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Severe fever with thrombocytopenia syndrome (SFTS), which is caused by SFTS

virus (SFTSV), poses a serious threat to global public health, with high fatalities

and an increasing prevalence. As effective therapies and prevention strategies

are limited, there is an urgent need to elucidate the pathogenesis of SFTS.

SFTSV has evolved several mechanisms to escape from host immunity. In this

review, we summarize the mechanisms through which SFTSV escapes host

immune responses, including the inhibition of innate immunity and evasion of

adaptive immunity. Understanding the pathogenesis of SFTS will aid in the

development of new strategies for the treatment of this disease.
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Introduction

SFTS is an emerging infectious disease that was first identified in rural areas of China

in 2009 and has since been reported in Japan, South Korea, Vietnam, Taiwan, and many

other countries and regions (1–3). The epidemiology shows that SFTS is more common

in older people, mostly farmers, and mainly transmitted through the bite of infected ticks.

The pathogen of this disease, SFTSV, also known as Dabie bandavirus, can infect a variety

of domestic and wild animals, in addition to humans. The clinical manifestations of SFTS

include sustained high fever with thrombocytopenia, leukopenia, gastrointestinal

symptoms, and multiple-organ failure, with a mortality rate of up to 30% (4–7).

SFTSV, a member of the genus Bandavirus, belongs to the family Phenuiviridae of the

order Bunyavirales (8). The surface envelope of this spherical virion is mainly composed

of two transmembrane glycoproteins and lipid bilayers with spinous processes. SFTSV is

a single-stranded, negative-sense, enveloped RNA virus whose genome comprises three
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segments: large (L), medium (M), and small (S) (8, 9). The L

segment encodes a viral RNA-dependent RNA polymerase,

which is necessary for viral replication, whereas the M

segment encodes a glycoprotein precursor (Gn/Gc), which is

cleaved into the Gn and Gc viral proteins by a host cell protease.

Gn/Gc can promote virus invasion into host cells by binding to

the cell surface C-type lectin DC-SIGN or the host cell receptor

non-muscle myosin heavy chain IIA and mediate virus–cell

membrane fusion with high antigenicity (2, 10–12). The S

segment belongs to the ambisense RNA family and has two

reading frames in opposite directions. The 3′ end reverse

sequence encodes a nucleoprotein (NP), which mediates viral

ribonucleoprotein complex formation, whereas the 5′ end

sequence encodes a nonstructural (NSs) protein, which can

inhibit the host innate antiviral immune response (2, 13, 14).

The host immune response determines the clinical

manifestation of SFTSV infection (15). In immunocompetent

patients, a robust immune response can be elicited to eliminate

virus infection. However, in older or immunocompromised

patients, SFTSV escapes from host immune surveillance or

cannot be eliminated by the weak immune defense (15–20).

An effective vaccine or antiviral agents that could be potential

approaches to prevent and treat SFTSV infection are not

available (15, 21). Thus, exploring the mechanisms through

which SFTSV evades host immune responses can be useful for

the development of vaccines or therapeutics against this viral

infection. In this review, we summarize and discuss how STFSV

escape from host immunity.
Innate immune evasion by SFTSV

The innate immune response acts as the first line of defense

against SFTSV infection. However, the virus can evade the

innate immune response through affecting the number and

function of innate immune cells, inhibiting interferon (IFN)

production and function, interfering with nuclear factor-kB
(NF-kB) signaling, and regulating autophagy.
Attenuated function of mononuclear
cells and DCs by SFTSV infection

Monocytes are important members of innate immune cells.

They recognize pathogenic microorganisms through TLRs,

induce the expression of cytokines, chemokines, and

synergistic stimulation molecules, and differentiate into

macrophages or myeloid DCs (mDCs) to initiate innate or

adaptive immune responses. Monocytes also participate in

regulating the function of plasma cell-like DCs (pDCs), and

TNF-a secreted by pDCs plays an important role in the antiviral

immune response (22, 23). It has been found that monocytes

may be one of the main target cells of SFTSV infection (23–25).
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Decreased numbers and dysfunction of monocytes in patients

with acute SFTS are related to the severity of the disease (23).At

the early stage of fatal SFTSV infection, Song et al. (26) found

that monocytes underwent severe apoptosis and necrosis. In

addition, compared to patients in the recovery stage and healthy

controls, the responsiveness of SFTSV-infected monocytes was

significantly weakened against LPS stimulation, indicating that

these cells are immunologically incompetent.

In addition, Cong et al. has revealed that SFTSV can infect

macrophages directly and exist in splenic macrophages much

longer than in other organs in a rodent model (27). The effect of

SFTSV on macrophage varies at different stages of infection. Zhang

et al. (28) confirmed that in the early stage of infection, SFTSV

induced a monocyte immune response and stimulated

macrophages to differentiate into the M1 phenotype by activating

STAT1, resulting in the production of proinflammatory cytokines

(such as TNF-a,IL-1b,IL-6) and tissue destructive. At a later stage,

SFTSV infection could upregulate the expression of IL-10 and

activates STAT3. STAT3 binds to the promoter of the pre-miR-

146b gene to promote the production of miR-146b, which can

inhibit the differentiation of M1 macrophages and drive

macrophages to differentiate into the M2 phenotype by targeting

STAT1, thereby promoting virus shedding and causing virus

transmission. Furthermore, it has been demonstrated that viral

NSs protein is a component of SFTSV to mediate the increased

miR-146 expression.

DCs are the most important antigen-presenting cells. They

serve as the bridge between innate and adaptive immune responses

and are an essential component of the host’s defense system. DCs in

the human peripheral blood are mainly divided into mDCs and

pDCs (29). In patients with lethal SFTSV infection, the mDC

apoptosis rate is significantly increased after SFTSV infection

(26). In addition, the expression of IL-4 and GM-CSF is

necessary for the differentiation and maturation of DCs, whereas

these cytokines are significantly downregulated in monocytes and

lymphocytes, especially in severe and lethal cases (30, 31). The

marked elevated apoptosis rate of the mDC by SFTSV infection,

along with mDC maturation disorders resulting from massive

monocyte apoptosis and IL-4 and GM-CSF deficiency in

deceased patients with SFTS, finally leading to a significantly

decreased population of effective DCs. Meanwhile, the

insufficiency of mDCs impedes the differentiation of naïve T cells

into T follicular helper cells (Tfhs) (26, 32). Zhang et al. (33)

confirmed that the decrease in the number of mDCs positively

correlated with the severity of the disease. In addition, both pDCs

and mDCs express an important PRR, TLR3. When activated by

double-stranded RNA during viral replication, they can quickly

produce large amounts of type I IFNs (34). However,the TLR3

expression by mDCs in deceased group exhibited gradually

downregulated during the acute phase (35). Previous studies have

shown that DCmaturation relays on the TLR3 signaling pathway. It

has been observed that in surviving patients with SFTS, high levels

of mDCs are directly proportional to TLR3 expression in
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CD14+HLA-DR+ monocytes (35, 36). This suggests that virus-

mediated downregulation of TLR3 expression in CD14+HLA-DR+

monocytes may lead to the suppression of mDC differentiation,

which eventually leads to an apparent decrease in IFN production

and the weakening of the cellular immune response (23, 35).

Furthermore, it has been found that effective differentiation of

mDCs, but not pDCs, plays a key role in the antiviral immune

response in patients with SFTS (35). These studies suggest that

SFTSV infection could abate the function of monocytes and DCs in

immune responses and induce the differentiation of macrophages

into the M2 phenotype, ultimately facilitating virus persistence and

disease progression.
Reduction of NK cell subsets
number by SFTSV

NK cells are effector cells of the innate immune system that

can directly or indirectly kill virus-infected cells by releasing

perforin and granzyme, as well as proinflammatory cytokines

and chemokines in the early stage of infection. These cells also

participate in antibody-dependent cell-mediated cytotoxicity. In

addition, NK cells play an important immunomodulatory role in

the adaptive immune response (37–39). Individuals with

impairment of NK cell numbers and functions are more

susceptible to virus infections, including cytomegalovirus

(CMV), herpes simplex virus (HSV), ect (37).

Based on the expression intensity of the surface markers

CD16 and CD56, NK cells in human peripheral blood can be

divided into the following five subgroups: CD56brightCD16−,

CD56brightCD16+, CD56dimCD16−, CD56dimCD16+, and

CD56−CD16+. CD56dimCD16+ NK cells are the dominant

population and account for at least 90% of all peripheral blood

NK cells (40). In the early stage of SFTSV infection, the

frequencies of CD56dimCD16+ NK cells were greatly decreased

and negatively correlated with disease severity (41). In addition,

the expression of Ki-67 and granzyme B levels were enhanced,

and NKG2A expression was decreased in CD56dimCD16+ NK

cells after acute infection. Furthermore, compared with that in

the recovery phase in patients with severe SFTS, the effector

function of CD56dimCD16+ NK cells were enhanced in the acute

phase (41). Thus, despite the reduction of NK cells, the function

and activation of CD56dimCD16+ NK cells were enhanced. Liu et

al. (42) observed that in the phase 3 of SFTSV infection (≥11

days after the onset of symptoms), the counts of

CD3−CD16+CD56+NK cells decrease significantly compared to

the healthy controls. NK cells are crucial at resisting viral

infection, which depletion in patients with SFTS hinders viral

clearance and the host immune response, thereby weakening the

antiviral effect and aiding host immune response evasion

by SFTSV.
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Inhibition of the IFN signaling
pathway by SFTSV

IFNs play critical roles in antiviral immune response and can

modulate the innate and adaptive immune responses. IFNs are

mainly divided into three types: I, II, and III. Of these, type I IFN

(IFN-I) are important components of the innate immune response.

They mainly include IFN-a and IFN-b, which are secreted by

infected cells, such as macrophages, dendritic cells (DCs), and

epithelial cells (43). When host cells are infected with SFTSV,

their pattern recognition receptors (PRRs) firstly recognize

pathogen-associated molecular patterns and subsequently induce

the production of IFN-I and IFN-inducible proteins. Toll-like

receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like

receptors are the major PRRs. RIG-I-like receptors, including RIG-I

and melanoma differentiation-associated gene 5(MDA5), recruit

mitochondrial antiviral-signaling protein, which transmits the

signal of TANK-binding kinase 1 to activate the NF-kB and IFN

regulatory factor 3 pathways, and synergistically promote the

expression of IFN-I genes (44). Among TLRs, TLR3, TLR7, and

TLR8 have been identified as viral RNA sensors in endosomes (45).

Activated TLRs recruit specific linker molecules, TIR domain-

containing adaptor-inducing IFN-b and myeloid differentiation

factor 88, to trigger the production of inflammatory factors and

IFN-I (46). IFN-I is secreted extracellularly and subsequently binds

to membrane receptors (IFNAR1 and IFNAR2) on the surface of

effector cells, activating the JAK/STAT signaling pathway and

ultimately promoting the expression of IFN-stimulated genes (43).

Several animal model studies found that immunocompetent

adult mice or hamsters did not show obvious infection

symptoms after SFTSV infection. However, SFTSV-infected

mice that were deficient in the a/b IFN receptor (IFNAR−/−)

and Syrian hamsters that were deficient in the gene encoding

signal transducer and activator of transcription 2 (STAT2−/−)

exhibited high serum viral loads and a hematological status

which is similar to that of human infection, and the infection

resulted in death. Therefore, IFN-I signaling is critical for

preventing lethal SFTSV infection (6, 47–50).

SFTSV can interfere the production of IFN-I through

multiple mechanisms.Studies have found that the SFTSV NSs

protein could specifically trap TRIM25 into inclusion bodies

(IBs) and impede TRIM25-mediated Lys-63 ubiquitination and

activation of RIG-I, leading to the inhibition of the host antiviral

response (51, 52). Khalil J et al. found that the C-terminus of the

SFTSV NSs protein could specifically bind to TANK-binding

kinase 1 to form cytoplasmic IBs, which is also known as

viroplasm-like structures. The IBs formed by SFTSV can not

only be used as a viral replication factory but also capture

important protein molecules of the IFN signaling pathway

(such as TANK-binding kinase 1, IKKϵ, and the IFN

regulatory factor 3 complex), thereby hindering the generation

of IFN-I and promoting virus replication (53). Another
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experiment found that the SFTSV NSs protein could also hijack

mitochondrial antiviral-signaling protein into IBs, thereby

hindering the IFN signaling pathway and inhibiting the

activation of NF-kB signaling. In addition, SFTSV NP could

inhibit the IFN-b response by interfering with the IFN

regulatory factor 3 and NF-kB signaling pathways, thereby

enhancing viral replication (24, 54). Furthermore, analysis of

immune-related genes in SFTSV-infected peripheral blood

mononuclear cells showed that the expression of TLR3 in

deceased patients was downregulated nearly 10 times

compared with that in healthy controls in the acute phase, and

the expression of IFN-a1/b1 mRNAs in the TLR3 signaling

pathway was downregulated as the severity of SFTS

increased (35).

During the IFN signal transduction phase, the SFTSV NSs

protein can inhibit IFN signaling and the expression of ISG by

sequestering STAT2 and STAT1 into IBs and impairing the

phosphorylation and nuclear translocation of STAT2

heterodimers (55–57). Another study has demonstrated that

SFTSV NSs protein could suppress both type I and III IFN

signaling by inhibiting STAT1 phosphorylation and activation

(58). Ning et al. (59) and Gough et al. (60) showed that IFN-g
(type II IFN) had anti-SFTSV efficacy in vivo and in vitro. The

SFTSV NSs protein could also hijack STAT1 into viral IBs and

decrease its expression, thereby inhibiting the type II IFN

response. Thus, mounting evidence indicates that the SFTSV

NSs protein is a key factor involved in virus evasion from the

host innate immune response. Further studies are needed to

clarify the role of the NP in this process.
The effect of NF-kB signaling on
SFTSV replication

As an important transcription factor, NF-kB has a variety of

biological functions during viral infection, such as

proinflammatory, antiviral, and apoptotic responses. NF-kB
activation is mediated via the canonical and noncanonical

pathways. According to previous studies, the virus can evade

or activate inflammation through multiple mechanisms

involving NF-kB signaling. Qu et al. (24) confirmed that the

NF-kB signaling pathway might be temporarily activated during

the early stages of SFTSV infection in THP-1 cells, which

promoted viral replication. However, pretreating THP-1 cells

with an NF-kB inhibitor before SFTSV infection reduced the

viral load (24). Subsequently, the role of NF-kB was gradually

attenuated, and further experiments showed that both the

SFTSV NSs protein and NP could inhibit the NF-kB signaling

pathway. Studies in HeLa cells also confirmed the suppressive

effect of the SFTSV NSs protein on NF-kB signaling (61, 62). By

contrast, the study by Sun et al. (62) showed that the SFTSV NSs

protein activated the NF-kB promoter activity in NSs-
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overexpressing HepG2 cells, resulting in the promotion of NF-

kB-dependent proinflammatory responses in SFTSV-infected

cells. However, pretreating HepG2 cells with the NF-kB
inhibitor Bay11-7082 significantly reduced not only the

expression of proinflammatory cytokines but also the number

of S gene copies in cells (62). Using an established minigenome

system based on the M segment of SFTSV, Mendoza et al. (63)

confirmed that the NF-kB inhibitor SC75741 reduced the

synthesis of viral proteins and replication of SFTSV in vitro.

Furthermore, another study found that SFTSV triggered the

activation of NF-kB signaling via the TLR8–myeloid

differentiation factor 88 axis during virus entry (64). Taken

together, these results indicate that the activation of the NF-kB
signaling pathway by the SFTSV NSs protein is cell- or tissue-

specific and restrained NF-kB signaling can reduce the viral load

in infected cells and tissues. At present, the mechanisms of NF-

kB signaling promoting SFTSV replication is not well

understood and should be further studied.
Promotion of SFTSV replication by
regulating autophagy

The human innate immune system can defend against viral

infection through a variety of mechanisms, one of which is the

elimination of intracellular pathogens by host cells through

autophagy. In addition, heterogeneous autophagy can directly

activate PRRs and trigger their signal transduction pathways,

thereby promoting NK T-cell activation, cytokine secretion, and

phagocytosis. Autophagy also plays an important role in

maintaining immune homeostasis (65). However, during

evolution, many viruses have developed the ability to evade

antiviral immune responses via regulating autophagy (66, 67).

During SFTSV infection, autophagy can not only be induced and

utilized as a platform for virus replication and assembly but also

for the release of the progeny viruses through autophagy-related

vesicles to enhance SFTSV infection (68, 69). SFTSV may affect

autophagy through the following mechanisms. SFTSV-induced

autophagy depends on the NP, which can directly inhibit the

interaction between BECN1 and BCL2 and induce complete

Becn1-dependent autophagy flux (68). SFTSV assembly relies on

phagocytic vesicles formed by endoplasmic reticulum–Golgi

intermediates. The assembled progeny SFTSV particles can

survive in autophagy-related vesicles (such as autophagosomes

and autophagolysosomes) and are released directly outside the

cell through the exocytosis of autophagic vesicles (68, 70). In

another study, transfection of HeLa and HepG2 cells with the

VR1012-GFP-LC3 recombinant plasmid confirmed that

autophagy was a promoting factor of SFTSV replication (71).

Sun et al. (72) found that the SFTSV NSs protein could

colocalize with the autophagy-related proteins LC3, p62, and

Lamp2b under SFTSV-infected status but failed to colocalize
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alone with them, indicating that conventional autophagosomes

are not equivalent to SFTSV NSs protein-induced IBs. In

addition, the LC3-II protein was accumulated in SFTSV-

infected cells, and treatment with a lysosomal protease

inhibitor did not affect the results, which showed that SFTSV

replication might be promoted via inhibition of autophagic

degradation (69, 72). Furthermore, viruses can restrain the cell

cycle by interacting with host factors. The SFTSV NSs protein

can inhibit the formation and nucleation of the cyclin B1–CDK1

complex by interacting with CDK1 and inducing cell cycle arrest

in the G2/M phase to promote virus replication and release (71).

To date, studies have confirmed that SFTSV infection can induce

autophagy and utilize autophagy to promote self-replication, the

underlying interaction between SFTSV and autophagy is not

completely clear, and the effect of autophagy on various antiviral

signaling pathways (such as the IFN signaling pathway) should

be studied in the future.
SFTSV evasion of the adaptive
immune response

Host adaptive immune responses against viruses involve T

and B cells, which specifically recognize and eliminate viral

pathogens. T cells are lymphocytes involved in cellular

immunity. When stimulated by antigens, T cells are

transformed into sensitized lymphocytes and elicit specific

immune responses. B cells are the main cells involved in

humoral immunity and are transformed into immunoglobulin-

producing plasma cells under antigenic stimulation. Antibodies

produced by plasma cells can not only kill infected target cells

via antibody-dependent cell-mediated cytotoxicity but also

directly neutralize viruses (73). SFTSV can achieve immune

escape by affecting T- and B-cell immune responses through

different mechanisms.
Involvement of T-cell depletion and
subset disorder in SFTSV infection

T lymphocytes are the main immune cells that mediate cellular

immune responses. According to previous studies (18, 74, 75), the

numbers of T lymphocytes, especially CD4+ T lymphocytes, which

limit the initiation and maintenance of humoral and cytotoxic T-

cell immunity, are significantly reduced in surviving and deceased

patients with SFTS during the acute phase. Compared with those in

the healthy control group, the numbers and proportions of CD4+ T

cells in surviving and deceased patients were found to be

significantly reduced, and the reduction in the deceased patients

was even worse than that in the surviving patients (74). Although

the CD8+ T-cell numbers were also reduced, the reduction was not
Frontiers in Immunology 05
significantly different between the surviving and deceased patients

(74). Therefore, the reduction in the number of CD4+ T cells is a

more meaningful marker for evaluating disease severity and

prognosis. Consistently, the numbers of T helper (Th) 1, Th2,

and regulatory T (Treg) cells in the deceased patients were

significantly lower than those in the surviving patients, whereas

the number of Th17 cells in the deceased patients was higher than

that in the surviving patients in the early stage of SFTS (74). Th17

cells can inhibit the ability of effector T cells to kill target cells,

thereby hindering the host’s antiviral response (76). The decrease in

the numbers of Th1, Th2, and Treg cells and the relative increase in

that of Th17 cells seriously affect their regulatory roles in cellular

and humoral immunity and lead to a disorder of immune function

and excessive release of inflammatory cytokines (74). Moreover, it

has been shown that PD-1 expression on dysfunctional CD4+ and

CD8+ T cells is significantly increased during the acute stage of

SFTSV infection, which may weaken the antiviral T-cell immunity

(75). Meanwhile, in the early stage of acute SFTSV infection, T cells

not only actively proliferate but the effector function of CD4+ T cells

and cytotoxic function of CD8+ T cells are enhanced (75).

A previous study has found that the expression levels of

apoptosis markers (annexin V and CD95) on CD4+ and CD8+ T

cells in infected individuals during the early stage of SFTSV

infection were significantly higher than those in the healthy

population (75); therefore, apoptosis may also be one of the

reasons for the decrease in the numbers of CD4+ and CD8+ T

cells. Fas/FasL interactions may also play an important role in T-

cell apoptosis.

Apoptosis is a strictly regulated physiological process that is

closely related to innate immunity. When SFTSV replicates in

host cells, host-induced apoptosis of the infected cells is an

effective antiviral mechanism that can efficiently inhibit the

spread of the virus. Bortezomib (PS-341) is an effective and

selective FDA-approved proteasome inhibitor, which has been

shown to suppress SFTSV replication by interfering with the

apoptosis pathways in 293T cells (52). Similar results were

obtained when SFTSV-infected cells were treated with the

apoptosis-inducing agent STS (52). Proteomic analysis

revealed that some antiapoptotic proteins, such as SOD2,

BCL3, CD74, and FAM129B, were upregulated during SFTSV

infection, indicating that SFTSV infection exerts an

antiapoptotic effect (64). In addition, Hou et al. (77) found

that Th17 cells could upregulate antiapoptotic molecules to

promote continued replication of the virus in SFTSV-infected

cells. However, apoptosis has a dual effect on the host antiviral

response. Apoptotic death can be induced not only in infected

cells to inhibit virus replication but also in a large number of

immune cells, which leads to the weakening of the antiviral

effect. Hence, SFTSV can escape immune responses by inhibiting

T cell immune response and regulating the apoptosis of SFTSV-

infected cells.
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Inhibition of antibody secretion and the
maturation of B cells by SFTSV infection
The humoral immune response after viral infection not only

neutralizes the virus by producing antibodies but also prevents viral

reinfection (78). The B-cell immune response is regulated by

antigen-presenting cells and Tfhs (32). However, SFTSV infection

can impair antigen-presenting function of B cells andmDCs, as well

as impair Tfhs, resulting in a significantly weakened humoral

immune response (24, 26, 35). Using single-cell RNA sequencing

analysis of SFTS patient PBMCs, Angela et al. (79) showed that the
Frontiers in Immunology 06
B-cell population obviously expanded, which was associated with

disease severity (26, 79, 80). Moreover, study has suggested that B-

cell lineage populations are targets for SFTSV, and B cells,

specifically plasma cells, are potential virus reservoirs in the blood

of patients with fatal SFSTV infections (79). A postmortem analysis

of lymph nodes has further confirmed that the majority of SFTSV-

infected cells are B cells, specifically plasmablasts (PBs) (80). It is

speculated that PBs may first be infected by SFTSV in lymph nodes

and then differentiate into plasma cells, which are then circulated in

the blood. By contrast, SFTSV may independently infect plasma

cells in lymph nodes and blood (79). Furthermore, compared with

those in uninfected B cells within the fatal group, the IFN and
FIGURE 1

Effects of SFTSV infection on immune cells. SFTSV infection impairs the production and function of various immune cells, such as monocytes,
macrophages, and DCs. It also promotes B-cell proliferation and differentiation into PBs/plasma cells, which are deemed potential virus
reservoirs.
FIGURE 2

Immune escape mechanism of SFTSV in monocytes. The SFTSV NSs protein hijacks various protein molecules of the IFN pathway by forming
IBs, thereby hindering IFN production. In addition, SFTSV activates the NF-kB pathway and promotes macrophage differentiation into the M2
phenotype to facilitate viral replication.
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sirtuin signaling pathways are significantly downregulated and the

NRF2-mediated oxidative stress response is upregulated in SFTSV-

infected B cells (79). This reduction in IFN signaling is probably due

to the IFN-antagonistic function of the viral NSs protein, which

further promotes virus infection and replication. However, IFN and

sirtuin signaling were elevated in the entire B-cell population of the

fatal group (79). Another study has revealed that PBs in fatal cases

proliferated to a greater extent than those in survived ones (26).

However, the pronounced expansion of PBs contrasts to the

decrease in the production of specific antibodies. Song et al. (26)

found that deceased patients exhibited a complete absence of both

serum IgM and IgG specific to the SFTSVNP, as well as the absence

of Gn-specific IgG. Meanwhile, surviving patients developed IgM

antibodies to the SFTSV NP in the acute stage of infection, and NP-

specific IgG antibodies appeared 2 to 3 weeks after symptom onset

(26). Accumulated evidences has indicated that the proliferation of

PBs is dysfunctional and the effective humoral immune response is

impaired in fatal SFTS because of the failed antibody class-switch

response (26, 80). Therefore, SFTSV infection may inhibit antibody

secretion and the maturation of B cells, thus suppressing effective

humoral responses for the virus to escape from the host

immune system.
Conclusion

Increasing evidence indicates that SFTSV can escape from

host immune responses via multiple strategies: interfering the

number and function of innate and adaptive immune cells

(Figures 1, 2), inhibiting of the IFN signaling pathway

(Figure 2), regulating the NF-kB signaling (Figure 2) and

autophagy, ect. Modulating dysfunctional immune cells should

be the potential strategy to rescue host immune clearance against

this virus. Understanding the mechanisms of immune evasion

by SFTSV is critical for the development of a vaccine

and immunotherapy.
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