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Background
Gene sequence classification

The rapid advancement in high-throughput sequencing technologies has revolution-
ized the study of microorganisms, shifting away from reliance solely on cultured cells or 
virus strains to direct sampling from unknown environmental sources [4]. In the realm 
of medical disease research, the significance of microorganisms in numerous diseases is 
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evident [32]. However, processing genetic data from microorganisms collected within 
the human body presents challenges due to the presence of unknown components 
resulting from direct environmental sampling. The first thing we need to do is to make 
a judgment on the source of the samples [15]. Consequently, the classification of short 
gene sequences becomes a basic task [29]. Furthermore, in infectious disease virus 
research, swift identification of pathogen types holds paramount importance for subse-
quent treatments [33]. Therefore, the classification of microbial gene sequence emerges 
as a pivotal field of study.

Traditionally, microbial gene sequencing classification relied on a homology-based 
approach—searching for similar DNA/RNA sequences within databases. Methods 
such as BLAST [2], BLAT [20], BLASTX [2], Diamond [7], BWA [23], BOWTIE [22], 
and others have demonstrated high accuracy. However, considerable limitations arise as 
numerous gene sequences cannot be classified due to poor matches with all gene types 
in the database. This often stems from missing data in genomic databases that is, the 
genetic sequences of many of these species are missing. Consequently, homology-based 
approaches often ineffective when dealing with new species. Additionally, the slow data 
processing speed of homology-based methods severely restricts their utility [27].

Recently, diverse machine learning-based approaches, including deep learning, have 
emerged to address these challenges. Unlike traditional methods relying on existing 
databases, machine learning techniques learn mathematical functions by training on 
available databases to accomplish predictive tasks. Meanwhile Deep learning also holds 
significant research value in the representation learning of microbial gene sequence 
data [14]. The exploration of deep learning, is gaining momentum in handling micro-
bial gene sequence data [12]. Antonino Fiannaca et al., 2018 [3] proposed a 16S short-
read sequence classification technique based on k-mer representation and deep learning 
architecture, which accordingly generated a model of each taxonomic unit, validated 
it as an effective method for bacterial sequence classification, and could be integrated 
into commonly used metagenomic analysis tools to successfully classify SG and AMP 
data. Mateo Roja-Carulla et  al., 2019 [25] proposed that GeNet is a method for Shot-
gun metagenomic classification from original DNA sequences, using hierarchical struc-
tures between tags for training. It shows competitive accuracy and good recall rates, 
and requires fewer memory resources. The representation of GeNet learning is practi-
cal for biological tasks, enabling pathogen detection accuracy of more than 90%. Qiaox-
ing Liang et  al., 2020 [24] proposed DeepMicrobes, a deep learning-based framework 
that overcomes the limitations of new species taxonomic in metagenome studies, has 
superior species and genus identification accuracy, and has demonstrated competitive-
ness in abundance estimation, helping to explore the role of unknown metagenome 
species. Meryem Altin Karagoz et al. 2021 [1] proposed a deep learning method based 
on k-mer representation, which combined with relative abundance index (RAI) to clas-
sify metagenomic fragments, showing that metagenomic data generated under differ-
ent sequencing platforms is competitive. For the first time, the RAI score is used as a 
spectral representation in a deep learning algorithm, showing improved performance for 
data sets with multiple parameter ranges. In the field of natural and natural processing 
models, Florian Mock et al. 2022 [13] proposed BERTax, a neural network using natu-
ral language processing, precisely classifies DNA sequence superkingdoms and phyla 
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without relying on representative relatives in databases. It matches or exceeds existing 
methods of species classification, especially when dealing with new species. Combining 
BERTax with databases further improves prediction quality, expanding accurate classifi-
cation across diverse genomic sequences and enhancing overall information acquisition.

In addition to metagenomic applications, deep learning models have also been applied 
to the field of virus sequences. Tampuu A, et  al. at 2019 [30] introduce ViraMiner, a 
novel deep learning method, to identify diverse viruses in human biospecimens, over-
coming the challenge of detecting unknown or highly divergent viruses. Using Convo-
lutional Neural Networks on raw metagenomic contigs from 19 experiments, ViraMiner 
significantly outperforms other machine learning methods, achieving a high accuracy 
of 0.923 area under the ROC curve with 300  bp contigs. It is the first model capable 
of detecting viral sequences within raw metagenomic data, providing insights into 
“unknown” sequences and enhancing our understanding of infectious diseases. Jie Ren, 
et al. at 2020 [28] introduce DeepVirFinder, a reference free machine learning method, 
excels in identifying viral sequences in metagenomic data, surpassing traditional meth-
ods. Trained on extensive pre-2015 data and enriched with additional viral sequences, it 
outperforms VirFinder. In colorectal carcinoma patient samples, it detected 51,138 viral 
sequences within 175 bins, showing potential for non-invasive CRC diagnosis. Jakub M. 
Bartoszewicz et al. 2021 [5] uses deep neural networks to reliably predict whether a virus 
can directly infect humans and has developed interpretative tools and novel nucleotide 
resolution correlates graph methods that can be used to detect regions of interest in 
novel pathogens, such as SARS-CoV-2 coronavirus. In addition, in the field of proteins, 
Wang Liu-Wei et al. proposed DeepViral in 2021 [31], a deep learning method for pre-
dicting protein–protein interactions (PPI) between humans and viruses. However, these 
methods typically rely on labeled data for model training, which becomes challenging 
due to the scarcity of microbial data labels, leading to complexities in feature extraction. 
Additionally, achieving a model with broad applicability proves to be difficult.

Contrastive learning

Currently, contrastive learning stands out as a promising direction in the field of machine 
learning, particularly in the realm of unsupervised feature extraction. The fundamen-
tal concept of contrastive learning involves training the network’s feature extraction 
capability by contrasting similar and dissimilar data points in the feature space (Fig. 1). 
The vector representations of similar data obtained through the encoder are as close as 
possible, while the vector representations of dissimilar data are as distinct as possible. 
This approach has proven its efficacy in various domains, including computer vision, 
signal processing, and natural language processing, delivering promising performance 
[21]. Several noteworthy studies have emerged in the field of contrastive learning, such 
as SimCLR v1/v2 [8, 9], MoCo v1/v2/v3 [10, 11, 18], and BYOL [16], achieving state-
of-the-art performance across multiple domains. SimCLR, MoCo, and BYOL represent 
three significant methods for unsupervised feature extraction in computational technol-
ogy. SimCLR emphasizes data augmentation and contrastive loss to learn more useful 
feature representations through contrastive learning. MoCo employs momentum con-
trast to learn from unlabelled data, utilizing momentum updates to construct a contrast 
set. BYOL is a self-supervised learning approach encouraging the network to predict 
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its augmented versions for learning visual feature representations. These methods train 
models to distinguish between different data points from a large pool of unlabelled data 
to derive the final feature extraction model, significantly enriching the training methods 
of unsupervised learning and enabling the application of various complex neural net-
work models to large-scale unlabelled data. Given its principle of contrasting different 
data, this method can learn rich and distinct representations, showcasing broad pros-
pects for the application of contrastive learning to various types of data [6].

In summary, current research in contrastive learning demonstrates the effective-
ness of training feature extraction networks based on contrasting different data. 
Many contrastive learning models have achieved excellent results in their respective 
domains [26], proving their ability to efficiently derive a powerful feature extraction 
model from unlabelled data. However, despite its success in other fields of machine 
learning, including computer vision and natural language processing [17], contrastive 
learning has not been widely applied in microbiome bioinformatics research. While it 
holds immense potential, as demonstrated in various domains, its adoption remains 
relatively limited in the context of microbial genomics and metagenomics analysis. 
Most studies in microbiome bioinformatics primarily focus on traditional supervised 
and unsupervised learning techniques, leaving untapped potential for contrastive 
learning to advance microbiome bioinformatics research.

Our research contributions

To address the aforementioned challenges, this paper introduces the DNASimCLR 
framework, a deep learning method based on contrastive learning for the feature 
extraction of microbial sequence data. Unlike other approaches, we leverage unla-
belled data for pre-training to enhance feature extraction. Our methodology involves 
two key steps: initial pre-training using unlabelled gene sequence data, followed by 
fine-tuning the resulting network for classification during the training phase.

Fig. 1  A concise statement for contrastive learning [8]. Two independent data enhancement operations (t ∼ 
T and t′ ∼ T) are applied to the same input data, resulting in two associated data representations. An gated 
embedding vectors encoder network f(·) and a feedforward neural network g(·) are trained to maximize 
agreement using a contrastive loss. After the pre-training, we throw away the feedforward neural network 
g(·) and use the encoder network f(·) to complete the follow-up work
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In terms of data processing, we employ one-hot coding to represent DNA sequences. 
Based on SimCLR framework, with convolutional neural network serving as the feature 
extraction module. To assess the performance of our classification method, we con-
ducted tests on a microbial gene database from various sources. Applying our method, 
we performed taxonomic classification and short-sequence virus host prediction on read 
sequences of varying lengths (250 bp, 500 bp, 1000 bp, 1300 bp, and 10,000 bp), achiev-
ing a remarkable classification accuracy of 99%. Our contributions include:

(1)	 Pioneering the application of contrastive learning to the feature extraction of 
microbial gene sequences, along with the development of a data processing method 
that extends contrastive learning to genetic data, overcoming limitations observed 
in the original SimCLR approach designed for image data.

(2)	 Establishing a high-performance gene sequence classifier, substantially enhancing 
the effectiveness of existing deep learning methods.

(3)	 The division of our method into pre-training and classification phases facilitates 
easy adaptation to other genomics problems, such as gene function and metagen-
omic clustering. This adaptability underscores the versatility and broad applicability 
of the proposed DNASimCLR framework in advancing genomics research.

Methods
The workflow of DNASimCLR consists of two primary stages: Pretraining Phase of 
Contrastive Learning and Fine-tuning Phase of Classification Networks (Fig.  2). In 
pre-training stage, we transform the unlabeled original DNA gene sequence data into 
a machine-learning-compatible format using the One-Hot encoding method. The 

Fig. 2  Overview of the DNASimCLR framework. (A) Tokenization Data And Pretraining Model: The DNA 
sequences undergo preprocessing via one-hot encoding, converting sequences into a digital feature 
matrix, followed by a random mask application for data augmentation. Subsequently, the SimCLR model 
is pretrained using the masked data to derive pretrained model. (B) Training Classification Network: The 
feature extraction model acquired from the previous steps is employed for classification training. Ultimately, 
this process yields a classification network capable of determining the categorical classification of DNA 
sequences
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One-Hot encoded data undergoes random masking to generate the training dataset dur-
ing the pre-training phase. In this stage, we employ the SimCLR framework model to 
obtain vector representations of unlabeled sequences. This process embeds the gene 
sequences into a fixed-dimensional high-dimensional space through contrastive learn-
ing. In fine-tuning stage, with the feature extraction model obtained from the pre-
training phase, annotated data is encoded using the One-Hot encoding method without 
masking operations. We proceed with the training for classification prediction, aiming 
to derive a classification network equipped with a classification function.

Pretraining phase of contrastive learning

We chose SimCLR as the contrastive learning method for this study, our approach 
embraces the core principles of the SimCLR model while making adjustments to its 
implementation and data augmentation methods tailored for DNA data. The fundamen-
tal concept behind the SimCLR (Contrastive Learning for Unsupervised Visual Repre-
sentation) framework is to train the feature vectors of similar samples to be as close as 
possible and those of dissimilar samples to be as distant as possible through comparative 
learning (Fig. 3). This approach facilitates the extraction of more effective feature repre-
sentations. Through contrastive learning applied to unlabelled data, SimCLR generates 
high-quality feature vectors that densely represent the data space. These vectors prove 
valuable for various visual tasks.

In the processing of each DNA sequence, we segment it into fixed lengths and perform 
one-hot encoding. To further enhance the data for training after employing the SimCLR 
model, we adopt a data augmentation by masking the encoding augmentation by mask-
ing the encoding with a probability of p. During each batch reading, 30% of the bases in 
the input sequence are randomly masked, effectively substituting “0, 0, 0, 0” in place of 
the original one-hot encoding (Fig. 4). In this study, the masked encoding sequence j of 
the original sequence i is treated as a related representation of the same sample and is 
selected as a positive sample pair for SimCLR (Fig. 5), this meticulous data processing 
strategy is employed to prepare the data adequately for the pretraining phase, aligning 
with the unique characteristics of DNA data.

After completing the one-hot encoding and random masking of the original data, A 
neural network encoder generates a representation vector from enhanced data exam-
ple. The neural network encoder in the framework is replaceable. A smaller network 

Fig. 3  Pseudocode for SimCLR algorithm
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projection head maps the representation vector into the hidden space of contrastive 
learn. The loss function of the contrastive learning task directly impacts the feature 
extraction capability of the contrastive learning model. Assuming that the view xi and 
the view xj are a positive pair in the given set, the contrast prediction task is to find xj 
when given xi. We take a batch at random with N samples, and each sample will produce 
2 views, so we get 2N views. We don’t explicitly take negative samples directly. When 
given a positive pair, then you can form a negative pair with 2(N-1) samples. Then the 
loss function for a positive pair of examples (i, j) is defined as

where P[k̸=i] is an indicator function evaluating to 1 if [k ̸ = i] and ff denotes a tempera-
ture parameter. The final loss is computed across all positive pairs, both (i, j) and (j, i), in 
a mini-batch.

The architecture and pooling operation of Convolutional Neural Networks (CNNs) 
are pivotal in extracting features from input data, demonstrating proven efficacy in vari-
ous computer vision domains, including image and video processing. In our DNASimCLR 

ℓi,j = − log
exp

(

∼
(

zi, zj
)

/τ
)

∑2N
k=1 P[k �=i] exp (∼ (zi, zk)/τ )

Fig. 4  Data processing flow. The original gene sequence data is one-hot encoded and converted into the 
image form that can be processed by convolutional neural network (“1,0,0,0” is used to express base G, 
“0,1,0,0” to express base A, “0,0,1,0” to express base C, and “0,0,0,1” to express base T.). Then 30% of them are 
randomly selected and masked with “0, 0, 0, 0”

Fig. 5  The Contrastive Learning Framework in This Study. The core concept is to train a feature extraction 
model where feature vectors obtained from masked original DNA sequences through the contrastive 
learning model should be maximally similar; meanwhile, feature vectors from different DNA sequences 
through the same contrastive learning model should be maximally distinct
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framework, we adopt the ResNet-50 architecture as the encoder. ResNet-50, introduced by 
Microsoft Research in 2016 [19], represents a significant leap in deep CNN structures. As 
part of the ResNet (Residual Network) family, this model addresses challenges encountered 
in traditional CNN training, such as gradient disappearance or explosion. Distinguished by 
its depth and large-scale training on the ImageNet dataset, ResNet-50 has showcased out-
standing performance in subsequent evaluations, reshaping industry perceptions of CNN 
networks. A key innovation of ResNet-50 lies in its utilization of residual connections to 
mitigate the issue of gradient disappearance during network training. This approach facili-
tates information propagation across network layers, substantially alleviating the impact 
of gradient disappearance and enabling effective training of deep and intricate neural net-
works. Despite its considerable depth, the model’s stability during training is enhanced 
by the inclusion of residual connections, resulting in superior performance in subsequent 
tasks. The ResNet-50 architecture has exerted a significant influence on the evolution of 
deep learning in computer vision, finding widespread application in image classifica-
tion, object recognition, and video processing. Its success underscores the importance of 
thoughtful architectural design in addressing training challenges, contributing to broader 
advancements in the field.

We conducted a pre-training phase for our model, spanning 100 epochs on all unlabeled 
data with a batch size of 64. To effectively manage GPU running memory, we implemented 
a cumulative gradient strategy. Specifically, after a certain number of pre-training steps, we 
calculated and updated the network parameters based on the accumulated gradient. Subse-
quently, we cleared the gradient to proceed to the next loop (with the default initial cumula-
tive gradient step number set at 36). For optimization, we employed the Adam optimizer 
with a dynamic learning rate following a trapezoidal cycle. The initial learning rate was set 
at 5e-2. To prevent overfitting and conserve computing resources as the model approached 
convergence, we implemented an early stop strategy with 10 ~ 50 epochs. Our model was 
trained using single-precision floating-point operations on a machine equipped with a sin-
gle NVIDIA 3070Ti GPU. After pre-training on a large unlabeled corpus, we successfully 
obtained a gene sequences feature extraction model poised for downstream tasks.

Fine‑tuning phase of classification networks

During the model’s pre-training phase, masked data is employed for training. However, in 
the subsequent fine-tuning training phase, we abstain from using data masks. Instead, we 
leverage the SimCLR model previously trained with unlabeled data and integrate a simple 
fully connected classification neural network for fine-tuning the classification network. The 
architecture of the classification network comprises multiple layers of deep neural networks 
(DNNs). Each layer includes a fully connected layer, a ReLU activation function layer, a 
batch normalization layer, and a dropout layer. The dataset is then split into training and 
test sets. Following the fine-tuning training, the final classification network is obtained, 
ready for deployment in down-stream tasks.

Results and discussion
Datasets and evaluation criteria

To evaluate the effectiveness of our approach, we employed benchmark datasets 
obtained from the NCBI database, accessible at https://​www.​ncbi.​nlm.​nih.​gov/. The first 

https://www.ncbi.nlm.nih.gov/
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dataset, proposed by [1], is a low-complexity metagenomic dataset explicitly designed 
for classification. Its primary objective is the identification of relevant pathogens within 
samples. Authentic sequencing data was obtained from the NCBI database, representing 
bacterial genera such as Bacteroides, Klebsiella, Yersinia, Mycobacterium, Clostridium, 
and Escherichia. The corresponding NCBI SRA accession numbers for these genera are 
ERR1898312, ERR1474981, SRR5117441, SRR5277601, and SRR5344355, respectively. 
This dataset is referred to as the lr-WGS dataset. To enhance the complexity of prob-
lem-solving, we conducted tests on short reads of varying lengths, specifically 500, 1000, 
and 10,000 base pairs. These tests aim to assess the adaptability and performance of our 
approach across different data complexities and lengths.

The second dataset, denoted as the sr-16S dataset, employed in this study encom-
passes 16S rRNA gene regions derived from metagenome data simulations as introduced 
by Fiannaca et  al. [3]. These simulations involve short-read sequencing data depicting 
full-length, high-quality 16S rRNA gene sequences sourced from the RDP database. The 
dataset is represented as short sequences of 250 bp and 1300 bp in length. Within this 
dataset, there are 100 genera within the Proteobacteria phylum, and each genus is repre-
sented by 10 species. This dataset is designed to provide a diverse and comprehensive set 
of sequences for evaluating the performance and adaptability of our approach across dif-
ferent conditions. The last dataset, referred to as the virus-host dataset and proposed by 
[5], serves the purpose of virus-host prediction. It comprises meticulously curated virus 
genomes and annotations, offering a rich source of information covering various virus 
species. The database encompasses both DNA and RNA viruses, with RNA sequences 
encoded as DNA. The dataset is represented as short sequences of 250  bp in length. 
Table 1 provides an overview of the dataset’s attributes.

In this study, accuracy indicators were utilized to evaluate the performance of our 
deep learning model in the classification of microbial gene sequences. The comprehen-
sive nature of this virus-host dataset allows for a thorough assessment of the model’s 
ability to predict virus-host interactions across diverse genomic sequences.

The Performance of DNASimCLR on benchmark datasets

In this article, we evaluated our method, DNASimCLR, using a baseline dataset. The 
evaluation involved a comparative analysis with methods highlighted in the most recent 
CNN-based metagenomic reading classification tool [1]. Following the experimental 
framework outlined earlier, we initiated the process by pre-training the model on our 

Table 1  Properties of the Datasets

Dataset Read length Number of class Number 
of 
samples

lr-WGS 500 bp 6 4,725

1000 bp 6 4,161

10,000 bp 6 418

sr-16S 250 bp 100 28,224

1300 bp 100 1,000

virus-host 250 bp 2 10,774
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baseline dataset. Upon obtaining the pre-trained model, we labeled the baseline dataset 
and proceeded with the classification training of DNA fragments using the same net-
work. The comparative performance between our method and the metagenomic reading 
classification tool [1] on lr-WGS and sr-16S datasets is summarized in Tables 2 and 3 
(Fig. 6).

Additionally, applying a similar approach, we established a classification network on 
the virus-host dataset, achieving notably high prediction accuracy that surpasses the 
classification accuracy reported in the original paper of the latest CNN-based viral gene 
sequence reading host prediction tool [5]. The comparison between our method and the 
method mentioned in the paper [5] and paper [34] on the virus-host dataset, as illus-
trated in Table  4, underscores the superior performance of our model. These results 
highlight the effectiveness and robustness of the DNASimCLR framework in diverse 
genomics classification tasks.

Furthermore, to evaluate the feature extraction capabilities of our model, DNASim-
CLR, we performed feature extraction on the lr-WGS dataset after pretraining. Initially, 

Table 2  DNASimCLR, CNN-RAI and RAIphy accuracy (%) results for lr-WGS Metagenomic taxonomic 
classification datasets

Method 500bp_Acc 1000bp_Acc 10000bp_Acc

CNN-RAI [1] 80.84 87.38 90.64

RAIphy [3] 67.44 75.96 95.00

DNASimCLR 84.42 89.39 95.14

Table 3  DNASimCLR, CNN-RAI and RAIphy accuracy (%) results for sr-16S Metagenomic taxonomic 
classification datasets

Method 250bp_Acc 1300bp_Acc

CNN-RAI [1] 76.47 98.44

RAIphy [3] 83.00 97.00

DNASimCLR 94.00 99.99

Fig. 6  Model accuracy results for sr-WGS and lr-WGS data with various read lengths
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we obtained the eigenvector of the original data, and then employed linear discriminant 
analysis (LDA) to reduce the dimensionality to 2 dimensions for visualization purposes. 
As depicted in Fig. 7, it is evident from the visualization that our model demonstrates a 
remarkable capacity for feature extraction following pre-training. This visualization pro-
vides insights into the distribution and separability of features extracted by our model, 
validating its effectiveness in capturing meaningful representations from the input data.

Conclusions
Even the most comprehensive microbial gene databases currently available exhibit chal-
lenges with missing data and labels, significantly limiting the effectiveness of numer-
ous supervised deep learning methods. Addressing this incompleteness is an urgent 
challenge that demands immediate attention. In this paper, we propose a neural net-
work feature extraction method based on contrastive learning to address the issue of 
representation learning for microbial gene sequence data. The method involves two 
key steps: first, pre-training on unlabelled gene sequence data, and then using labelled 
data for fine-tuning to obtain classification networks for downstream tasks. To process 
the data, one-hot coding is employed to encode the DNA sequence, and the SimCLR 
framework is utilized to complete the pre-training model, with RESNET50 selected 

Table 4  Comparison of DNASimCLR with other tools in virus-host dataset (Acc. (Accuracy): The 
overall correctness of predictions. Prec. (Precision): The accuracy of positive predictions. Rec. (Recall): 
The proportion of actual positives correctly predicted. Spec. (Specificity): The proportion of actual 
negatives correctly predicted.)

Method Acc Prec Rec Spec

CNN [5] 87.8 89.9 85.2 90.4

LSTM [5] 84.7 86.0 82.8 86.5

k-NN [34] 75.5 76.3 73.9 77.1

BLAST [34] 78.4 98.3 79.2 77.6

VirusBERTHP [34] 99.1 98.8 99.3 98.8

DNASimCLR 99.9 99.8 99.7 99.8

Fig. 7  Effect of linear discriminant analysis dimensionality reduction on Ir-WGS data set.We performed 
a random selection of 500 sample points from each genus present in the dataset. Subsequently, our 
pre-trained model was applied to generate 128-dimensional feature vectors for each selected sample. 
Following this, we labeled individual vectors and reduced their dimensions to two using Linear Discriminant 
Analysis (LDA) for visualization purposes. The resulting visual representation indicates the feature extraction 
capability of the DNASimCLR model post pre-training
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as the feature extraction module. In terms of performance evaluation, the study tests 
genomic databases from different sources. For metagenomic segment classification and 
virus host prediction, the proposed method demonstrates significant advantages over 
NN-based models on short sequence data, achieving significantly improved accuracy. 
The contributions of this study are multifaceted. Firstly, contrastive learning is applied 
to the representation learning of microbial gene sequence data for the first time. A novel 
data processing method for gene data is developed, overcoming the limitation that the 
SimCLR method is traditionally applicable only to image data. This expansion broad-
ens the application field of contrastive learning. Secondly, the microbial gene sequence 
data classifier proposed in this study exhibits a substantial improvement in performance, 
opening new opportunities for the development of convolutional neural network meth-
ods in processing biological data. Additionally, due to the separation of the pre-training 
stage and the classification stage, the method can be easily applied to other genomics 
problems, such as protein function prediction and new virus detection. In conclusion, 
DNASimCLR represents an advanced exploration of microbial gene sequence feature 
extraction utilizing a self-supervised learning model. This approach holds the potential 
to introduce innovative concepts in the field of bioinformatics, providing a pathway to 
derive biological sequence features through convolutional neural networks.
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