: 17-beta-hydroxysteroid dehydrogenase in human
breast and endometrial carcinoma. A new development in
intracrinology. Oncology 2000, Suppl 1:5-12.

Suzuki T, Nakata T, Miki Y, Kaneko C, Moriya T, Ishida T, Akinaga
S, Hirakawa H, Kimura M, Sasano H: Estrogen sulfotransferase
and steroid sulfatase in human breast carcinoma. Cancer Res
2003, 63:2762-2770.

Utsumi T, Yoshimura N, Maruta M, Takeuchi S, Ando J, Maeda K,
Harada N: Significance of steroid sulfatase expression in
human breast cancer. Breast Cancer 1999, 6:298-300.

Ray S, Rastogi R, Kumar A: Current status of estrogen recep-
tors. Prog Drug Res 2002, 59:201-232.

Klotz DM, Hewitt SC, Ciana P, Raviscioni M, Lindzey JK, Foley J,
Maggi A, DiAugustine RP, Korach KS: Requirement of estrogen
receptor-alpha in insulin-like growth factor-1 (IGF-1)-induced
uterine responses and in vivo evidence for IGF-1/estrogen
receptor cross-talk. J Bio/l Chem 2002, 277:8531-8537.
Macaluso M, Cinti C, Russo G, Russo A, Giordano A:
pRb2/p130-E2F4/5-HDAC1-SUV39H1-p300 and pRb2/p130-
E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes
mediate the transcription of estrogen receptor-alpha in breast
cancer. Oncogene 2003, 22:3511-3517.

Redeuilh G, Attia A, Mester J, Sabbah M: Transcriptional activa-
tion by the oestrogen receptor alpha is modulated through
inhibition of cyclin-dependent kinases. Oncogene 2002, 21:
5773-5782.

Song RX, Mor G, Naftolin F, McPherson RA, Song J, Zhang Z,
Yue W, Wang J, Santen RJ: Effect of long-term estrogen depri-
vation on apoptotic responses of breast cancer cells to
17beta-estradiol. J Nat/ Cancer Inst 2001, 93:1714-1723.
Coffey RN, Watson RW, O'Neill AJ, Mc Eleny K, Fitzpatrick JM:
Androgen-mediated resistance to apoptosis. Prostate 2002,
53:300-309.

McDonnell DP, Norris JD: Connections and regulation of the
human estrogen receptor. Science 2002, 296:1642-1644.
Migliaccio A, Castoria G, Di Domenico M, de Falco A, Bilancio A,
Lombardi M, Bottero D, Varricchio L, Nanayakkara M, Rotondi A,
Auricchio F: Sex steroid hormones act as growth factors.
J Steroid Biochem Mol Biol 2002, 83:31-35.

Dowsett M: Overexpression of HER-2 as a resistance mecha-
nism to hormonal therapy for breast cancer. Endocr Relat
Cancer 2001, 3:191-195.

De Bortoli M, Dati C, Antoniotti S, Maggiora P, Sapei ML. Hor-
monal regulation of c-erbB-2 oncogene expression in breast
cancer cells. J Steroid Biochem Mol Biol 1992, 1:21-25.
Nicholson RI, Gee JMW: Oestrogen and growth factor cross
talk and endocrine insensitivity and acquired resistance in
breast cancer. Br J Cancer 2000 82:5011-5013.

Harada N, Utsumi T, Takagi Y: Molecular and epidemiological
analyses of abnormal expression of aromatase in breast
cancer. Pharmacogenetics 1995, 5:59-64.

Harada N: A unique aromatase (P-450AROM) mRNA formed by
alternative use of tissue-specific exons 1 in human skin fibrob-
lasts. Biochem Biophys Res Commun 1992, 189:1001-1007.
Pasqualini JR, Cortes-Prieto J, Chetrite G, Talbi M, Ruiz A:
Concentrations of estrone, estradiol and their sulfates, and
evaluation of sulfatase and aromatase activities in patients
with breast fibroadenoma. /nt J Cancer 1997, 70:639-643.
Bhatnagar AS, Brodie AM, Long BJ, Evans DB, Miller WR: Intra-
cellular aromatase and its relevance to the pharmacological
efficacy of aromatase inhibitors. J Steroid Biochem Mol Biol
2001, 76:199-202.

Purohit A, Hejaz HA, Walden |, MacCarthy-Morrogh |, Packham G,
Potter BV, Reed MJ: The effect of 2-methoxyoestrone-3-O-sul-
phamate on the growth of breast cancer cells and induced
mammary tumours. /nt J Cancer 2000, 85:584-589.

Available online http://breast-cancer-research.com/content/6/2/R46

31.

32.

33.

34.

35.

36.

37.

38.

Gunnarsson C, Olsson BM, Stal O, Southeast Sweden Breast
Cancer Group: Abnormal expression of 17beta-hydroxysteroid
dehydrogenases in breast cancer predicts late recurrence.
Cancer Res 2001, 61:8448-8451.

Luu-The V, Labrie C, Simard J, Lachance Y, Zhao HF, Couet J,
Leblanc G, Labrie F: Structure of two in tandem human 17
beta-hydroxysteroid dehydrogenase genes. Mol Endocrinol
1990, 2:268-275.

Bertucci F, Houlgatte R, Benziane A, Granjeaud S, Adelaide J,
Tagett R, Loriod B, Jacquemier J, Viens P, Jordan B, Birnbaum D,
Nguyen C: Gene expression profiling of primary breast carci-
nomas using arrays of candidate genes. Hum Mol Genet 2000,
9:2981-2991.

Nguyen BL, Chetrite G, Pasqualini JR: Transformation of
estrone and estradiol in hormone-dependent and hormone-
independent human breast cancer cells. Effects of the anti-
estrogen ICl 164,384, danazol, and promegestone (R-5020).
Breast Cancer Res Treat 1995, 34:139-146.

Okuda T, Saito H, Sekizawa A, Shimizu Y, Akamatsu T, Kushima
M, Yanaihara T, Okai T, Farina A: Steroid sulfatase expression
in ovarian clear cell adenocarcinoma: immunohistochemical
study. Gynecol Oncol 2001, 82:427-434.

Raobaikady B, Purohit A, Chander SK, Woo LW, Leese MP,
Potter BV, Reed MJ: Inhibition of MCF-7 breast cancer cell pro-
liferation and in vivo steroid sulfatase activity by 2-methoxy-
oestradiol-bis-sulphamate. J Steroid Biochem Mol Biol 2003,
84:351-358.

Lonning PE, Helle SI, Johannessen DC, Ekse D, Adlercreutz H:
Influence of plasma estrogen levels on the length of the
disease-free interval in postmenopausal women with breast
cancer. Breast Cancer Res Treat 1996, 39:335-341.

Schiff R, Massarweh S, Shou J, Osborne CK: How growth factor
signaling and estrogen receptor coregulators modulate
response. Clin Cancer Res 2003, 9:447-454.

Correspondence

Vessela Nedelcheva Kristensen, Institute for Cancer Research, The Nor-
wegian Radium Hospital, Montebello 0310, Oslo, Norway. Tel: +47 22
93 44 17, fax: +47 22 93 44 40; e-mail: nedelcheva.vessela@dnr.uio.no

R55



