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Background: In pancreatic cancer, methods to predict early recurrence (ER) and identify patients at increased risk of
relapse are urgently required.
Purpose: To develop a radiomic nomogram based on MR radiomics to stratify patients preoperatively and potentially
improve clinical practice.
Study Type: Retrospective.
Population: We enrolled 303 patients from two medical centers. Patients with a disease-free survival ≤12 months were
assigned as the ER group (n = 130). Patients from the first medical center were divided into a training cohort (n = 123) and
an internal validation cohort (n = 54). Patients from the second medical center were used as the external independent vali-
dation cohort (n = 126).
Field Strength/Sequence: 3.0T axial T1-weighted (T1-w), T2-weighted (T2-w), contrast-enhanced T1-weighted (CET1-w).
Assessment: ER was confirmed via imaging studies as MRI or CT. Risk factors, including clinical stage, CA19-9, and
radiomic-related features of ER were assessed. In addition, to determine the intra- and interobserver reproducibility of
radiomic features extraction, the intra- and interclass correlation coefficients (ICC) were calculated.
Statistical Tests: The area under the receiver-operator characteristic (ROC) curve (AUC) was used to evaluate the predic-
tive accuracy of the radiomic signature in both the training and test groups. The results of decision curve analysis (DCA)
indicated that the radiomic nomogram achieved the most net benefit.
Results: The AUC values of ER evaluation for the radiomics signature were 0.80 (training cohort), 0.81 (internal validation
cohort), and 0.78 (external validation cohort). Multivariate logistic analysis identified the radiomic signature, CA19-9 level,
and clinical stage as independent parameters of ER. A radiomic nomogram was then developed incorporating the CA19-9
level and clinical stage. The AUC values for ER risk evaluation using the radiomic nomogram were 0.87 (training cohort),
0.88 (internal validation cohort), and 0.85 (external validation cohort).
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Data Conclusion: The radiomic nomogram can effectively evaluate ER risks in patients with resectable pancreatic cancer
preoperatively, which could potentially improve treatment strategies and facilitate personalized therapy in pancreatic
cancer.
Level of Evidence: 4
Technical Efficacy: Stage 4

J. MAGN. RESON. IMAGING 2020;52:231–245.

PANCREATIC CANCER (PC) is one of the most lethal
malignancies.1 For patients with resectable disease, initial

surgery combined with adjuvant chemotherapy are the first-
line treatments. However, the prognosis of these patients is
still poor and early recurrence (ER) is observed in 35–50%
patients within 1 year after surgery.1–3 Hence, evaluation of
ER risk and identifying those patients with increased risk of
relapse are necessary and urgent.

Imaging studies provide valuable information to predict
ER after surgery in a wide range of malignancies. Conventional
criteria, such as the tumor-node-metastasis (TNM) staging sys-
tem, stratify patients using three major parameters on images:
primary tumor, regional lymph nodes, and distant metastases.4

Although these imaging criteria are fundamental to establish a
prognostic risk evaluation, their application is limited. Moreover,
there was a significant difference in survival among patients in
identical stages.4,5 One explanation is that conventional criteria
mainly focus on the anatomical radiological features. This might
oversimplify the complexity of a tumor’s biological behavior,
which is highly correlated with ER in patients. Therefore, the
current stratification system needs to be improved and the iden-
tification of patients with increased risk of recurrence remains
challenging for surgeons and oncologists.

In 2012, Lambin et al first presented the concept of
“Radiomics.”6 The conventional criteria mainly focus on the ana-
tomical radiological features. This might oversimplify the com-
plexity of tumor improvement and behavior. Radiomics focuses
on improvements of image analysis, using an automated high-
throughput extraction of large amounts of quantitative features of
medical images. It provides more and better information than
that of a conventional approach.6 Hundreds of quantitative fea-
tures could be extracted from original imaging using a high-
throughput approach and could be further analyzed. Recently,
research has revealed the links between radiomics and underlying
tumor biology in a wide range of malignant diseases, which are
strongly correlated with tumor phenotype, aggressiveness,
response to treatment, and prognosis.7–10 Previous studies have
shown that radiomics has the potential to predict ER in such
malignancies as chondrosarcoma, hepatocellular carcinoma, and
cholangiocarcinoma, which indicated that radiomics might pro-
vide surgeons with useful information in the anticipated era of
precision medicine.11–13 Kaissis et al recently developed several
machine-learning models for the prediction of survival in PC
based on radiomics features. The results showed that radiomics
features were significantly associated with molecular subtypes of
PC.14,15 While these results are promising and encouraging,

radiomic research in recurrence risk of PC is limited, which may
due to limited data in current studies.

In this study we aimed to develop a radiomic feature-
based nomogram to stratify resectable PC patients with high
ER risks preoperatively. This model could provide surgeons
with valuable information and potentially serve as reliable ref-
erence for clinical practice.

Materials and Methods
Patients
Data were obtained from medical centers A and B. This study was
approved by Institutional Review Board of two centers. Between
April 2012 to July 2018, patients who were diagnosed with PC and
further underwent upfront surgery in the two institutions were
included in this study. The exclusion criteria were: 1) Patients who
did not receive a magnetic resonance imaging (MRI) scan within
two weeks before surgery. 2) Patients lacking complete clinical data.
3) Patients lacking complete follow-up data. 4) Patients who were
restaged as borderline resectable pancreatic cancer (BRPC) and
locally advanced pancreatic cancer (LAPC) postoperatively. 5)
Patients who died from surgical complications within 30 days after
surgery. The inclusion criteria were met by 303 patients who were
then enrolled in this study. A flowchart of this study is shown in
Fig. 1. Patients were then divided into an ER group (disease-free sur-
vival ≤12 months) and a nonearly recurrence (NER) group (disease-
free survival >12 months) according to previous studies, which
indicated an optimal cutoff of 12 months for identifying the ER
group and late recurrence group based on overall survival and sur-
vival after recurrence.1,2 The preoperation MRI scans of the included
patients were used to extract the radiomic features. The training
cohort and internal validation cohort comprised patients from medi-
cal center A treated between April 2012 to July 2018. Patients from
medical center B treated between April 2012 to July 2018 were
included as the external validation cohort.

Clinical Data and Follow-up
The included patients were evaluated by a multidisciplinary team
that comprised oncologists, radiologists, and surgeons. The clinical
parameters including gender, age, symptoms, clinical stage, location
of the tumor, laboratory examination results, surgical margin, and
tumor differentiation were extracted from the electronic medical
records system. The tumors’ clinical stage was assessed using the
AJCC guidelines (8th ed.).4 Chest high-resolution computed tomog-
raphy (HRCT), contrast-enhanced MRI, and abdominal contrast-
enhanced computed tomography (CE-CT) were performed every
2 months during the first year after surgery. Serum tumor bio-
markers were tested every month after surgery. Once CT or MRI
showed a sign of new local or distant lesion, the recurrence was
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confirmed. The status and the time was recorded as the date of first
CT or MRI that showed disease progression.

MR Image Acquisition
All imaging data include four sets of images from three different
scans: Preoperative T1-w, T2-w, CET1-w arterial phase, and CET1-
w portal venous phase MR images. The T1-w and CET1-w images
were acquired under breath-hold and T2 image were acquired with a
respiratory trigger.

In center A, preoperative MRI was performed with a 3.0T
MR scanner (Discovery MR 750; GE Healthcare, Waukesha, WI).
The parameters were as follows: T1-w: repetition time (TR) = 4.1
msec, echo time (TE) = 2.4 msec, slice thickness = 3 mm, matrix =
260 × 224, and field of view (FOV) = 36*36 cm; T2-w: TR =
12,000 msec, TE = 72 msec, slice thickness = 3 mm, matrix =
320*320, and FOV = 36*36 cm; Contrast-enhanced imaging was
performed following the intravenous injection of 0.1 mmol/kg con-
trast medium (Gadodiamide, GE Healthcare), rate = 2 mL/s. The
arterial phase and portal venous phase (20 and 60 sec postinjection,

respectively) were collected. TR = 3.9 msec, TE = 2.2 msec, slice
thickness =3 mm, matrix = 260*224, and FOV = 36 × 36 cm.

In center B, preoperative MRI was performed with a 3.0T sys-
tem (Discovery MR750; GE Healthcare). The parameters were as fol-
lows: T1-w: TR = 3.9 msec, TE = 1.2 msec, the slice thickness =
3 mm; matrix = 256 × 256, and FOV = 38*38 cm. T2-w: TR =
6000–8000 msec, TE = 91 msec, slice thickness = 4 mm; matrix =
256 × 256, and FOV = 38*38 cm. Contrast-enhanced imaging was
performed following the intravenous injection of 0.1 mmol/kg con-
trast medium (Gadodiamide, GE Healthcare), rate = 2 mL/s. The
imaging delay time for arterial phase and portal venous phase
was 20 sec and 50 sec, respectively. TR = 3.8 msec, TE = 1.7 msec,
FOV = 380 × 300 mm, matrix = 320*224, slice thickness = 3.2 mm.

Region of Interest and Segmentation and
Extraction of Radiomic Features
Preoperative T1-w, T2-w, arterial phase imaging, and portal venous
phase imaging were used to extract the features (Supplemental Fig.
5). The AK software (Artificial Intelligence Kit v. 3.1.0.A, GE

FIGURE 1: Flowchart showing the patient inclusion criteria and the study design.
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Healthcare) was used to process the images before extracting the fea-
tures. The Supplemental Material shows the details of imaging
preprocessing. The regions of interest (ROIs) were manually contoured
on MR by the radiologists. Contrast-enhanced CT was used as the ref-
erence. The two radiologists (X.W.B. and Y.S.H.), who both had more
than 10 years experience of interpreting abdominal images, were
blinded to the clinical outcome before ROI segmentation. All ROIs
were segmented using ITK-SNAP v. 3.6.0 from UPenn (www.itksnap.
org).16 In total, 328 radiomic features were extracted from each MRI
sequence using the AK software. The radiomic features extracted
included: histograms, form factor parameters, GLCM (gray level
co-occurrence matrix), and RLM (run length matrix). All extracted
radiomic features were individually subtracted by the mean value of
each feature and divided by the respective standard deviation values (Z-
score normalization), thus removing the limitations imposed by the
units of each feature. In the primary cohort, patients were randomly
divided into two groups comprising the training set (n = 123) and the
internal validation set (n = 54), with a proportion of 7:3. From the
training set, the most useful predictive radiomic features were selected
using LASSO (least absolute shrinkage and selection operator) regres-
sion, which is suitable for the regression of high-dimension data. The
details of the features selection are shown in the Supplemental Material.
After the optimal radiomic features were selected from the training set,
a linear combination of selected features weighted by their respective
coefficients were used to calculate a radiomic signature to predict ER
after surgery for each patient. The area under the receiver-operator char-
acteristic (ROC) curve (AUC) was used to evaluate the predictive accu-
racy of the radiomic signature in both the training and testing groups.

Intraobserver and Interobserver Agreement
To determine the intra- and interobserver reproducibility of radio-
mic features extraction, the intra- and interclass correlation coeffi-
cients (ICC) were calculated. Thirty images were chosen randomly
for ROI segmentation by two radiologists who both had more

than 10 years experience of interpreting abdominal images. The per-
formances of two radiologists (A and B) were used to assess the
interobserver ICC. The performance of one radiologist (A), who
repeated the segmentation of the tumors, was used to assess the
intraobserver ICC. An ICC greater than 0�8 was considered to repre-
sent good agreement of the feature extraction.

Radiomic Nomogram Development
Univariate logistic regression was first used to identify potential pre-
dictors. Then multivariate logistic regression was used to select the
independent predictors of ER, which were subsequently used to
develop a novel radiomic nomogram. The training and validation
cohorts were used to test the calibration and discrimination perfor-
mances of the radiomic nomogram. A calibration curve displayed the
agreement between the predicted and observed risks of ER and was
used to assess the calibration performance. The AUC was used to
measure the discrimination performance. The radiomic nomogram
was validated using the independent validation cohort of 126 patients
from the second hospital.

Decision curve analysis (DCA) was used to assess the clinical
utility of the radiomic nomogram model in the three cohorts (train-
ing, internal, and independent validation). The "true" positive and
weighted false-positive rates were calculated across different threshold
probabilities in the validation set to determine the net benefit. Spe-
cifically, the weighting factor was defined as the specific value of the
threshold probability divided by 1 minus the threshold probability.
A higher true-positive rate and a relatively low false-positive rate were
suggested by a high net benefit. Plotting the net benefit against the
threshold probability across the range of 0 to 0�8 generated the deci-
sion curve. We also plotted the DCA for the radiomic signature.

Statistical Analysis
Continuous variables are expressed as mean and standard devia-
tion (SD), whereas categorical variables are expressed as the

FIGURE 2: Workflow of the development of the radiomic signature.
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TABLE 1. Characteristics of the Study Population

Training
cohort (n = 123)

Internal validation
cohort (n = 54)

External validation
cohort (n = 126)

Parameters n % n % n % P value

Age, years 0.839

≥ 60 71 57.7 33 61.1 71 56.3

< 60 52 42.3 21 38.9 55 43.7

Gender 0.859

Male 83 67.5 35 64.8 81 64.3

Female 40 32.5 19 35.2 45 35.7

Location 0.403

Proximal 90 73.2 38 70.4 93 73.8

Distal 33 26.8 16 29.6 33 26.2

Pain 0.414

Yes 76 61.8 33 61.1 68 54.0

No 47 38.2 21 38.9 58 46.0

Weight loss 0.847

Yes 61 49.6 29 53.7 62 49.2

No 62 50.4 25 46.3 64 50.8

CA199, kU/L 0.636

Normal 44 35.8 22 40.7 42 33.3

Elevated 79 64.2 32 59.3 84 66.7

CEA, ng/mL

Normal 102 82.9 46 85.2 104 82.5 0.906

Elevated 21 17.1 8 14.8 22 17.5

TB, μmol/L

Normal 65 52.8 28 51.9 76 60.3 0.403

Elevated 58 47.2 26 48.1 50 39.7

Albumin, g/L

Normal 85 69.1 41 75.9 85 67.5 0.520

Decreased 38 30.9 13 24.1 41 32.5

Stage 0.541

I 49 39.8 21 38.9 39 31.0

II 61 49.6 26 48.1 67 53.2

III 13 10.5 7 12.9 20 15.9

IV 0 0 0 0 0 0

Adjuvant chemotherapy 0.459

Yes 72 58.5 35 64.8 83 65.9
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frequency and proportion. The chi-squared test or Fisher’s exact
test were used to analyze the categorical variables, when appropri-
ate. The Mann–Whitney U-test, or independent-sample t-test
were used to assess the continuous variables, when appropriate.
Penalty parameter tuning combined with the LASSO logistic
regression model were performed using 10-fold cross-validation
based on the minimum criteria. The likelihood ratio test was used
for backward stepwise selection, which used Akaike’s information
criterion (AIC) as the stopping rule. Certain statistical analyses
were conducted using R software (v. 3.5.1, Vienna, Austria). The
"glmnet" package in R was used to perform LASSO logistic
regression. The "rms" package was used for nomogram construc-
tion and calibration plotting. ROC plots were constructed using
the "pROC" package. The "rmda" package was used to construct
the DCA curve plots. The "rms" package in R was used to cali-
brate the radiomic signature using the calibration curve. SPSS
18.0 (IBM, Armonk, NY) and MedCalc software v. 15.2.2
(https://www.medcalc.org/) were used to perform the statistical
analysis. Statistical significance was accepted at P < 0.05.

Results
Characteristics of the Patients
This study included 303 patients and flowcharts of the
study are shown in Figs. 1 and 2. A total of 177 patients
from the first medical center were divided into a training
cohort (n = 123) and an internal validation cohort
(n = 54). Patients from the second medical center were
used as the external independent validation cohort
(n = 126). Tables 1 and 2 show the patients’ characteris-
tics. Between the two centers, no difference in the ER
rate was observed (74/177, 42.4% vs. 55/126, 43.7%,
P = 0.749) nor was a difference observed for the other clin-
ical parameters (age, gender, pain, weight loss, tumor
markers level, and clinical stage). Early relapse was detected
in 130 patients; local recurrence (n = 48, 36.9%) and
hepatic recurrence (n = 51, 39.2%) were the most common
type of relapse; other types of relapse were observed in
23.3% patients (n = 31, 23.8%). The pathological results
showed that a complete R0 resection was achieved in 79%
(n = 140) and 81% (n = 102) of the patients from the two
medical centers, respectively. Adjuvant chemotherapy was
implemented in 60�4% (n = 107) and 65�9% (n = 83) of
the patients after surgery.

Intra- and Interobserver Agreement
The intraobserver reproducibility showed ICC values of
0�841 to 0�928, and the interobserver ICCs were 0�829 to
0�863. The results showed favorable intra- and interobserver
reproducibility of the feature extraction.

Development of the Radiomic Signature
A total of 1312 radiomic features were extracted from each
patient. Mann–Whitney tests and analysis of variance
(ANOVA) tests allowed the selection of 427 features, among
which 57 were identified by Spearman correlation analysis.
Combined features( T1-w+T2-w+CET1-w) showed higher
performance than other individual sequences (Supplemental
Fig. 4 and Supplemental Table 2). Finally, 10 radiomic fea-
tures (two from T1-w imaging, three from T2-w imaging,
one feature from CET1-w arterial phase imaging and four
features from CET1-w portal vein phase imaging) were
selected after LASSO regression and were used to construct
the radiomic signature (Fig. 3). The details of the features
and the calculation formula for the radiomic signature are
shown in Supplemental Table 1 and Supplemental Fig. 1.

Evaluation Performance of the Radiomic Signature
The evaluation performance of the developed radiomic signa-
ture was assessed in the three cohorts using ROC curves (Fig.
4). In general, the value of the rad-score was significantly
higher in patients who developed ER (Fig. 5 and Supplemen-
tal Fig. 2). The AUC values were 0.802 (training cohort),
0.807 (internal validation cohort), and 0.781 (external valida-
tion cohort). The boxplots of the radiomic signature distribu-
tion are shown in Supplemental Fig. 2. The details of the
evaluation performance of the radiomic signature are shown
in Table 3.

Development of the Radiomic Nomogram
In the univariate analysis, the carbohydrate antigen (CA)
19-9 level, clinical stage, the radiomic signature, and the
total bilirubin (TB) level showed significant differences
between the ER and non-ER groups in the training cohort.
In multivariate logistic analysis, the radiomic signature
(odds ratio [OR]: 2.535, 95% confidence interval [CI]:
1.576–4.079, P < 0.001), CA19-9 level (OR: 3.772, 95%

TABLE 1. Continued

Training
cohort (n = 123)

Internal validation
cohort (n = 54)

External validation
cohort (n = 126)

Parameters n % n % n % P value

No 51 41.5 19 35.2 43 34.1

TB: total bilirubin; CEA: carcinoembryonic antigen.
*P < 0.05.
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CI: 1.224–11.623, P = 0.021), and clinical stage (OR:
3.748, 95% CI: 1.609–8.728, P = 0.002) were identified
as independent parameters of ER. A radiomic nomogram
was then developed incorporating the CA19-9 level and
clinical stage. Each factor was assigned a weighted number
of points. The total number of points for each patient was
calculated using the nomogram, and was associated with an
estimated probability of ER (Fig. 6).

Evaluation Performance of the Radiomic
Nomogram
An ROC curve was used to assess the discriminative ability
of the developed nomogram. The AUC values were 0.871

(training cohort), 0.876 (internal validation cohort), and
0.846 (external validation cohort) (Fig. 8 and Supplemen-
tal Fig. 3).

The radiomic nomogram showed promising evaluation
performance in the three cohorts. The calibration curve indi-
cated adequate consistency between estimated risks using the
nomogram and the actual observed outcome in the three
cohorts (Fig. 7). Details of the performance of radiomics
nomogram are shown in Table 4.

Finally, we used a DCA curve to assess whether this
nomogram would help with clinical treatment strategies (Fig. 9).
In three cohorts, when the threshold probability varied from
0 to 1, according to the DCA, the radiomic nomogram achieved

FIGURE 3: LASSO logistic regression for texture feature selection. (a) In the LASSO model, the penalization parameter λ selection
used 10-fold cross-validation as the minimum criteria. The log (λ) (x-axis) was plotted against the partial likelihood deviance (y-axis).
The minimum criteria and the 1-SE criteria were used to draw the dotted vertical lines at the optimal values (b). For 57 texture
features, the LASSO coefficient profiles are shown. Ten-fold cross-validation in the log (λ) sequence was used to draw the vertical
line at the value selected; also indicate are 10 features with nonzero coefficients.

FIGURE 4: ROC curve of the ER risk evaluation performance of the radiomic signature in the training cohort (a) (AUC = 0.802) the
internal validation cohort (b) (AUC = 0.807), and the external validation cohort (c) (AUC = 0�781).
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the most net benefit compared with a "treat all" strategy, a "treat
none" strategy, and the radiomic signature.

Discussion
Pancreatic cancer has a poor prognosis, even after surgery. The
recurrence rate and survival for patients in identical stages vary
greatly.17,18 This evidence indicates that PC is a heterogeneous
disease and upfront surgery is not suitable for the subgroup of
patients with increased risk of ER, even in the early stage.19,20

Neoadjuvant chemotherapy (NAC) might be an optimal choice
for these patients and could help to eliminate the circulating
tumor cells and distant micrometastatic lesions, leading to a

reduced ER rate after surgery.21 Accumulating evidence demon-
strates that patients with BRPC and LAPC could obtain remark-
able survival benefit from NAC.22,23 Thus, some physicians
have started to use NAC in resectable cases.24 In guidelines pro-
posed by the National Comprehensive Cancer Network
(NCCN), NAC is recommended for high-risk resectable PC.25

However, whether patients with resectable pancreatic cancer
(RPC) should receive NAC remains controversial. One of the
main challenges is that we lack methods to identify patients who
could benefit from upfront surgery. Except for CA19-9, a
severely limited biomarker, no viable prognostic or predictive
biomarkers for PC are currently available.26

FIGURE 5: Dot diagram showing that the value of the rad-score was significantly higher in patients who developed ER in in the
training cohort (a), the internal validation cohort (b), and the external validation cohort (c).

TABLE 3. Univariate and Multivariate Logistic Regression Analysis of the Radiomic Signature and Preoperative
Clinical Parameters

Univariate analysis Multivariate analysis

Parameters OR 95% CI P OR 95% CI P

Radiomics signature 2.840 1.796–4.489 < 0.001* 2.535 1.576–4.079 < 0.001*

Age ≥ 60 years 0.926 0.447–1.915 0.835

Pain 1.141 0.716–1.819 0.575

Weight loss 1.288 0.884–1.877 0.175

Gender 1.073 0.832–1.384 0.580

Location 1.750 0.783-3.913 0.171

CA19-9 > 37kU/L 5.375 2.219–13.021 < 0.001* 3.772 1.224–11.623 0.021*

CEA > 3.4ng/mL 1.151 0.515–2.573 0.731

TB > 17.1 μmol/L 2.118 1.021–4.395 0.043* 1.867 0.688–5.065 0.220

Albumin < 35 g/L 1.418 0.655–3.069 0.374

TNM stage 3.764 1.950–7.266 < 0.001* 3.748 1.609–8.728 0.002*

CEA, carcinoembryonic antigen; TB, total bilirubin; CI, confidence internal.
Significant parameters with P < 0.05 in the univariate analysis were included in the multivariate logistic regression analysis.
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In the present study we sought to develop a preopera-
tive radiomic nomogram to help identify patients with
increased risk of ER. The texture features in our radiomic sig-
nature included both high- and low-order radiomic features,
which were consistent with previous studies. Histogram
parameters (a low-order radiomic feature), which are related
to the properties of individual pixels, describe the distribution
of voxel intensities within an image via commonly used and
basic metrics.27 Histogram feature such as intensity, kurtosis,
and skewness, based on enhanced MRI images, reflect the
enhancement ratio of a tumor. Previous studies demonstrated
that the hypoattenuation value parameter is likely to reflect
the degree of tumor necrosis within the tumor tissue and an
isoattenuating enhancement pattern might represent a rela-
tively well-differentiated and less aggressive tumor.28,29 High-
order radiomic features, such as GLCM features, measure the
spatial relationship between local nearby pixels.30 We
assumed that high-order features better reflect the tumor biol-
ogy and heterogeneity. The prognostic value of the high-order
radiomic texture of MRI has also been proven in various
malignancies, including breast cancer, hepatocellular carci-
noma, and nasopharyngeal carcinoma.31–33 A study of preop-
erative MRI texture analysis conducted by Choi et al showed
that tumor size and entropy with medium texture were signif-
icantly associated with overall survival in patients with pan-
creatic ductal adenocarcinoma (PDAC).34 However, it
remains a challenge to associate a single radiomic feature with
complex tumor biological processes. Therefore, to perform
outcome estimation in the –omics setting, it is more common
to construct multifactor panels. Our results showed that the
developed radiomic signature achieved satisfactory risk evalua-
tion results for ER in the primary and external cohorts.

We then constructed a radiomic nomogram that incor-
porated clinical factors (the CA19-9 level and clinical stage)
and the radiomic signature, which showed favorable perfor-
mance and improved risk evaluation accuracy in both the
internal and external independent cohorts.

CA-199 was identified as an independent prognostic
predictor in this study, which was consistent with previous
studies.35–37 The level of CA19-9 correlates closely with dis-
ease burden in patients, and a higher CA19-9 value indicates
an increased risk of tumor metastasis. However, CA19-9 as a
marker has limitations. For example, CA19-9 is often elevated
in patients with jaundice, which could result in over-
estimation of the disease burden.26 Moreover, CA19-9 levels
correlate poorly with tumor differentiation, which is highly
associated with prognosis in PC.38 In our study, CA19-9
alone archived an AUC of 0.672 for discrimination of ER in
the training cohort. Therefore, CA19-9 alone is not enough
for accurate risk assessment of ER.

The clinical stage system stratifies PDAC according to
three major parameters on images: primary tumor, regional
lymph nodes, and distant metastases.5 This criterion isTA
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fundamental to establish a prognosis in different malignan-
cies. In the present study, we observed that patients in the
later stage are more likely to have ER after surgery. However,
the clinical stage system mainly focuses on anatomical radio-
logical features, which might oversimplify the complexity of a

tumor’s biological behavior. Therefore, clinical stage alone is
not enough for accurate risk evaluation of ER.

According to previous studies of PC, severe pain and
obvious weight loss were also associated with poor progno-
sis.39,40 However, our data failed to confirm these results.

FIGURE 6: The radiomic nomogram incorporating the radiomic signature, the CA19-9 level, and the clinical stage.

FIGURE 7: Calibration curves for the nomogram in the training cohort (a), the internal validation cohort (b), and the external
validation cohort (c). The 45� black line represents the reference line showing the "ideal" prediction. The dotted line indicates the
performance of the radiomic nomogram in ER prediction, and the solid line indicates the correction of bias in the radiomic
nomogram.

FIGURE 8: ROC curve of the ER risk evaluation performance of the radiomic nomogram in the training cohort (a) (AUC = 0�871) the
internal validation cohort (b) (AUC = 0�876), and the external validation cohort (c) (AUC = 0�846).
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Pain can be related to infiltration of a tumor into surrounding
nerves, vessels, or viscera. Different types of invasion can have
varying impacts on prognosis. However, parameters such as
pain might be subjective because of varying levels of sensitiv-
ity among patients to abdominal pain caused by the tumor.
Weight loss indicates the malnutrition status of patients. In
the present study, we observed a lower rate of weight loss
compared with that in previous reports.40 This could be

related to the diverse ethnic population included. The tumors
were identified by physical examination in many patients
included in our study and were at an early stage without
symptoms, which could also account for these results.

Finally, DCA showed that the radiomic nomogram out-
performed the radiomic signature across a wide range of
threshold probabilities, which revealed that the clinical
parameters added incremental value to ER risk evaluation in
both the primary and external cohorts.

The developed risk evaluation model has obvious
advantages. Compared with gene expression tests based on
invasive biopsies, the noninvasive characteristic of radiomic
analysis lends itself to a wide range of applications for
patients. In addition, biopsies have obvious limitations caused
by sampling bias that could result from intratumoral hetero-
geneity, while radiomics represents a comprehensive assess-
ment of the whole tumor. Moreover, the preoperative data
used in the developed risk evaluation model are easily accessi-
ble, with little additional cost and show favorable results.
These advantages and results are encouraging and promising.

Limitations
Our study has several limitations. First, selection bias might
exist because of the retrospective design of our study. Second,
this was a relatively small sample size. However, our cohort is
still one of the largest with respect to radiomics and resectable
PC. Third, we abandoned the diffusion-weighted MR image
with different b values over a long time period because of
poor consistency between the two hospitals. The T1-w, T2-w,
portal venous phase, and arterial phase were chosen to ensure
that the cohorts were large enough to develop a stable model
to evaluate ER risks.

Conclusion
We developed a novel model incorporating a radiomic signa-
ture and clinical parameters to evaluate the ER risks of
patients with resectable PC preoperatively. The accurate iden-
tification of this subgroup of early-stage patients who would
receive little benefit from upfront surgery might potentially
help decision-making for treatment strategies and clinical tri-
als. Although the results are encouraging and promising, fur-
ther validation of this evaluation model in a large and diverse
population is still required.
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