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Abstract

Drosophila saltans group belongs to the subgenus Sophophora (family Drosophilidae), and

it is subdivided into five subgroups, with 23 species. The species in this group are widely dis-

tributed in the Americas, primarily in the Neotropics. In the literature, the phylogenetic recon-

struction of this group has been performed with various markers, but many inconsistencies

remain. Here, we present a phylogenetic reconstruction of the saltans group with a greater

number of species, 16 species, which is the most complete to date for the saltans group and

includes all subgroups, in a combined analysis with morphological and molecular markers.

We incorporated 48 morphological characters of male terminalia, the highest number used

to date, and molecular markers based on mitochondrial genes COI and COII. Based on the

results, which have recovered the five subgroups as distinct lineages, we propose a new

hypothesis regarding the phylogenetic relationships among the subgroups of the saltans

group. The relationships of the species within the sturtevanti and elliptica subgroups were

well supported. The saltans subgroup showed several polytomies, but the relationship

between the sibling species D. austrosaltans and D. saltans and their close relation with D.

nigrosaltans were well supported in the molecular and total evidence analyses. The morpho-

logical analysis additionally supported the formation of the clade D. nigrosaltans—D. pseu-

dosaltans. The observed polytomies may represent synchronous radiations or have

resulted from speciation rates that have been too fast relative to the pace of substitution

accumulation.

Introduction

Phylogenetic reconstructions based on integrative analyses of different sets of characteristics

(e.g., molecular and morphological characters) enable us to deduce robust evolutionary

hypotheses [1, 2]. In addition, approaches that use several lines of evidence can reconstruct

better relationships among taxa, mainly within groups with historical problems [3, 4].

Although molecular methods have more often been used to infer phylogenetic relationships
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between organisms, the use of nonmolecular data is still highly recommended for identifying

synapomorphies [5]. Morphological data are thus fundamental for decision-making in taxon-

omy and systematics [6]. Considering the genus Drosophila, the use of adult terminalia charac-

ters is particularly useful because they are the least homoplastic [7]. Among the various groups

that need more robust phylogenetic evaluation, Drosophila species from the Neotropical

region need a more complete and better supported phylogenetic hypothesis [8].

Drosophila saltans group is nested within the genus Drosophila and subgenus Sophophora
and is closely related to the willistoni sister clade in the New World Drosophila diversification

[9]. The geographical distribution of species in the saltans group extends across the entire

region of Mexico to the state of Rio Grande do Sul in southern Brazil [10–13]. The parasaltans
and cordata subgroups occur only in the Neotropical region, while some species of the elliptica,

sturtevanti and saltans subgroups occur in the Neotropical and Nearctic regions [10].

Historically, the saltans group was first divided into two subgroups [14], but this division

was later modified by Pavan and Magalhães [15] and Magalhães [16]. After that, Magalhães

and Björnberg [17] divided the group into five subgroups, without naming, based on morpho-

logical characters with an emphasis on male terminalia. Then, with a total of 19 species, the

five subgroups were named saltans (D. saltans, D. austrosaltans, D. lusaltans, D. prosaltans, D.

nigrosaltans, D. pseudosaltans and D. septentriosaltans), sturtevanti (D. sturtevanti, D. milleri
and D. rectangularis), parasaltans (D. parasaltans, D. subsaltans and D. pulchella), elliptica (D.

elliptica, D. emarginata, D. neoelliptica and D. neosaltans) and cordata (D. cordata and D. neo-
cordata) [10]. However, Vilela and Bächli [18] observed the lectotype of D. pulchella and

inserted this species into the sturtevanti subgroup and even suggested it as a synonym to D.

sturtevanti. Mourão and Bicudo [11] added two new species to the sturtevanti subgroup (D.

dacunhai and D. magalhaesi). Recently, Guillin and Rafael [12] introduced the species D. neo-
prosaltans in this group, and Madi-Ravazzi et al. [19] included another new species (D. lehrma-
nae) in the sturtevanti subgroup. Throughout these investigations, the number of species

belonging to the saltans group increased to 23 [20].

Many studies have discussed the phylogeny of the saltans group [21–29]. However, some

were more relevant regarding the robustness of the analysis and support of the trees. O’Grady

et al. [24] performed the first molecular phylogeny with nine species of the saltans group.

According to their total evidence tree, the cordata subgroup would have branched off the earli-

est, followed by the elliptica subgroup (D. emarginata), and the sturtevanti subgroup (D. milleri
and D. sturtevanti) was recovered as the sister of the saltans-parasaltans clade. However, the

relationships among species of the saltans subgroup were not well resolved, suggesting a recent

divergence [24]. Moreover, Rodrı́guez-Trelles et al. [25] also proposed a phylogeny of the salt-
ans group based on analyses of some molecular markers including xanthine dehydrogenase
(Xdh). One of the trees generated with robust support showed the parasaltans subgroup (D.

subsaltans) as sister to all others, followed by branching off the sturtevanti (D. sturtevanti),
elliptica (D. emarginata), cordata (D. neocordata) and saltans (D. saltans and D. prosaltans)
subgroups. Thus, the differences in marker genes and ingroup taxon-sampling between these

studies would have affected the phylogenetic inference, resulting in topologies differing in the

basal branch.

Morphological characters have also been fundamental tools in the delineation of the saltans
phylogeny. Yassin [28] inferred the phylogeny of this group by coding 40 morphological char-

acters from different life stages and of external and internal morphology. The generated tree

supported the sturtevanti subgroup (D. sturtevanti and D. milleri) as the sister of all others in

the group. The other subgroups formed two clades, one consisting of the cordata (D. neocor-
data) and elliptica (D. emarginata) subgroups and the other consisting of the parasaltans (D.

subsaltans) and saltans (D. saltans, D. prosaltans, D. austrosaltans and D. lusaltans) subgroups.
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Again, the relationships between saltans subgroup species were not resolved [28]. Last, Souza

et al. [29] used morphological data from male terminalia to infer the phylogeny of the group.

This work demonstrated the cordata (D. neocordata) subgroup as the sister taxon of all others

and the formation of two large clades, one consisting of the elliptica (D. emarginata) and stur-
tevanti (D. sturtevanti, D. dacunhai and D. milleri) subgroups and the other of the parasaltans
(D. parasaltans) and saltans (D. saltans, D. prosaltans, D. lusaltans and D. austrosaltans) sub-

groups [29].

The studies mentioned above used a limited number of taxa and few male terminalia char-

acters, which are the most variable even among closely related species and mainly used to dis-

tinguish species in insect taxonomy, in their phylogenetic reconstructions, resulting in

inconsistencies mainly for the saltans subgroup. Yassin [28] analyzed the inconsistencies of

molecular phylogenetic inferences for the saltans group and pointed out that codon usage bias

(CUB) may be an issue in this clade because nonstationarity and nonhomogeneity of the

nucleotide composition can distort phylogenetic inferences, when compositional changes do

not occur according to the genealogy of the species. Indeed, the Neotropical Sophophora (i.e.,

the saltans and willistoni groups) have higher frequencies of adenine and thymine at the third

position of the code of their nuclear genome [25, 30–32]. A study of the nuclear and mitochon-

drial CUB patterns in other insects pointed out that the mitochondrial genome has higher

CUB [33]. Therefore, we present a new hypothesis for phylogenetic relationships among sub-

groups of the saltans group based mainly on a total evidence dataset (morphological and

molecular markers) and a greater number of species (16 species) than that already employed.

In addition, we explored some difficulties found in the phylogenetic reconstruction of this

group, focusing on the saltans subgroup.

Materials and methods

Taxon sampling

In the present study, 16 of the 23 species of the saltans group were evaluated based on morpho-

logical and molecular data. The species, strains and geographical origin are listed in S1 Table.

Terminalia preparation and morphological characters

The structures of terminalia were dissected and mounted based on Kaneshiro’s [34] technique.

The distal two-thirds of the abdomen of each fly was extracted by stylets and placed in a micro-

tube containing 10% KOH solution for 15 minutes in a water bath; then, the structures were

transferred to a microtube containing a drop of eugenol and incubated for 24 h. After that, the

terminalia was dissected with the aid of a stereomicroscope and stylets. The structures were

dehydrated with pure acetone and mounted on stubs with copper tape for adhesion and elec-

tron conductivity [29]. The samples were sputter coated with gold in and analyzed by scanning

electron microscopy (LEO 435 VPi Zeiss).

Based on the descriptions and analysis of the male terminalia electron micrographs by

Roman and Madi-Ravazzi [35], 48 morphological characters were collected, and a matrix was

coded in absence (0), presence (1) and presence with modifications (2) (Table 1).

DNA sequencing

The genomic DNA of males of the species studied was extracted from the whole body and by

individual maceration using a Wizard Genomic DNA Purification kit (Promega, Madison,

WI, USA) following the manufacturer’s protocol.
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The mitochondrial genes were amplified through polymerase chain reaction (PCR); the

primer sequences and PCR annealing temperatures are shown in S2 Table. The amplification

conditions were the same as in Madi-Ravazzi et al. [19]. Amplicons were sequenced by the

Sanger method at Centro de Recursos Biológicos e Biologia Genômica (CREBIO). All gener-

ated sequences were deposited in GenBank (S1 Table).

Parsimony analysis of morphological data

The analysis based on the maximum parsimony criterion was performed using the TNT [36]

and Winclada software was used to visualize and edit trees [37]. The analysis was performed

using heuristic searches by the traditional method: starting with the construction of Wagner

trees and refining by branch swapping in the tree-bisection-reconnection (TBR) algorithm,

with 1000 replicates and retaining 10 trees per replicate. The characters were analyzed with

equal weights. A strict consensus was reached for the most parsimonious trees resulting.

Branch support was estimated using bootstrap (BS) analysis [38] (significance values� 70%),

calculated with 1000 replicates, using the heuristic search and the traditional search methods.

Molecular phylogenetic analysis

The editing of the sequences of the COI and COII genes as well as the comparison and creation

of the consensus sequences of the forward and reverse sequences of each taxon were per-

formed manually in BioEdit 7.2.5 [39], where they were also multiple aligned using ClustalW

[40].

For phylogenetic analyses, we included COI and COII sequences (totaling 1,354 bp) from

16 species of the saltans group and D. willistoni as the outgroup (S1 Table). We determined the

model of nucleotide substitution for each gene and the concatenated sequence datasets with

jModelTest [41] using the Bayesian Information Criterion. The best-fit models were GTR+G.

We performed a Bayesian phylogenetic analysis for the concatenated mitochondrial sequences

(COI and COII) with MrBayes v3.2 [42]. We ran 100 million generations, sampling every

10,000 steps by using a Yule process tree prior. We checked for stationarity by visually inspect-

ing trace plots and ensuring that all values for effective sample size (ESS) were above 200 in

Tracer v.1.5 [43]. The first 25% of sampled genealogies were discarded as burn-in.

Total-evidence analysis

We performed a total evidence analysis with both morphological and molecular data using

partitioned Bayesian analyses of total evidence implemented in MrBayes v3.2 [42] to infer the

phylogenetic relationships within the saltans group. This analysis assumes different models

(e.g., θa, θb, θc) for different sets of partitions (e.g., Xa, Xb, Xc). The substitution models for

COI (GTR+G) and COII (GTR+G) were tested in jModelTest [41] using the Bayesian informa-

tion criterion. We used a gamma distribution for the morphological data [44]. We ran 100 mil-

lion generations, sampling every 10,000 generations. We determined stationarity and ensured

that all ESS values were 200 by using Tracer. The first 25% of sampled genealogies were dis-

carded as burn-in.

Codon usage bias

The GC content of the third codon position (GC3) and the relative synonymous codon usage

(RSCU) for the concatenated sequences of COI and COII were calculated using the R package

seqinR [45] and DNAsp [46], respectively. To evaluate the heterogeneity of the CUB for the

saltans group, disparity index test [47] and composition distance were calculated in MegaX
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[48]. Two clustering methods were implemented using the averages RSCU: a hierarchical clus-

tering generated by heatmap and a correspondence analysis were implemented in the R pack-

ages ggplot2 [49] and FactorMineR [50], respectively. In correspondence analysis, codons that

were not seen for all species were removed (S3 Table).

Results

Out of the 48 morphological characters coded, 29 were parsimony informative (i.e., shared by

multiple species of the ingroup). The analysis resulted in eight equally parsimonious trees, and

from these, the strict consensus was calculated (Fig 1A). The relationship among the subgroups

was not resolved due to a polytomy. However, the species were grouped into the five sub-

groups [20]. The species of the sturtevanti subgroup were grouped in a clade with high support

(BS = 96%) and supported by three synapomorphies: aedeagal apex with punctiform projec-

tion, aedeagus with only one ventral postgonite and scales in the upper ventral region of aedea-

gus. The species of the elliptica subgroup were grouped into one clade (BS = 80%), supported

by synapomorphic characters of elongated surstylus and hypandrium and the presence of a

pair of lateral postgonites. Within this clade, D. emarginata and D. neoelliptica formed an

internal clade (BS = 82%). Although the saltans subgroup was recovered as a monophyletic

group (BS = 75%), relationships among component species were less resolved, being left in a

polytomy except for the sister relationship between D. nigrosaltans and D. pseudosaltans
(BS = 88%). In this analysis, the cordata and parasaltans subgroups were each represented by a

Fig 1. Comparison between morphological and molecular trees of the saltans group. (A) Phylogenetic relationships inferred by maximum

parsimony based on morphological markers. Black circles correspond to nonhomoplastic apomorphies, and white circles correspond to homoplastic

apomorphies, with character numbers above and state codes below (see Table 1). The bootstrap (BS) support values (� 70%) are shown above

corresponding branches. (B) Phylogenetic relationships inferred by the analysis of the concatenated sequences of the mitochondrial markers COI and

COII. Bayesian posterior probability (PP) is shown as percentage on each node.

https://doi.org/10.1371/journal.pone.0266710.g001
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single species, D. neocordata and D. parasaltans, respectively. They were placed as independent

branches with five and three autapomorphies, respectively: D. neocordata characterized by the

presence of surstylus process, long and bifurcate ventral postgonites, pregonites basally fused

into a single structure, frontal region of aedeagal apex with a pair of chitinous hooks, and a

pair of long protuberances arranged laterally and fused to the aedeagus; and D. parasaltans by

the presence of hand-shaped surstylus, membranous aedeagal apex, and the presence of a pair

of bifurcate ventral postgonites (Table 1).

On the other hand, the Bayesian analyses with the concatenated mitochondrial-sequence

dataset and Total Evidence dataset (morphological and molecular data) generated very similar

trees resolving relationships among the subgroups with high supports (Figs 1B and 2). The

Fig 2. Phylogenetic relationships among species of the saltans group inferred by the total evidence analysis with morphological and molecular

data. Bayesian posterior probability (PP) is shown as percentage on each node. The phallus of each species is shown in profile on the same scale. The

letters represent the phallus of the following species: A = D. emarginata, B = D. neoelliptica, C = D. neosaltans, D = D. neocordata, E = D. dacunhai, F =

D. milleri, G = D. sturtevanti, H = D. lehrmanae, I = D. lusaltans, J = D. prosaltans, K = D. septentriosaltans, L = D. pseudosaltans, M = D. nigrosaltans, N

= D. austrosaltans, O = D. saltans, P = D. parasaltans, Q = D. willistoni.

https://doi.org/10.1371/journal.pone.0266710.g002
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parasaltans subgroup (represented by D. parasaltans) was placed as the sister to all the others

in the saltans group (PP = 100%). The saltans subgroup was recovered as monophyletic

(PP = 100%) and sister to a large clade consisting of the other three subgroups (PP = 100% for

the mitochondrial dataset and PP = 97% for the Total Evidence dataset). Within the saltans
subgroup clade, relationships among component species were less resolved, except for the

close relationships ((D. saltans, D. austrosaltans), D. nigrosaltans) supported with PPs = 100%.

Relationships among the three subgroups within the remaining clade were inferred as follows:

[the elliptica + cordata subgroups (PP = 59% for the mitochondrial dataset and 75% for the

Total Evidence dataset)] + [the sturtevanti subgroup (PP = 93%)]. Relationships among com-

ponent species of the elliptica and sturtevanti subgroups were fully resolved: [[D. emarginata +

D. neoelliptica (PP = 100%)] + [D. neosaltans (PP = 100%)]] in the elliptica subgroup; and [[D.

dacunhai + D. milleri (PP = 100%)] + [D. sturtevanti + D. lehrmanae (PP = 97% for mitochon-

drial dataset and PP = 99% for Total Evidence dataset)]] in the sturtevanti subgroup.

The pairwise comparison of disparity index test and the composition distance indicated

that the composition of D. neosaltans (elliptica subgroup) is significantly heterogeneous.

Despite the conservative nature of the applied method, the null hypothesis that sequences have

evolved with the same pattern of substitution for all the nucleotides was rejected in approxi-

mately 75% of the pairwise comparisons between D. neosaltans and the other species (S4

Table). The base composition bias by site found was higher for this species, especially in the

third codon positions (S5 Table).

Aiming to verify the codon usage bias for the concatenated mitochondrial sequences of

COI and COII, we calculated the GC content of the third codon position (GC3) for each spe-

cies. Those results indicate that the mitochondrial region (COI and COII) is AT3 rich (varying

from 89.4 to 98.5%; Fig 3A). The elliptica subgroup presented the highest GC3 (from 8.20 to

10.64%). The GC3 content varied most within the sturtevanti subgroup (from 2.00 to 7.10%),

which the species D. sturtevanti and D. lehrmanae presented higher values of GC3 (5.3 and

7.1%) than D. dacunhai and D. milleri (2.9% and 2%, respectively). Within the saltans sub-

group, the higher GC3 content was seen for the D. saltans (5.3%) and were particularly low for

D. lusaltans (1.6%). Interestingly, the insular species (D. lusaltans and D. milleri) presented the

lowest GC3. Through the heatmap the saltans and sturtevanti subgroups were recovered, while

the elliptica subgroup was not because D. neosaltans was clustered with D. neocordata and D.

parasaltans (Fig 3B). Similarly, the correspondence analysis also clustered of the saltans and

sturtevanti subgroups (Fig 3C), which were separated by the first dimension of this analysis

(see S1 Fig to check the contribution of each codon in each dimension). In the elliptica sub-

group, the three species do not show similarity in the use of codons, which contributed the

most to the first dimension, however considering the second dimension, D. neoelliptica and D.

emarginata are very similar whereas D. neosaltans codon usage looks like D. neocordata and D.

parasaltans (Fig 3C).

Discussion

The combination of morphological and molecular markers proved to be very important for

unraveling relationships among species within the saltans group and resulted in a robust phy-

logeny. In the analyses performed here, the studied species were classified into five lineages

corresponding to the established subgroups [20], suggesting the reliability of the selected

markers. Drosophila parasaltans is the only representative, in the present study, of the parasal-
tans subgroup and was recovered as a sister taxon of all the others in the saltans group, with

high support, in the analysis of total evidence and molecules, corroborating with data from the

literature [25, 51].

PLOS ONE Phylogeny of Drosophila saltans group (Diptera: Drosophilidae)

PLOS ONE | https://doi.org/10.1371/journal.pone.0266710 April 7, 2022 9 / 16

https://doi.org/10.1371/journal.pone.0266710


In our analysis with molecular markers, as well as in the analysis of total evidence, the stur-
tevanti subgroup is sister of cordata-elliptica clade. The close relationship between the cordata
and elliptica subgroups corroborates several studies [24, 25, 28, 51]. It is interesting to demon-

strate that in addition to the phylogenetic works mentioned above, the cordata-elliptica rela-

tionship was observed by Castro and Carareto [27] in a study with the P family of elements, in

which the authors found a very rudimentary and divergent sequence of the same element in

each D. neocordata (cordata subgroup) and D. emarginata (elliptica subgroup) species, sug-

gesting proximity between these species and consequently between these subgroups.

Fig 3. Codon usage bias pattern of mitochondrial genes COI and COII in the saltans group. (A) GC3 contents of saltans-group species. (B)

Hierarchical clustering generated by heatmap. (C) Correspondence analysis of RSCU averages of 31 codons.

https://doi.org/10.1371/journal.pone.0266710.g003
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The relationship among the species of elliptica subgroup was strongly supported in all anal-

yses, and it was grouped in the same way, establishing two internal clades: one composed of D.

emarginata and D. neoelliptica and another clade composed of D. neosaltans, close to the previ-

ous two. This is the first time that a phylogenetic study has been carried out with three of the

four species included in this subgroup; other studies have only been performed with D. emargi-
nata [24, 25, 28, 29, 51]. It is interesting to note that the relationships seen in the phylogenetic

tree can also be observed in the morphological characters of these species, where the aedeagi of

D. emarginata and D. neoelliptica are extremely similar, differing markedly from D. neosaltans
[35]. The most striking features are found in the size and shape of aedeagus, in which aedeagus

of D. neosaltans is smaller (~16% of body size, whereas for D. emarginata it is ~50% and D.

neoelliptica ~30%) and has no sickle shape, the aedeagal apex is cylindrical and not hooked

and forked and the pregonites are not fused to the end (Fig 2C) [35]. Furthermore, D. neosal-
tans differs from the other two species because apparently it does not present the structure of

the epandrial ventral processes, and in the same place, it has only two small saliences, suggest-

ing that this structure may be present in the ancestral species of the subgroup [35].

The relationships of species within the sturtevanti subgroup were recovered with good sup-

port. In all analyses, the species were similarly grouped, establishing two internal clades, one

composed of D. sturtevanti and D. lehrmanae and the other composed of D. dacunhai and D.

milleri. This cluster structure was also observed in the GC3 analysis, and it was observed by

Madi-Ravazzi et al. [19], who analyzed the same species with four mitochondrial markers, and

by Souza et al. [29], who used morphological characteristics without D. lehrmanae species.

This subdivision can be visualized through the morphology, shape and size of the four aedea-

gus species, which are very similar, but there is a greater similarity of structures between D.

dacunhai and D. milleri, such as the presence of pointed scales on the ventral postgonite and a

groove in the upper part of it, whereas D. sturtevanti and D. lehrmanae present this structure

without scales, smooth and thin (Fig 2E–2H) [35].

Furthermore, studies on reproductive isolation with four species (D. dacunhai, D. magal-
haesi, D. milleri and D. sturtevanti) showed several degrees of isolation, from complete isola-

tions to fertile crosses, and the presence of inseminated females in several crosses that did not

produce progeny was observed, suggesting that these results may be related to the courtship

behaviors and the similarity among the morphologies of the aedeagi [11, 19, 23]. So, although

there is species specificity of male terminalia, the morphology of male terminalia among spe-

cies in the sturtevanti subgroup is generally very similar, unlike what is seen in species in other

subgroups of the saltans group. The question of why this similarity exists is unanswered.

The reconstruction of evolutionary relationships of the saltans subgroup has been consid-

ered particularly challenging, and inconsistencies have been reported for different molecular

markers [24, 25], which were not solved by the analysis of morphological characters [28, 29].

To solve this problem, we analyzed all species of this subgroup; however, only the establish-

ment of the sibling species D. austrosaltans and D. saltans resulting from the molecular and

total evidence analyses of the present work was recovered. This last relationship is corrobo-

rated in studies by Bicudo [22] and Nascimento and Bicudo [52] carried out with chromo-

somal inversion and pattern of esterases, respectively. In addition, the morphological analysis

showed that only the relationship between D. nigrosaltans and D. pseudosaltans was robustly

recovered. This information is new in the saltans subgroup phylogeny, but it can be easily

observed in the morphological characteristics of the aedeagus, as both species present elon-

gated and curved back aedeagal apex, different from other species (Fig 2L and 2M) [35].

Previous studies found different topologies and polytomies for the saltans subgroup, which

is considered the most recent divergence of the saltans group, having occurred approximately

4.5 million years ago [9, 24, 28]. Phylogenetic reconstruction among species of recent
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divergence can become much more complex due to three biological problems: segregation of

polymorphisms that predate species divergence (incomplete lineage sorting), gene flow during

and after speciation and intralocus recombination (hybridization) [53]. In fact, many recent

studies have shown that these processes play an important role in the evolution of many taxa

[54–56]. Gene flow among saltans subgroup species may still occur, and the species may con-

tinue to hybridize even at low frequencies [21]. This last study carried out a reproductive isola-

tion experiment with seven species of the saltans subgroup and observed variable results, in

which crosses between geographically distant species showed the production of fertile hybrids,

even at low frequency [21]. Furthermore, in studies of chromosomal polymorphisms with this

subgroup, Bicudo [22] found a common karyotype and a considerable degree of sequential

homology for all species of the saltans subgroup. In addition, many other issues may lead to

difficulties in constructing its phylogeny, such as rapid speciation rates relative to substitution

rates, and heterogeneity in nucleotide composition biases [24, 28, 30, 31].

The codon usage bias analysis performed for the entire saltans group recovered low GC3

content in agreement with literature previews studies [57], which characterized the mitochon-

drial genes COI, II and III as sequences rich in adenine and cytosine, particularly at third

codon position. The GC3 contents vary within the subgroups, and yet, in general, the sub-

groups were more similar within than among them. The reasons for the differences in degree

of AT-content diversity among subgroups still are unclear, they could be associated with dif-

ferences in the numbers of representative species among subgroups, differences in the ages of

the subgroups, or nucleotide composition evolves faster in some subgroups. Furthermore, the

codon usage for the genes COI and COII of the saltans group is similar to the pattern described

for insects [57], with high values for the codons TTA (leucine), CGA (arginine), TCT (serine),

GGA (glycine). The two clustering methods applied here recovery the saltans and sturtevanti
subgroups but fail to recovery the elliptica subgroup due to CUB of COI and COII evolve in a

heterogeneous way in D. neosaltans, the earliest to branch off among the elliptica subgroup.

More mitochondrial genes should be evaluated to confirm if this is a mitogenome pattern, also

evaluation of nuclear genes may be interesting to evaluate the mechanisms that may be shaping

the CUB, particularly of D. neosaltans.
In general, the saltans group presents a variety of forms of aedeagus with great complexity,

while the external morphology among the species of the group is very similar. This observation

can be explained by Eberhard [58], who mentions that the male genitalia of animals subjected

to internal fertilization evolve and diverge faster relative to the other morphological characters

of the body [58, 59]. Consequently, the great diversity of morphological characters of male ter-

minalia among genetically similar species is related to several complex phenomena driven by

selective processes, mainly by sexual selection [58, 60, 61]. Furthermore, it is noteworthy that

the rapid evolution of male genitalia is still sufficient to preserve a phylogenetic signal, which is

especially useful in comparative and phylogenetic analyses among closely related species [59].

As an example, one study analyzed 41 phylogenetic articles from 11 different orders of arthro-

pods, finding phylogenetically informative characters of the genitalia, suggesting that there is a

rapid but ordered evolutionary rate [62]. Likewise, a comparison of 490 characters shows that

adult terminalia characters present lower homoplasy than other organs [7].

In the current study, we use the greatest number of male terminalia morphological charac-

ters for the saltans group to date, demonstrating robust analysis associated with the most suit-

able mitochondrial genes for phylogenetic analysis of COI and COII [63, 64]. It is relevant to

emphasize the importance of using different markers in phylogenetic analyses as soon as they

present different mutation rates and coalescence times, which can provide different informa-

tion with robust results, often complementary, and increase the accuracy of phylogenetic infer-

ences about the processes involved [3, 4]. Therefore, the combination of these markers
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supported the saltans group as monophyletic and a new hypothesis of the relationship among

species in the group, such as parasaltans subgroup as a sister taxon of the other species in the

saltans group, followed by the formation of two clades: saltans subgroup clustered as sister of

the large clade, consisting of the other three subgroups (sturtevanti, cordata and elliptica). Fur-

thermore, the relationship of species within the elliptica and sturtevanti subgroups was well

supported.
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