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Abstract: Echocardiography (Echo), a widely available, noninvasive, and portable bedside imaging
tool, is the most frequently used imaging modality in assessing cardiac anatomy and function in
clinical practice. On the other hand, its operator dependability introduces variability in image acqui-
sition, measurements, and interpretation. To reduce these variabilities, there is an increasing demand
for an operator- and interpreter-independent Echo system empowered with artificial intelligence
(AI), which has been incorporated into diverse areas of clinical medicine. Recent advances in AI
applications in computer vision have enabled us to identify conceptual and complex imaging features
with the self-learning ability of AI models and efficient parallel computing power. This has resulted
in vast opportunities such as providing AI models that are robust to variations with generalizability
for instantaneous image quality control, aiding in the acquisition of optimal images and diagnosis
of complex diseases, and improving the clinical workflow of cardiac ultrasound. In this review, we
provide a state-of-the art overview of AI-empowered Echo applications in cardiology and future
trends for AI-powered Echo technology that standardize measurements, aid physicians in diagnosing
cardiac diseases, optimize Echo workflow in clinics, and ultimately, reduce healthcare costs.

Keywords: cardiac ultrasound; echocardiography; artificial intelligence; portable ultrasound

1. Introduction

Echocardiography (Echo), also known as cardiac ultrasound (CUS), is currently the
most widely used noninvasive imaging modality for assessing patients with various car-
diovascular disorders. It plays a vital role in evaluation of patients with symptoms of
heart disease by identifying structural as well as functional abnormalities and assessing
intracardiac hemodynamics. However, accurate echo measurements can be hampered
by variability between interpreters, patients, and operators and image quality. Therefore,
there is a clinical need for standardized methods of echo measurements and interpretation
to reduce these variabilities. Artificial-intelligence-empowered echo (AI-Echo) can poten-
tially reduce inter-interpreter variability and indeterminate assessment and improve the
detection of unique conditions as well as the management of various cardiac disorders.

In this state-of-the-art review, we will provide a brief background on transthoracic
echocardiography (TTE) and artificial intelligence (AI) followed by a summary of the
advances in echo interpretation using deep learning (DL) with its self-learning ability. Since
DL approaches have shown superior performance compared to machine-learning (ML)
approaches based on hand-crafted features, we focus on DL progress in this review and
refer the readers to other reviews [1,2] for ML approaches used to interpret echo. The AI
advances could potentially allow objective evaluation of echocardiography, improving
clinical workflow, and reducing healthcare costs. Subsequently, we will present currently
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available AI-Echo applications, delve into challenges of current AI applications using DL,
and share our view on future trends in AI-Echo.

1.1. Transthoracic Echocardiogram

Transthoracic echocardiogram transmits and receives sound waves with frequencies
higher than human hearing using an ultrasound transducer. It generates ultrasound waves
and transmits to the tissue and listens to receive the reflected sound wave (echo). The
reflected echo signal is recorded to construct an image of the interrogated region. The
sound waves travel through soft tissue medium with a speed of approximately 1540 m/s.
The time of flight between the transmitted and received sound waves is used to locate
objects and construct an image of the probed area. The recorded echo data can be either
a single still image or a movie/cine clip over multiple cardiac cycles. CUS has several
advantages compared to cardiac magnetic resonance, cardiac computed tomography, and
cardiac positron emission tomography imaging modalities. CUS does not use ionizing
radiation, is less expensive, portable for point-of-care (POCUS) applications, and provides
actual real-time imaging. It can be carried to a patient’s bedside for examining patients and
monitoring changes over time. Disadvantages of TTE include its dependence on operator
and interpreter skill, with variability in data acquisition and interpretation. In addition to
operator variability, it includes patient specific variability (e.g., signal-to-noise ratio and
limited acoustic window due to anatomical or body mass differences) and machine specific
variability (e.g., electronic noise and post-processing filters applied to acquired images).
Image quality plays an important factor for accurate measurements. Suboptimal image
quality can affect all measurements and can result in misdiagnosis.

Diverse image types are formed by using cardiac ultrasound (Figure 1). The most
common types used in clinics are:

B-mode: It is also called brightness mode (B-mode), which is the most well-known
US image type. An ultrasound beam is scanned across the tissue to construct a 2D cross
section image of the tissue.

M-mode: Motion mode (M-mode) is used to examine motion over time. For example,
it provides a single scan line of the heart, and all of the reflectors along this line are shown
along the time axis to measure temporal resolution of the cardiac structures.

Doppler ultrasound: A change in the frequency of a wave occurs when the source and
observer are moving relative to each other, this is called the Doppler effect. An US wave
is transmitted with a specific frequency through an ultrasound probe (the observer). The
US waves that are reflected from moving objects (e.g., red blood cells in vessels) return
to the probe with a frequency shift. This frequency shift is used to estimate the velocity
of the moving object. In blood flow, the velocity of red blood cells moving towards and
away from the probe is recorded to construct Doppler signals. The velocity of information
overlaid on top of a B-mode anatomical image to show color Doppler images of blood flow.

Contrast enhanced ultrasound (CEUS): CEUS is a functional imaging that suppresses
anatomical details but visualizes blood pool information. It exploits the non-linear response
of ultrasound contrast agents (lipid coated gas bubbles). Generally, two consecutive US
signals are propagated through the same medium, and their echo response is subtracted
to obtain contrast signal. Since the tissue generates linear echo response, the subtraction
cancels out the tissue signal, and only the difference signal from non-linear responses of
bubbles remains. This imaging technique is used to enhance cardiac chamber cavities when
B-mode US provides poor quality images. It is useful to detect perfusion abnormalities in
tissues and enhance the visibility of tissue boundaries.

Strain imaging: This technique detects myocardial deformation patterns such as
longitudinal, radial, and circumferential deformations, and early functional abnormalities
before they become noticeable as regional wall motion abnormalities or reduced ejection
fraction on B-mode cardiac images.
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Figure 1. Sample US images showing different US modes. (A) B-mode image of the apical 4 chamber view of a heart.
(B) Doppler image of mitral inflow. (C) Contrast enhanced ultrasound image of left ventricle. (D) Strain imaging of the
left ventricle.

1.2. Artificial Intelligence

Artificial intelligence (AI) is considered to be a computer-based system that can
observe an environment and takes actions to maximize the success of achieving its goals.
Some examples include a system that has the ability of sensing, reasoning, engaging,
and learning, are computer vision for understanding digital images, natural language
processing for interaction between human and computer languages, voice recognition
for detection and translation of spoken languages, robotics and motion, planning and
organization, and knowledge capture. ML is a subsection of AI that covers the ability of a
system to learn about data using supervised or unsupervised statistical and ML methods
such as regression, support vector machines, decision trees, and neural networks. Deep
learning (DL), which is a subclass of ML, learns a sequential chain of pivotal features from
input data that maximizes the success of the learning process with its self-learning ability.
This is different from statistical ML algorithms that require handcrafted feature selection [3]
(Figure 2).
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Figure 2. The context of artificial intelligence, machine learning, and deep learning. SVM: Support
Vector Machine. CNN: convolutional neural networks, R-CNN: recurrent CNN, ANN: artificial
neural networks.

Artificial neural networks (ANN) are the first DL network design where all nodes
are fully connected to each other. It mimics biological neurons for creating representation
from an input signal, including many consecutive layers that learn a hierarchy of features
from an input signal. ANN and the advance in graphics processing units (GPU) processing
power have enabled the development of deep and complex DL models with simultaneous
multitasking at the same time. DL models can be trained with thousands or millions
of samples to gain robustness to variations in data. The representation power of DL
models is massive and can create representation for any given variation of a signal. Recent
accomplishments of DL, especially in image classification and segmentation applications,
made it very popular in the data science community. Traditional ML methods use hand-
crafted features extracted from data and process them in decomposable pipelines. This
makes them more comprehensible as each component is explainable. On the other hand,
they tend to be less generalizable and robust to variations in data. With DL models, we
give up interpretability in exchange for obtaining robustness and greater generalization
ability, while generating complex and abstract features.

State-of-the-art DL models have been developed for a variety of tasks such as object de-
tection and segmentation in computer vision, voice recognition, and genotype/phenotype
prediction. There are different types of models that include convolutional neural networks
(CNNs), deep Boltzmann machines, stacked auto-encoders [4], and deep belief neural
networks [5]. The most commonly used DL method for processing images that are CNNs
as fully connected ANN is computationally heavy for 2D/3D images and requires extensive
GPU memory. CNNs share weights across each feature map or convolutional layers to
mitigate this. CNN approaches have gained enormous awareness, achieving impressive
results in the ImageNet [6–8] competition in 2012 [8], which includes natural photographic
images. They were utilized to classify a dataset of around a million images that comprise
a thousand diverse classes, achieving half the error rates of the most popular traditional
ML approaches [8]. CNNs have been widely utilized for medical image classification
and segmentation tasks with great success [3,9–12]. Since DL algorithms outperform ML
algorithms in general and exploit the GPU processing power, it allows real-time process-
ing of US images. We will only focus on DL applications of AI-powered US cardiology
in this review.
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To assess the performance of ML models, data are generally split into training, vali-
dation, and test sets. The training set is used for learning about the data. The validation
set is employed to establish the reliability of learning results, and the test set is used to
assess the generalizability of a trained model on the data that are never seen by the model.
When training samples are limited, k-fold cross validation approaches (e.g., leave-one-out,
five-fold, or ten-fold cross validation) are utilized. In cross-validation, the data are divided
randomly into k equal sized pieces. One piece is reserved for assessing the performance
of a model, and the remaining pieces (k-1) are utilized for training models. The training
process is typically performed in a supervised way, which involves ground truth labels
for each input data and minimizes a loss function over training samples iteratively, as
shown in Figure 3. Supervised learning is the most common training approach for ML,
but it requires a laborious ground truth label generation. In medical imaging, ground
truth labels are generally obtained from clinical notes for diagnosis or quantification. Fur-
thermore, manual outlining of structures by experts are used to train ML models for
segmentation tasks.

Figure 3. A framework of training a deep-learning model for classification of myocardial diseases. Operations between
layers are shown with arrows. SGD: Stochastic Gradient Descent.

2. Methods and Results: Automated Echo Interpretation

We performed a thorough analysis of the literature using Google Scholar and PubMed
search engines. We included peer-reviewed journal publications and conference proceed-
ings in this field (IEEE Transactions on Medical Imaging, IEEE Journal of Biomedical
and Health Informatics, Circulation, Nature, and conference proceedings from SPIE, the
Medical Image Computing and Computer Assisted Intervention Society, the Institute of
Electrical and Electronics Engineers, and others) that describe the application of DL to
cardiac ultrasound images before 15 January 2021. We included a total of 14 journal papers
and three conference proceedings that are relevant to the scope of this review (see Figure 4
for the detailed flowchart for the identification, screening, eligibility, and inclusion). We
divided reports into three groups on the basis of the task performed: view identification
and quality control, image segmentation and quantification, and disease diagnosis.
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Figure 4. The flowchart of systematic review that includes identification, screening, eligibility, and inclusion.

Current Echo-AI applications require several successive processing steps such as view
labelling and quality control, segmentation of cardiac structures, echo measurements, and
disease diagnosis (Figure 5). AI-Echo can be used for low-cost, serial, and automated evalu-
ation of cardiac structures and function by experts and non-experts in cardiology, primary
care, and emergency clinics. This would also allow triaging incoming patients with chest
pain in an emergency department by providing preliminary diagnosis and longitudinally
monitoring patients with cardiovascular risk factors in a personalized manner.

Figure 5. The flowchart of automated artificial-intelligence-empowered echo (AI-Echo) interpretation pipeline using a chain
approach. QC: Quality Control.
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With the advancing ultrasound technology, the current clinical cart-based ultrasound
systems could be replaced with portable point-of-care ultrasound (POCUS) systems or
could be used together. GE Vscan, Butterfly IQ, and Philips Lumify are popular POCUS
devices. A single Butterfly IQ probe contains 9000 micro-machined semiconductor sensors
and emulates linear, phased, and curved array probes. While the Butterfly IQ probe
using ultrasound-on-chip technology could be used for imaging the whole body, Philips
Lumify provides different probes for each organ (e.g., s4-1 phased array probe for cardiac
applications). GE Vscan comes with two transducers placed in one probe and can be
used for scanning deep and superficial structures. Using POCUS devices powered with
cloud-based AI-Echo interpretation at point of care locations could significantly reduce
the US cost and increase the utility of AI-Echo by non-experts in primary and emergency
departments (see Figure 6). A number of promising studies using DL approaches have
been published for classification of standard echo views (e.g., apical and parasternal
views), segmentation of heart structures (e.g., ventricle, atrium, septum, myocardium,
and pericardium), and prediction of cardiac diseases (e.g., heart failure, hypertrophic
cardiomyopathy, cardiac amyloidosis, and pulmonary hypertension) in recent years [13–
16]. In addition, several companies such as TOMTEC IMAGING SYSTEMS GMBH, Munich,
Germany and Ultromics, Oxford, United Kingdom have already obtained premarket FDA
clearance on auto ejection fraction (EF) and echo strain packages using artificial intelligence.
The list of companies and their provided AI tools is shown in Table 1.

Figure 6. A schematic diagram of AI (artificial intelligence) interpretation of echocardiography
images for preliminary diagnosis and triaging patients in emergency and primary care clinics.
POCUS: point of care ultrasound.
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Table 1. The list of commercial software packages that provides automated measurements
or diagnosis.

Company Software Package AI-Empowered Tools

Siemens Medical Solutions
Inc., USA

syngo Auto Left Heart,
Acuson S2000 US system.

Auto EF, Auto LV and LA volumes, Auto
Strain for manually selected views.

GE Healthcare, Inc., USA Ultra Edition Package,
Vivid Ultrasound Systems

Auto EF, Auto LV and LA volumes,
Auto Strain for manually selected views

TOMTEC Imaging Systems
GmbH, Germany

Tomtec-Arena/
Tomtec-Zero

Auto EF, Auto LV and LA volumes,
Auto Strain for manually selected views

Ultromics Ltd.,
United Kingdom Echo Go/Echo Go Pro

Auto EF, Auto LV and LA volumes,
Auto Strain, Auto identification of

CHD (Fully automated)

Dia Imaging
Analysis Ltd., Israel

DiaCardio’s LVivoEF
Software/LVivo Seamless

Auto EF and Auto standard echo view
identification (Fully automated)

Caption Health, Inc., USA The Caption
Guidance software

AI tool for assisting to capture images
of a patient’s heart

EF: ejection fraction. CHD: coronary heart disease.

2.1. View Identification and Quality Control

A typical TTE study includes the acquisition of multiple cine clips of the heart’s cham-
bers from five standardized windows that are left parasternal window (i.e., parasternal long
and short axis views), apical window (i.e., two, three, four, five chamber views), subcostal
window (i.e., four chamber view, long axis inferior vena cava view), and suprasternal notch
window (i.e., aortic arch view), right parasternal window (i.e., ascending aorta view). In
addition to these, the study includes several other cine clips of color Doppler, strain imag-
ing, and 3D ultrasound and still images of valves, walls, and the blood vessels (e.g., aorta
and pulmonary veins). View identification and quality control are essential prerequisite
steps for a fully automated echo interpretation.

Zhang et al. [16,17] presented a fully automated echo interpretation pipeline that
includes 23 view classifications. They trained a 13-layer CNN model with 7168 labelled
cine clips and used five-fold cross validation to assess the performance of their model. In
evaluation, they selected 10 random frames per clip and averaged the resulting probabilities.
The overall accuracy of their model was 84% at an individual image level. They also
reported that distinguishing the various apical views was the greatest challenge in the
setting of partially obscured left ventricles. They made their source code and model weights
publicly available at [18]. Mandani et al. [19] presented the classification of 15 standard
echo views using DL. They trained a VGG CNN network with 180,294 images of 213 studies
and tested their model on 21,747 images of 27 studies. They obtained 91.7% overall accuracy
on the test dataset at a single image level and 97.8% overall accuracy when considering the
model’s top two guesses. Akkus et al. [20] trained a CNN inception model with residual
connections on 5544 images of 140 patients for predicting 24 Doppler image classes and
automating Doppler mitral inflow analysis. They obtained overall accuracy of 97% on the
test set that included 1737 images of 40 patients.

Abdi et al. [21,22] trained a fully connected CNN with 6196 apical four chamber (A4C)
images that were scored between 0 to 5 to assess the A4C quality of echo images. They used
three-fold cross validation and reported an error comparable to intra-rater reliability (mean
absolute error: 0.71 ± 0.58). Abdi et al. [23] later extended their previous work and trained
a CNN regression architecture that includes five regression models with the same weights
in the first few layers for assessing the quality of cine loops across five standard view
planes (i.e., apical 2, 3, and 4 chamber views and parasternal short axis views at papillary
muscle and aortic valve levels). Their dataset included 2435 cine clips, and they achieved
an average of 85% accuracy compared to gold standard scores assigned by experienced
echo sonographers on 20% of the dataset. Zhang et al. [16,17] calculated the averaged
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probability score of views classification across all videos in their study to define an image
quality score for each view. They assumed that poor quality cine clips tended to have a
more ambiguous view assignment, and the view classification probability could be used
for quality assessment. Dong et al. [24] presented a generic quality control framework for
fetal ultrasound cardiac four chamber planes (CFPs). Their proposed framework consists
of three networks that roughly classify four-chamber views from the raw data, determine
the gain and zoom of images, and detect the key anatomical structures on a plane. The
overall quantitative score of each CFP was achieved based on the output of the three
networks. They used five-fold cross validation to assess their model across 2032 CFPs and
5000 non-CFPs and obtained a mean average precision of 93.52%. Labs et al. [25] trained a
hybrid model including CNN and LSTM layers to assess the quality of apical four-chamber
view images for three proposed attributes (i.e., foreshortening, gain/contrast, and axial
target). They split a dataset of 1039 unique apical four-chamber views into 60:20:20% ratio
for training, validation, and testing, respectively, and achieved an average accuracy of 86%
on the test set.

View identification and quality assessment of cine clips are the most important pieces
of a fully automated echo interpretation pipeline. As shown in Table 2, there is an error
range of 3–16% in the current studies for both view identification and quality control. The
proposed models were generally trained with a dataset from a single or a few vendors or
a single center. Apart from the study of Zhang et al. [16,17], none of the studies shared
their source code and model weights for comparisons. In some studies, customized CNN
models were used, but not enough evidence or comparisons were shown to support that
their choices perform better than the state-of-the-art CNN models such as Resnet, Inception,
and Densenet.

Table 2. Deep-learning-based AI studies for view identification and quality assessment. MAE: mean absolute error.

Task DL Model Data/Validation Performance

Zhang et al. [16,17] 23 standard echo view
classification

Customized 13-layer
CNN model

5-fold cross validation/7168 cine
clips of 277 studies

Overall accuracy: 84% at
individual image level

Mandani et al. [19] 15 standard echo view
classification VGG [26] Training: 180,294 images of 213 studies

Testing: 21,747 images of 27 studies

Overall accuracy: 97.8%
at individual image
level and 91.7% at

cine-lip level

Akkus et al. [20] 24 Doppler image classes Inception_resnet [27] Training: 5544 images of 140 studies
Testing: 1737 images of 40 studies Overall accuracy of 97%

Abdi et al. [21,22]
Rating quality of apical

4 chamber views
(0–5 scores)

A customized fully
connected CNN 3-fold cross validation/6196 images MAE: 0.71 ± 0.58

Abdi et al. [23] Quality assessment for
five standard view planes

CNN regression
architecture

Total dataset: 2435 cine clips
Training: 80%
Testing: 20%

Average of 85%
accuracy

Dong et al. [24]
QC for fetal ultrasound

cardiac four
chamber planes

Ensembled three
CNN model 5-fold cross validation (7032 images) Mean average precision

of 93.52%.

Labs et al. [25] Assessing quality of apical
4 chamber view

Hybrid model including
CNN and LSTM layers

Training/validation/testing
(60/20/20%) of in total of 1039 images

Average accuracy of 86%
on the test set

2.2. Image Segmentation and Quantification

Partitioning of an identified view into the region of interests such as left/right ventricle
or atrium, ventricular septum, and mitral/tricuspid valves is necessary to quantify certain
biomarkers such as ejection fraction, volume changes, and velocity of septal or distal
annulus. Several studies have used DL methods to segment left ventricles from apical four
and two chamber views.

Zhang et al. [16,17] presented a fully automated echo interpretation pipeline that
includes segmentation of cardiac chambers in five common views and quantification of
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structure and function. They used five-fold cross validation on 791 images that have manual
segmentation of left ventricle and reported the intersection over union metric ranging from
0.72 to 0.90 for the performance of their U-Net-based segmentation model. In addition,
they produced automated measurements such as LV ejection fraction (LVEF), LV volumes,
LV mass, and global longitudinal strain from the resulting segmentations. Compared to
manual measurements, median absolute deviation of 9.7% (n = 6407 studies) was achieved
for LVEF; median absolute deviation of 15–17% was obtained for LV volume and mass
measurements; median absolute deviation of 7.5% (n = 419) and 9.0% (n = 110) was obtained
for strain. They concluded that they obtained cardiac structure measurements comparable
with values in study reports. Leclerc et al. [13] studied the state-of-art encoder–decoder type
DL methods (e.g., U-Net [28]) for segmenting cardiac structures and made a large dataset
(500 patients) publicly available with segmentation labels of end diastole and systole frames.
The full dataset is available for download at [29]. They showed that their U-Net-based
model outperformed the state-of-the-art non-deep-learning methods for measurements of
end-diastolic and end-systolic left ventricular volumes and LVEF. They achieved a mean
correlation of 0.95 and an absolute mean error of 9.5 mL for LV volumes and a mean
correlation coefficient of 0.80 and an absolute mean error of 5.6% for LVEF. Jafari et al. [30]
presented a recurrent CNN and optical flow for segmentation of the left ventricle in echo
images. Jafari et al. [14] also presented biplane ejection fraction estimation with POCUS
using multi-task and learning and adversarial training. The performance of the proposed
model for the segmentation of LV was an average Dice score of 0.92 and, for the automated
ejection fraction, was shown to be around an absolute error of 6.2%. Chen et al. [31]
proposed an encoder–decoder type CNN with multi-view regularization to improve LV
segmentation. The method was evaluated on 566 patients and achieved an average Dice
score of 0.88. Oktay et al. [32] incorporated anatomical prior knowledge in their CNN
model that allows following the global anatomical properties of the underlying anatomy.
Ghorbani et al. [33] used a custom CNN model, named EchoNet, to predict left ventricular
end systolic and diastolic volumes (R2 = 0.74 and R2 = 0.70), and ejection fraction (R2 = 0.50).
Ouyang et al. [15] trained a semantic segmentation model using atrous convolutions
on echocardiogram videos. Their model obtained Dice similarity coefficient of 0.92 for
left ventricle segmentation of apical four-chamber view and used a spatiotemporal 3D
CNN model with residual connections and predicted ejection fraction with mean absolute
errors of 4.1 and 6% for internal and external datasets, respectively. Ouyang et al. [15]
de-identified 10,030 echocardiogram videos, resized them into 112 × 112 pixels, and made
their dataset publicly available at [34].

U-Net is the most common DL model used for echo image segmentation. As shown
in Table 3, the error range for LVEF is ranging between 4 and 10%, while it ranges between
10 and 20% for LV and LA volume measurements.

2.3. Disease Diagnosis

Several studies have shown that DL models can be used to assess cardiac diseases
(see Table 4). Zhang et al. [16,17] presented a fully automated echo interpretation pipeline
for disease detection. They trained a VGG [26] network using three random images per
video as an input and provided two prediction outputs (i.e., diseased or normal). The
ROC curve performance of their model for prediction of hypertrophic cardiomyopathy,
cardiac amyloidosis, and pulmonary hypertension were 0.93, 0.87, and 0.85, respectively.
Ghorbani et al. [33] trained a customized CNN model that includes inception connec-
tions, named EchoNet, on a dataset of more than 1.6 million echocardiogram images from
2850 patients to identify local cardiac structures, estimate cardiac function, and predict
systemic risk factors. The proposed CNN model identified the presence of pacemaker leads
with AUC = 0.89, enlarged left atrium with AUC = 0.86, and left ventricular hypertrophy
with AUC = 0.75. Ouyang et al. [15] trained a custom model that includes spatiotemporal
3D convolutions with a residual connection network together with semantic segmentation
of the left ventricle to predict the presence of heart failure with reduced ejection fraction.
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The output of the spatiotemporal network and semantic segmentation were combined to
classify heart failure with reduced ejection fraction. Their model achieved an area under
the curve of 0.97 for predicting heart failure with reduced ejection fraction. Omar et al. [35]
trained a modified VGG-16 CNN model on a 3D Dobutamine stress echo dataset to detect
wall motion abnormalities and compared its performance to hand-crafted approaches:
support vector machines (SVM) and random forests (RF). They achieved slightly better ac-
curacy with the CNN model: RF (72.1%), SVM (70.5%), and CNN (75.0%). In another study,
Kusunose et al. [36] investigated whether a CNN model could provide improved detection
of wall motion abnormalities. They presented that the area under the AUC produced by
the deep-learning algorithm was comparable to that produced by the cardiologists and
sonographer readers (0.99 vs. 0.98, respectively) and significantly higher than the AUC
result of the resident readers (0.99 vs. 0.90, respectively). Narula et al. [37] trained SVM, RF,
and artificial neural network (ANN) with hand-crafted echo measurements (i.e., LV wall
thickness, end-diastolic volume, end-systolic volume, and ejection fraction, pulsed-wave
Doppler-derived transmitral early diastolic velocity (E), the late diastolic atrial contraction
wave velocity (A), and the ratio E/A to differentiate hypertrophic cardiomyopathy (HCM)
from physiological hypertrophy seen in athletes (ATH). They reported overall sensitivity
and specificity of 87 and 82%, respectively.

Unlike other hand-crafted feature-based ML approaches, the DL approaches may
extract features from data beyond human perception. DL-based AI approaches have the
potential to support accurate diagnosis and discovering crucial features from echo images.
In the near future, these tools may aid physicians in diagnosis and decision making and
reduce the misdiagnosis rate.

Table 3. Deep-learning-based AI studies for image segmentation and quantification. MAD: mean absolute difference. LVEF:
left ventricle ejection fraction.

Task DL Model Data/Validation Performance

Zhang et al. [16,17]

LV/LA segmentation;
LVEF, LV and LA

volumes, LV mass, global
longitudinal strain

U-Net [28]

LV segmentation: 5-fold cross
validation on 791 images; LV
volumes: 4748 measurements;
LV mass: 4012 measurements;

strain: 526 studies

IOU: 0.72–0.90 for LV
segmentation; MAD of 9.7%

for LVEF; MAD of 15–17% for
LV/LA volumes and LV mass;

MAD of 9% for strain.

Leclerc et al. [13] LVEF, LV volumes U-Net [28] 500 patients LVEF: AME of 5.6%
LV volumes: AME of 9.7 mL

Jafari et al. [14] LV segmentation and
bi-plane LVEF

A shallow U-Net with
multi-task learning and

adversarial training

854 studies split into 80%
training and 20% testing sets

DICE of 0.92 for
LV segmentation;

MAE of 6.2% for LVEF

Chen et al. [31]
LV segmentation in

apical 2, 3, 4, or
5 chamber views

An encoder–decoder type
CNN with multi-view

regularization

Training set: 33,058 images;
test set: 8204 images Average DICE of 0.88

Oktay et al. [32] LV segmentation;
LVEF

Anatomically constrained
CNN model

CETUS’14 3D US challenge
dataset. (training set:

15 studies; test set: 30 studies)

DICE of 0.91 ± 0.23 for LV
segmentation;

correlation of 0.91 for LVEF

Ghorbani et al. [33]
LV systolic and

diastolic volumes;
LVEF

A customized CNN model
(EchoNet) for semantic

segmentation

Training set: 1.6 million images
from 2850 patients;

test set: 169,000 images from
373 studies

Systolic and diastolic volumes
(R2 = 0.74 and R2 = 0.70);

R2 = 0.50 for LVEF

Ouyang et al. [15] LVEF 3D CNN model with
residual connections

Training set: 7465 echo videos;
internal test dataset (n = 1277);
external test dataset (n = 2895)

MAE of 4.1% and 6% for
internal and external datasets
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Table 4. Deep-learning-based AI studies for disease diagnosis. AUC: area under the curve.

Task DL Model Data/Validation Performance

Zhang et al. [16,17]

Diagnosis of hypertrophic
cardiomyopathy (HCM),

cardiac amyloidosis
(amyloid), and pulmonary

hypertension (PAH)

VGG [26]

HCM: 495/2244
Amyloid:179/804

PAH:584/2487
(Diseased/Control)

5-fold cross validation

Hypertrophic
cardiomyopathy: AUC of 0.93;
cardiac amyloidosis: AUC of

0.87; pulmonary hypertension:
AUC of 0.85

Ghorbani et al. [33]

Diagnose presence of
pacemaker leads; enlarged

left atrium;
LV hypertrophy

A customized
CNN model

Training set: 1.6 million images
from 2850 patients;

test set: 169,000 images from 373
studies

Presence of pacemaker leads
with AUC = 0.89; enlarged left
atrium with AUC = 0.86, left
ventricular hypertrophy with

AUC = 0.75.

Ouyang et al. [15] Predict presence of HF
with reduced EF

3D convolutions with
residual connection

Training set: 7465 echo videos;
internal test dataset (n = 1277);
external test dataset (n = 2895)

AUC of 0.97

Omar et al. [35] Detecting wall motion
abnormalities Modified VGG-16 [26] 120 echo studies. One-leave-out

cross validation

Accuracy: RF = 72.1%,
SVM = 70.5%
CNN = 75.0%

Kusunose et al. [36] Detecting wall motion
abnormalities (WMA) Resnet [38]

300 patients with WMA +100
normal control. Training = 64%

Validation:16%
Test: 20%

AUC of 0.99

Narula et al. [37] Differentiate HCM
from ATH A customized ANN 77 ATH and 62 HCM patients.

Ten-fold cross validation
Sensitivity: 87%
Specificity: 82%

3. Discussion and Outlook

Automated image interpretation that mimics human vision with traditional machine
learning has existed for a long time. Recent advances in parallel processing with GPUs
and deep-learning algorithms, which extract patterns in images with their self-learning
ability, have changed the entire automated image interpretation practice with respect to
computation speed, generalizability, and transferability of these algorithms. AI-empowered
echocardiography has been advancing and moving closer to be used in routine clinical
workflow in cardiology due to the increased demand for standardizing acquisition and
interpretation of cardiac US images. Even though DL-based methods for echocardiography
provide promising results in diagnosis and quantification of diseases, AI-Echo still needs
to be validated with larger study populations including multi-center and multi-vendor
datasets. High intra-/inter-variability in echocardiography makes standardization of image
acquisition and interpretation challenging. However, AI-Echo will provide solutions to
mitigate operator-dependent variability and interpretability. AI applications in cardiac US
are more challenging than those in cardiac CT and MR imaging modalities due to patient-
dependent factors (e.g., obesity, limited acoustic window, artifacts, and signal drops) and
natural US speckle noise pattern. These factors that affect US image quality will remain as
challenges with cardiac ultrasound.

Applications of DL in echocardiography are rapidly advancing as evidenced by the
growing number of studies recently. DL models have enormous representation power
and are hungry for large amounts of data in order to obtain generalization ability and
stability. Creating databases with large datasets that are curated and have good quality
data and labels is the most challenging and time-consuming part of the whole AI model
development process. Although it has been shown that AI-echo applications have superb
performance compared to classical ML methods, most of the models were trained and
evaluated on small datasets. It is important to train AI models on large multi-vendor
and multi-center datasets to obtain generalization and validate on large multi-vendor
datasets to increase reliability of a proposed model. An alternative way to overcome
the limitation of having small training datasets would be augmenting the dataset with
realistic transformations (e.g., scaling, horizontal flipping, translations, adding noise, tissue
deformation, and adjusting image contrast) that could help improve generalizability of AI
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models. On the other hand, realistic transformations need to be used to genuinely simulate
variations in cardiac ultrasound images, and transformations-applied images should not
create artifacts. Alternatively, generative adversarial networks, which include a generator
and a discriminator model, are trained until the model generates images that are not
separable by the discriminator. This could be used to generate realistic cardiac ultrasound
B-mode images of the heart. Introducing such transformations during the training process
will make AI models more robust to small perturbations in input data space.

Making predictions and measurements based on only 2D echo images could be
considered as a limitation of AI-powered US systems. Two-dimensional cross section
images include limited information and do not constitute the complete myocardium.
Training AI models on 3D cardiac ultrasound data that include the entire heart or the
structure of interest would potentially improve the diagnostic accuracy of an AI model.

It is important to design AI models that are transparent for the prediction of any
disease from medical images. The AI models developed for diagnosis of a disease must elu-
cidate the reasons and motivations behind their predictions in order to build trust in them.
Comprehension of the inner mechanism of an AI model necessitates interpreting the activity
of feature maps in each layer [39–41]. However, the extracted features are a combination of
sequential layers and become complicated and conceptual with more layers. Therefore, the
interpretation of these features become difficult compared to handcrafted imaging features
in traditional ML methods. Traditional ML methods are designed for separable components
that are more understandable, since each component of ML methods has an explanation
but usually is not very accurate or robust. With DL-based AI models, the interpretability is
given up for the robustness and complex imaging features with greater generalizability.
Recently, a number of methods have been introduced about what DL models see and how
to make their predictions. Several CNN architectures [26,28,38,42,43] employed techniques
such as deconvolutional networks [44], gradient back-propagation [45], class activation
maps (CAM) [41], gradient-weighted CAM [46], and saliency maps [47,48] to make CNN
understandable. With these techniques, gradients of a model have been projected back to
the input image space, which shows what parts in the input image contribute the most
to the prediction outcome that maximizes the classification accuracy. Although making
AI models understandable has been an active research topic in the DL community, there
is still much further research needed in the area. Despite the fact that high prediction
performances were achieved and reported in the studies discussed in this review, none of
the studies have provided an insight on which heart regions play an important role in any
disease prediction.

Developing AI models that standardize image acquisition and interpretation with less
variability is essential considering that echocardiography is an operator- and interpreter-
dependent imaging modality. AI guidance during data acquisition for the optimal angle,
view, and measurements would make echocardiography less operator-dependent and
smarter, while standardizing data acquisition. Cost-effective and easy access of POCUS
systems with AI capability would help clinicians and non-experts perform swift initial
examinations on patients and progress with vital and urgent decisions in emergency and
primary care clinics. In the near future, POCUS systems with AI capability could replace
the stethoscopes that doctors use in their daily practice to listen to patients’ hearts. Clinical
cardiac ultrasound or POCUS systems empowered with AI, which can assess multi-mode
data, steer sonographers during acquisition, and deliver objective qualifications, mea-
surements, and diagnoses, will assist with decision making for diagnosis and treatments,
improve echocardiography workflow in clinics, and lower healthcare cost.
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10. Akkus, Z.; Ali, I.; Sedlář, J.; Agrawal, J.P.; Parney, I.F.; Giannini, C.; Erickson, B.J. Predicting Deletion of Chromosomal Arms
1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence. J. Digit. Imaging 2017, 30, 469–476. [CrossRef]

11. Cai, J.C.; Akkus, Z.; Philbrick, K.A.; Boonrod, A.; Hoodeshenas, S.; Weston, A.D.; Rouzrokh, P.; Conte, G.M.; Zeinoddini, A.;
Vogelsang, D.C.; et al. Fully Automated Segmentation of Head CT Neuroanatomy Using Deep Learning. Radiol. Artif. Intell. 2020,
2, e190183. [CrossRef]

12. Akkus, Z.; Cai, J.; Boonrod, A.; Zeinoddini, A.; Weston, A.D.; Philbrick, K.A.; Erickson, B.J. A Survey of Deep-Learning
Applications in Ultrasound: Artificial Intelligence-Powered Ultrasound for Improving Clinical Workflow. J. Am. Coll. Radiol.
2019, 16, 1318–1328. [CrossRef]

13. Leclerc, S.; Smistad, E.; Pedrosa, J.; Ostvik, A.; Cervenansky, F.; Espinosa, F.; Espeland, T.; Berg, E.A.R.; Jodoin, P.-M.; Grenier, T.;
et al. Deep Learning for Segmentation using an Open Large-Scale Dataset in 2D Echocardiography. IEEE Trans. Med. Imaging
2019. [CrossRef] [PubMed]

14. Jafari, M.H.; Girgis, H.; Van Woudenberg, N.; Liao, Z.; Rohling, R.; Gin, K.; Abolmaesumi, P.; Tsang, T. Automatic biplane left
ventricular ejection fraction estimation with mobile point-of-care ultrasound using multi-task learning and adversarial training.
Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 1027–1037. [CrossRef]

15. Ouyang, D.; He, B.; Ghorbani, A.; Yuan, N.; Ebinger, J.; Langlotz, C.P.; Heidenreich, P.A.; Harrington, R.A.; Liang, D.H.; Ashley,
E.A.; et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 2020, 580, 252–256. [CrossRef] [PubMed]

16. Zhang, J.; Gajjala, S.; Agrawal, P.; Tison, G.H.; Hallock, L.A.; Beussink-Nelson, L.; Lassen, M.H.; Fan, E.; Aras, M.A.;
Jordan, C.; et al. Fully automated echocardiogram interpretation in clinical practice: Feasibility and diagnostic accuracy. Circula-
tion 2018, 138, 1623–1635. [CrossRef] [PubMed]

17. Zhang, J.; Gajjala, S.; Agrawal, P.; Tison, G.H.; Hallock, L.A.; Beussink-Nelson, L.; Fan, E.; Aras, M.A.; Jordan, C.; Fleischmann,
K.E.; et al. A web-deployed computer vision pipeline for automated determination of cardiac structure and function and detection
of disease by two-dimensional echocardiography. arXiv 2017, arXiv:1706.07342.

18. Deo, R. Echocv. Available online: https://bitbucket.org/rahuldeo/echocv (accessed on 26 March 2021).
19. Madani, A.; Arnaout, R.; Mofrad, M.; Arnaout, R. Fast and accurate view classification of echocardiograms using deep learning.

NPJ Digit. Med. 2018, 1. [CrossRef]
20. Elwazir, M.Y.; Akkus, Z.; Oguz, D.; Ye, Z.; Oh, J.K. Fully Automated Mitral Inflow Doppler Analysis Using Deep Learning. In

Proceedings of the 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE); IEEE: Piscataway, NJ, USA,
2020; pp. 691–696.

21. Abdi, A.H.; Luong, C.; Tsang, T.; Allan, G.; Nouranian, S.; Jue, J.; Hawley, D.; Fleming, S.; Gin, K.; Swift, J.; et al. Automatic
quality assessment of apical four-chamber echocardiograms using deep convolutional neural networks. In Proceedings of
the Medical Imaging 2017: Image Processing; International Society for Optics and Photonics; IEEE: Piscataway, NJ, USA, 2017;
Volume 10133, p. 101330S.

22. Abdi, A.H.; Luong, C.; Tsang, T.; Allan, G.; Nouranian, S.; Jue, J.; Hawley, D.; Fleming, S.; Gin, K.; Swift, J.; et al. Automatic
Quality Assessment of Echocardiograms Using Convolutional Neural Networks: Feasibility on the Apical Four-Chamber View.
IEEE Trans. Med. Imaging 2017, 36, 1221–1230. [CrossRef] [PubMed]

http://doi.org/10.1109/RBME.2020.2988295
http://www.ncbi.nlm.nih.gov/pubmed/32305938
http://doi.org/10.1530/ERP-18-0056
http://doi.org/10.1007/s10278-017-9983-4
http://www.ncbi.nlm.nih.gov/pubmed/28577131
http://doi.org/10.1162/neco.2006.18.7.1527
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1016/j.neucom.2018.12.085
http://doi.org/10.1007/s10278-017-9984-3
http://doi.org/10.1148/ryai.2020190183
http://doi.org/10.1016/j.jacr.2019.06.004
http://doi.org/10.1109/TMI.2019.2900516
http://www.ncbi.nlm.nih.gov/pubmed/30802851
http://doi.org/10.1007/s11548-019-01954-w
http://doi.org/10.1038/s41586-020-2145-8
http://www.ncbi.nlm.nih.gov/pubmed/32269341
http://doi.org/10.1161/CIRCULATIONAHA.118.034338
http://www.ncbi.nlm.nih.gov/pubmed/30354459
https://bitbucket.org/rahuldeo/echocv
http://doi.org/10.1038/s41746-017-0013-1
http://doi.org/10.1109/TMI.2017.2690836
http://www.ncbi.nlm.nih.gov/pubmed/28391191


J. Clin. Med. 2021, 10, 1391 15 of 16

23. Abdi, A.H.; Luong, C.; Tsang, T.; Jue, J.; Gin, K.; Yeung, D.; Hawley, D.; Rohling, R.; Abolmaesumi, P. Quality Assessment
of Echocardiographic Cine Using Recurrent Neural Networks: Feasibility on Five Standard View Planes. In Proceedings of the
Medical Image Computing and Computer Assisted Intervention–MICCAI 2017; Springer International Publishing: Berlin/Heidelberg,
Germany, 2017; pp. 302–310.

24. Dong, J.; Liu, S.; Liao, Y.; Wen, H.; Lei, B.; Li, S.; Wang, T. A Generic Quality Control Framework for Fetal Ultrasound Cardiac
Four-Chamber Planes. IEEE J. Biomed. Health Inform. 2020, 24, 931–942. [CrossRef]

25. Labs, R.B.; Vrettos, A.; Azarmehr, N.; Howard, J.P.; Shun-shin, M.J.; Cole, G.D.; Francis, D.P.; Zolgharni, M. Automated Assessment
of Image Quality in 2D Echocardiography Using Deep Learning. In Proceedings of the International Conference on Radiology,
Medical Imaging and Radiation Oncology, Paris, France, 25–26 June 2020.

26. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
27. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections

on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–6
February 2017.

28. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Im-
age Computing and Computer-Assisted Intervention–MICCAI 2015; Lecture Notes in Computer Science; Navab, N., Hornegger,
J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Munich, Germany, 2015; Volume 9351, pp. 234–241,
ISBN 9783319245737.

29. Leclerc, S.; Smistad, E.; Pedrosa, J.; Ostvik, A. Cardiac Acquisitions for Multi-Structure Ultrasound Segmentation. Available
online: https://camus.creatis.insa-lyon.fr/challenge/ (accessed on 26 March 2021).

30. Jafari, M.H.; Girgis, H.; Liao, Z.; Behnami, D.; Abdi, A.; Vaseli, H.; Luong, C.; Rohling, R.; Gin, K.; Tsang, T.; et al. A Unified
Framework Integrating Recurrent Fully-Convolutional Networks and Optical Flow for Segmentation of the Left Ventricle in
Echocardiography Data. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision
Support; Springer International Publishing: Granada, Spain, 2018; pp. 29–37.

31. Chen, H.; Zheng, Y.; Park, J.-H.; Heng, P.-A.; Zhou, S.K. Iterative Multi-domain Regularized Deep Learning for Anatomical
Structure Detection and Segmentation from Ultrasound Images. In Proceedings of the Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2016, Athens, Greece, 17–21 October 2016; pp. 487–495.

32. Oktay, O.; Ferrante, E.; Kamnitsas, K.; Heinrich, M.; Bai, W.; Caballero, J.; Cook, S.A.; de Marvao, A.; Dawes, T.; O’Regan, D.P.;
et al. Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation.
IEEE Trans. Med. Imaging 2018, 37, 384–395. [CrossRef]

33. Ghorbani, A.; Ouyang, D.; Abid, A.; He, B.; Chen, J.H.; Harrington, R.A.; Liang, D.H.; Ashley, E.A.; Zou, J.Y. Deep learning
interpretation of echocardiograms. NPJ Digit. Med. 2020, 3, 10. [CrossRef]

34. Ouyang, D. EchoNet-Dynamic. Available online: https://echonet.github.io/dynamic/ (accessed on 26 March 2021).
35. Omar, H.A.; Domingos, J.S.; Patra, A.; Upton, R.; Leeson, P.; Noble, J.A. Quantification of cardiac bull’s-eye map based

on principal strain analysis for myocardial wall motion assessment in stress echocardiography. In Proceedings of the
2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018;
pp. 1195–1198.

36. Kusunose, K.; Abe, T.; Haga, A.; Fukuda, D.; Yamada, H.; Harada, M.; Sata, M. A Deep Learning Approach for Assess-
ment of Regional Wall Motion Abnormality from Echocardiographic Images. JACC Cardiovasc. Imaging 2020, 13, 374–381.
[CrossRef] [PubMed]

37. Narula, S.; Shameer, K.; Salem Omar, A.M.; Dudley, J.T.; Sengupta, P.P. Machine-Learning Algorithms to Automate Morphological
and Functional Assessments in 2D Echocardiography. J. Am. Coll. Cardiol. 2016, 68, 2287–2295. [CrossRef]

38. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
39. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the Lecture Notes in

Computer Science, Zurich, Switzerland, 6–12 September 2014; pp. 818–833.
40. Zeiler, M.D.; Taylor, G.W.; Fergus, R. Adaptive deconvolutional networks for mid and high level feature learning. In Proceedings

of the 2011 International Conference on Computer Vision, Washington, DC, USA, 6–13 November 2011.
41. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings

of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
42. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 2818–2826.

43. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

44. Zeiler, M.D.; Krishnan, D.; Taylor, G.W.; Fergus, R. Deconvolutional Networks; IEEE Computer Society: San Francisco, CA, USA,
2010; pp. 2528–2535. ISBN 9781424469840.

45. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. arXiv 2014,
arXiv:1412.6806.

http://doi.org/10.1109/JBHI.2019.2948316
https://camus.creatis.insa-lyon.fr/challenge/
http://doi.org/10.1109/TMI.2017.2743464
http://doi.org/10.1038/s41746-019-0216-8
https://echonet.github.io/dynamic/
http://doi.org/10.1016/j.jcmg.2019.02.024
http://www.ncbi.nlm.nih.gov/pubmed/31103590
http://doi.org/10.1016/j.jacc.2016.08.062
http://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704


J. Clin. Med. 2021, 10, 1391 16 of 16

46. Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-CAM++: Generalized Gradient-Based Visual Explana-
tions for Deep Convolutional Networks. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 839–847.

47. Li, G.; Yu, Y. Visual Saliency Detection Based on Multiscale Deep CNN Features. IEEE Trans. Image Process. 2016, 25, 5012–5024.
[CrossRef] [PubMed]

48. Philbrick, K.A.; Yoshida, K.; Inoue, D.; Akkus, Z.; Kline, T.L.; Weston, A.D.; Korfiatis, P.; Takahashi, N.; Erickson, B.J. What Does
Deep Learning See? Insights from a Classifier Trained to Predict Contrast Enhancement Phase from CT Images. AJR Am. J.
Roentgenol. 2018, 211, 1184–1193. [CrossRef] [PubMed]

http://doi.org/10.1109/TIP.2016.2602079
http://www.ncbi.nlm.nih.gov/pubmed/28113629
http://doi.org/10.2214/AJR.18.20331
http://www.ncbi.nlm.nih.gov/pubmed/30403527

	Introduction 
	Transthoracic Echocardiogram 
	Artificial Intelligence 

	Methods and Results: Automated Echo Interpretation 
	View Identification and Quality Control 
	Image Segmentation and Quantification 
	Disease Diagnosis 

	Discussion and Outlook 
	References

