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Abstract: This study purposed to validate the accuracy of an artificial neural network (ANN) model
for predicting the mortality after hip fracture surgery during the study period, and to compare
performance indices between the ANN model and a Cox regression model. A total of 10,534 hip
fracture surgery patients during 1996–2010 were recruited in the study. Three datasets were used:
a training dataset (n = 7374) was used for model development, a testing dataset (n = 1580) was used for
internal validation, and a validation dataset (1580) was used for external validation. Global sensitivity
analysis also was performed to evaluate the relative importances of input predictors in the ANN
model. Mortality after hip fracture surgery was significantly associated with referral system, age,
gender, urbanization of residence area, socioeconomic status, Charlson comorbidity index (CCI) score,
intracapsular fracture, hospital volume, and surgeon volume (p < 0.05). For predicting mortality
after hip fracture surgery, the ANN model had higher prediction accuracy and overall performance
indices compared to the Cox model. Global sensitivity analysis of the ANN model showed that
the referral to lower-level medical institutions was the most important variable affecting mortality,
followed by surgeon volume, hospital volume, and CCI score. Compared with the Cox regression
model, the ANN model was more accurate in predicting postoperative mortality after a hip fracture.
The forecasting predictors associated with postoperative mortality identified in this study can also
bae used to educate candidates for hip fracture surgery with respect to the course of recovery and
health outcomes.

Keywords: hip fracture surgery; artificial neural network; cox regression; mortality

1. Introduction

Population aging has made hip fracture an important public health issue [1]. In the United
Kingdom, the total direct medical cost of the approximately 80,000 hip fractures that occur annually
is GBP2 billion [2]. In Taiwan, the annual cost of hospitalization for hip fractures increased from
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NT$1.17 billion in 2001 to NT$1.43 billion in 2012 [3]. Therefore, exploring and understanding factors
that predict postoperative mortality after hip fracture is imperative.

For predicting survival after surgery, parameter models have not shown sufficient reliability.
Therefore, the artificial neural network (ANN) and Cox regression models are currently the most
commonly used models for predicting postoperative mortality in the healthcare domain. However,
few studies have compared ANN and Cox models in terms of internal validity and external validity,
which is an essential performance metric [4,5]. Compared to a Cox regression model, the ANN model
may be better for describing nonlinear interactions among risk factors. The ANN model is increasingly
used for making complex medical decisions and for predicting mortality in patients with various
diseases [4–7]. Cox proportional hazards model is always used for the survival analysis. Currently,
however, an ANN model for predicting longitudinal survival was proposed by Brown et al. [8].

Although forecasting models currently for predicting medical outcomes of various surgical
procedures have substantially improved, previous studies of forecasting models for predicting
postoperative outcomes after hip fracture have had major shortcomings [9–11]. Firstly, few studies
have used longitudinal data for more than two years. Moreover, none of the forecasting models for
predicting postoperative outcomes after hip fracture have considered group differences in factors such
as referral systems, age, and gender. The present study used ANN and Cox models to identify the
most influential predictors of postoperative mortality after hip fracture. The relative importance of the
predictors was also conducted by using a global sensitivity analysis. The predictive models performed
in the present study are expected to be useful for improving healthcare research and for developing
decision making. Therefore, the present study purposed to validate the use of the ANN model for
predicting the mortality after hip fracture surgery during the study period and to compare predictive
capability between ANN and Cox models.

2. Patients and Methods

2.1. Study Design and Study Population

This retrospective longitudinal study analyzed a cohort of hip fracture patients who had undergone
surgery between January 1, 1996, and December 31, 2010, in Taiwan. The inclusion criteria (age older
than 18 years and history of hip fracture surgery) were identified by database searches for ICD-9-CM
174x diagnosis codes 820.0~820.19, 820.2~820.32, 820.8, and 820.9 and procedure codes 79.15, 79.35,
81.52, and 81.53. The exclusion criteria were all surgical procedures performed for treatment of chronic
or complicated diseases and traffic accidents.

2.2. Data Collection

The data source in this study was the National Health Insurance Research Database (NHIRD)
administered by the Taiwan Bureau of National Health Insurance (BNHI). The NHIRD contains
comprehensive administrative data for healthcare services, including outpatient visits, hospitalizations,
and prescriptions [12]. This study analyzed data from a subset of the NHIRD, the Longitudinal Health
Insurance Database for year 2005, which contains data for a random sample of 1 million beneficiaries
enrolled in the Taiwan National Health Insurance program.

2.3. Ethical Considerations

The aggregate secondary data was analyzed in this study without identifying specific patients.
Therefore, this study was exempt from full review by the internal review board of this institution.
Nevertheless, the study protocol still conformed to the ethical standards established by the 1964
Declaration of Helsinki, which waive the requirement for written or verbal consent from patients in
data linkage studies. The study protocol was approved by the institutional review board of Kaohsiung
Medical University Hospital (KMUH-IRB-EXEMPT(I)-20190027) on 06 June 2019.
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2.4. Potential Predictors

The potential predictors analyzed in this study included referral to lower-level medical institutions
(yes or no), age, gender (male or female), urbanization (rural or urban), socioeconomic status (genus
or being raised, NT$ 0–19,999/year, NT$ 20,000–39,999/year, or over NT$ 40,000/year), number of
comorbidities, intracapsular fracture (yes or no), hospital level (medical center, regional hospital,
or district hospital), hospital volume, and surgeon volume. Patients were also classified as those referred
to a lower-level medical institution and those who continued treatment at the same medical institution.
Comorbidities were defined from primary and secondary ICD-9-CM diagnoses codes, excluding
cancer-related codes. These diagnoses codes were used to calculate the Charlson co-morbidity index
(CCI) as modified by Deyo et al. [13]. Surgeon volume was calculated for each surgeon and for each hip
fracture procedure. Surgeon volume was defined as the number of hip fracture surgeries performed by
the surgeon in the year prior to admission of the patient. Hospital volume was defined per procedure
as the number of hip fractures performed at the hospital during the year prior to admission of the
patient. These potential predictors were the independent variables, and postoperative mortality during
the study period was the dependent variable.

2.5. Statistical Analysis

The unit of analysis in this study was the individual hip fracture surgery patient. The descriptive
analyses had two objectives: (1) to describe the distribution of continuous variables using
mean ± standard deviation (SD) and median in interquartile range; and (2) to describe the distribution
of categorical variables using the number of total samples (N) and percentage (%). The univariate
analysis conducted by the Cox model was used to identify the significant predictors. The area under
the receiver operating characteristic (AUROC) curves was also employed to evaluate the discriminatory
power of the models. Here, discriminatory power refers to the ability of a model to distinguish
individuals who died from those who survived. A perfectly discriminatory model would assign a
higher probability of death to patients who died than to patients who survived. Tests were performed
to ensure that the statistical analysis did not violate the proportional hazards assumption and to
identify any time-varying predictors.

The ANN model used in this study was a standard feed-forward, back-propagation neural
network in which each input layer received information from the data, then it passed through the
hidden layers and, finally, it arrived to the output layer. The input nodes and output node of an
ANN correspond to the potential predictors and mortality after hip fracture surgery, respectively.
The nodes in the hidden layer are intermediate unobserved values that allow the ANN to model
complex nonlinear relationships between the input nodes and the output node. The nodes in different
layers are connected by weights. The ANN model was a 3-layer multilayer perceptron neural network
with 10 input neurons, 1 bias neuron in the input layer, 5 hidden neurons, 1 bias neuron in the hidden
layer, and 2 output neurons. The best number of hidden neurons was chosen by trial and error from
the range 5–35. The study used the quasi-Newton method in order to carry out the learning process
(training algorithm) and this study applied model selection to find the optimal number of neurons in
the hidden layer [5,6,8].

Additionally, all patients were randomly assigned in a 70:15:15 ratio to a training dataset,
a testing dataset and a validating dataset, specificity. The performance indices were calculated by the
following formulas: sensitivity: TP/(TP+FN), specificity: TN/(FP+TN), Positive predictive value (PPV):
TP/(TP+FP), negative predictive value (NPV): TN/(TN+FN), and accuracy: (TP+TN)/(P+N), where TP
is true positive, FN is false negative, FP is false positive, TN is true negative, P is positive, and N is
negative. The AUROC for the two models is calculated using trapezoidal approximation. The cutoff

value is 0.5 (by default); all predicted values above 0.5 can be classified as predicting an event, and all
below 0.5 as not predicting the event. In the present study, a running average of 30 training iterations
was used in all ANNs to reduce the noisy trajectory of their performance as a function of training
iterations. The training and testing processes were simplified by introducing significant predictors
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and excluding all nonsignificant predictors and bootstraps with 1000 resample were also used to
perform a comparison among the performance indices. Statistical significance between the differences
of the two models and performance indices are calculated using a Chi-squared test, since this test is
nonparametric and does not require a normal distribution of either the data or the variances. Finally,
a global sensitivity analysis was also performed to evaluate the relative importance of input predictors
in the forecasting model and to rank the predictors in order of importance [14]. The global sensitivity
of the input predictors versus the output predictors was expressed as the ratio of the network error
(sum of squared residuals). A variable sensitivity ratio (VSR) of 1 or lower indicates that the variable
diminishes network performance and should be removed. The STATISTICA (version 13.0, StatSoft,
Tulsa, OK, USA) software was used for statistical analyses.

3. Results

3.1. Patient Selection

In total, the study analyzed 10,534 hip fracture procedures. During the study period, 71.2% hip
fracture patients were referred to a lower-level medical institution for rehabilitation after surgery,
and 28.8% patients continued treatment at the same medical institution (Table 1). The mean age of
the patients was 68.3 (SD 14.6) years. Females represented 57.6% of the patients. The dataset was
randomly divided into a training dataset of 7374 cases, a testing dataset of 1580 cases and a validating
dataset of 1580 cases. The jack-knife method confirmed that the correlation between the classification
probabilities of the prediction and the jack-knife validation was R = 0.91, which suggested good
stability of the results.

Table 1. Patient characteristics (N = 10,534).

Variables Mean ± Standard Deviation
or N (%)

Age, years 68.3 ± 14.6

Gender Male 4469 (42.4)
Female 6065 (57.6)

Urbanization of residence area Rural 3622 (34.4)
Urban 6912 (65.6)

Socioeconomic status Genus or being raised 4099 (38.9)
NT$0–19,999/year 2863 (27.2)

NT$20,000–39,999/year 3292 (31.3)
Over NT$40,000/year 280 (2.7)

Charlson co-morbidity index (CCI), scores 0.6 ± 1.1
Intracapsular fracture Yes 5730 (54.4)

No 4804(45.6)
Hospital level Medical center 2989 (28.4)

Regional hospital 4058 (38.5)
District hospital 3487 (33.1)

Hospital volume (cases/ year) 29.9 ± 15.7
Surgeon volume (cases/ year) 22.4 ± 46.4

Readmission in 30 days Yes 1126(10.7)
No 9408 (89.3)

Readmission in 90 days Yes 1953 (18.5)
No 8581 (81.5)

Infection Yes 456 (4.3)
No 10,078 (95.7)

Dislocation Yes 650 (6.2)
No 9884 (93.8)

Total joint revision Yes 147(1.4)
No 10,387 (98.6)

Mortality Yes 2931 (27.8)
No 7603 (72.2)
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3.2. Significant Independent Variable Selection

Table 2 shows that the univariate analysis results indicated that mortality in the hip fracture
patients was significantly associated with referral to lower-level medical institutions, age, gender,
urbanization of residence area, socioeconomic status, CCI score, intracapsular fracture, hospital volume,
and surgeon volume (p < 0.05).

Table 2. Univariate analysis of mortality risk factors in hip fracture surgery patients (N = 10,534).

Variables Hazard Ratio (95%, CI) p Value

Referral to lower-level medical institutions (yes vs. no) 0.81 (0.74–0.89) <0.001
Age 1.05 (1.04–1.05) <0.001

Gender
male vs. female 1.35 (1.22–1.49) <0.001

Urbanization of residence area
urban vs. rural 0.88 (0.79–0.97) 0.011

Socioeconomic status
NT$0-19,999/year vs. genus or being raised 0.69 (0.45–1.09) 0.111

NT$20,0000-39,999/year vs. genus or being raised 0.37 (0.34–0.40) <0.001
over NT$40,000/year vs. genus or being raised 0.47 (0.43–0.51) <0.001

Charlson co-morbidity index 1.21 (1.17–1.26) <0.001
Intracapsular fracture (yes vs. no) 0.01 (0.01–0.02) <0.001

Hospital level
regional hospital vs. medical center 0.98 (0.86–1.11) 0.730
district hospital vs. medical center 1.11 (0.96–1.29) 0.175

Hospital volume (cases/ year) 0.98 (0.97–0.98) <0.001
Surgeon volume (cases/ year) 0.98 (0.97–0.98) <0.001

CI, Confidence Interval.

3.3. Comparisons of the Two Models

There were no significant differences in the patient characteristics between the training dataset
and the testing dataset (data not shown). Therefore, samples from these two datasets were compared
to enhance the reliability of the validation results. The ANN model achieves a sensitivity of 0.94,
a specificity of 0.78, a PPV of 0.89; an NPV of 0.82, an accuracy of 0.93, and an AUROC of 0.93 on
the training dataset, outperforming the Cox model (Table 3). Comparisons of performance indices in
the testing dataset also showed that the ANN model significantly outperformed the Cox model in
sensitivity (0.96 vs. 0.92, p < 0.001), specificity (0.76 vs. 0.64, p < 0.001), PPV (0.88 vs. 0.78, p < 0.001),
NPV (0.84 vs. 0.77, p < 0.001), accuracy (0.93 vs. 0.90, p < 0.001), and AUROC (0.93 vs. 0.88, p < 0.001).

Table 3. The comparison of the performance indices of artificial neural network (ANN) and Cox
regression models for predicting mortality among hip fracture surgery patients.

Sensitivity Specificity PPV NPV Accuracy AUROC

Training dataset (n = 7374)
ANN (95%

CI)
0.94

(0.91–0.98)
0.78

(0.75–0.82)
0.89

(0.85–0.93)
0.82

(0.78–0.86)
0.93

(0.90–0.96)
0.93

(0.90–0.95)

Cox (95% CI) 0.90
(0.86–0.94)

0.67
(0.62–0.72)

0.80
(0.74–0.86)

0.73
(0.67–0.80)

0.88
(0.84–0.92)

0.89
(0.84–0.94)

p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Testing dataset (n = 1580)

ANN (95%
CI)

0.96
(0.92–0.99)

0.76
(0.72–0.80)

0.88
(0.85–0.92)

0.84
(0.80–0.88)

0.93
(0.89–0.97)

0.93
(0.90–0.96)

Cox (95% CI) 0.92
(0.88–0.97)

0.64
(0.59–0.69)

0.78
(0.72–0.84)

0.77
(0.71–0.83)

0.90
(0.86–0.94)

0.88
(0.83–0.93)

p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PPV = positive predictive value; NPV = negative predictive value; AUROC = area under receiver operating
characteristic; CI = confidence interval.
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3.4. Significant Predictors in the ANN Model

The training dataset for the ANN model also was used to evaluate VSRs. The global sensitivity
analysis showed that the most important predictor for predicting postoperative mortality was the
referral to lower-level medical institutions (VSR = 1.61), followed by hip fracture surgeon volume
(VSR = 1.59), hospital volume (VSR = 1.57), and CCI score (VSR = 1.45) (Table 4). All VSR values
exceeded 1, indicating that the network performed better when all variables were considered.

Table 4. Global sensitivity analysis of the artificial neural network model in predicting mortality in hip
fracture surgery patients (n = 7374).

Dependent
Variable

Variable Sensitivity Ratio

Rank 1st Rank 2nd Rank 3rd Rank 4th

Mortality Referral to lower-level
medical institutions

Surgeon
Volume

Hospital
Volume

Charlson
co-morbidity index

1.61 1.59 1.57 1.45

3.5. External Validation

Table 5 compares the performance indices obtained by the ANN and Cox models when using 1580
validating datasets to predict postoperative mortality after hip fracture. In comparisons of the two
prediction models, the ANN model consistently obtained higher performances compared to the Cox
model in sensitivity (0.97 vs. 0.92, p < 0.001), specificity (0.74 vs. 0.68, p < 0.001), PPV (0.89 vs. 0.79,
p < 0.001), NPV (0.84 vs. 0.79, p < 0.001), accuracy (0.93 vs. 0.88, p < 0.001), and AUROC (0.93 vs. 0.88,
p < 0.001).

Table 5. Performance indices of prediction models when using 1580 validating datasets to predict
mortality among hip fracture surgery patients.

Sensitivity Specificity PPV NPV Accuracy AUROC

ANN (95% CI) 0.97
(0.95–0.99)

0.74
(0.70–0.78)

0.89
(0.86–0.92)

0.84
(0.81–0.87)

0.93
(0.90–0.96)

0.93
(0.90–0.96)

COX (95% CI) 0.92
(0.89–0.95)

0.68
(0.63–0.73)

0.79
(0.74–0.84)

0.79
(0.74–0.84)

0.88
(0.84–0.92)

0.88
(0.84–0.92)

p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

ANN, artificial neural network; COX, Cox regression model; PPV, positive predictive value; NPV, negative predictive
value; AUROC, area under the receiver operating characteristic; CI = confidence interval.

4. Discussion

For forecasting postoperative mortality after a hip fracture, this study showed that the ANN
model outperformed the Cox model. This study is the first to use a nationwide population-based
dataset for training and testing a neural network to predict hip fracture surgery outcomes. When using
an external validating dataset for a performance comparison based on a simple outcome measure,
the ANN model was clearly superior to the Cox regression model constructed using the same limited
number of significant input predictors.

Unlike previous works in which the analyses were performed using a dataset for a single
medical center, our study used retrospective longitudinal cohort data from the national population,
which provides a more accurate depiction of current treatment for hip fracture patients. Additionally,
unlike single-center series studies, our use of registry data provides more accurately depicts hip fracture
treatment in large populations. Using registry data also minimizes referral bias or bias caused by the
practices of a single surgeon or a single medical institution [15–17].

Recent works have repeatedly demonstrated the superior performance of the ANN model
compared to the COX or multiple logistic models [18–20]. The advantages offered by the unique
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characteristics of the ANN model have been confirmed by statistical analyses [21–24]. For example,
using an ANN model can enable more appropriate and more accurate processing of inputs that are
incomplete or inputs that introduce noise. Another advantage is that linear and non-linear ANN
models with good potential for use in large-scale medical databases can be constructed using data
that are highly correlated but not normally distributed. Prognosis prediction is only one of the many
applications of ANN models in clinical research in the medical field.

Lapuerta et al. compared an ANN model and a Cox model in predicting the risk of coronary artery
disease and they concluded that the accuracy of the neural network strategy in predicting clinical
outcomes exceeded that of a Cox regression (66% vs 56%, McNemar test p = 0.005) [22]. The network
design provided an effective approach to forecasting medical outcomes from a clinical trial with varying
follow-up time points. Taktak et al. presented a detailed double-blind evaluation of the accuracy
of the ANN model in making out-of-sample predictions of mortality benchmarked against the Cox
model [25]. A recent pilot study compared the calibration and validation of ANN and Cox models in
predicting survival in pancreatic cancer patients who have undergone radical surgery [26]. The authors
concluded that the ANN model is more accurate in predicting survival after surgical resection. A more
recent study used the existing cancer genome atlas database for initial analysis of prognostic indicators
of survival in patients with lung adenocarcinoma [27]. Again, the ANN model outperformed the Cox
model in terms of accuracy in predicting mortality.

The current study confirmed the feasibility of using ANNs in predicting overall survival after
hip fracture surgery based on a national population-based database. The findings are consistent with
an earlier retrospective study by Spelt et al., in which, after the comparison of 1000 pairs of Cox and
ANN models generated from initial clinical data for patients who had undergone liver resection for
colorectal cancer metastases, Harrell C-index for predicting long-term survival was higher in the ANN
models (0.72) compared to the Cox models (0.66) [5].

This nationwide population-based cohort study consistently showed that the best forecasting
predictor of postoperative mortality after hip fracture is the referral to lower-level medical institutions.
In a previous study, use of rehabilitation services, length of stay, and outcomes were compared
between hip-fracture patients in a fee-for-service system and hip fracture patients on Medicare.
The comparison demonstrated that Medicare patients had a shorter length of stay in skilled nursing
facilities and required less rehabilitative care after hip fracture. Compared to the fee-for-service
patients, the Medicare patients also had a lower rate of hospital readmission, a lower rate of long-term
institutionalization, and a higher rate of successful discharge to the community [28]. The study also
suggested two new norms in value-based care: improving the efficiency and quality of post-acute
care by reducing unnecessarily long rehabilitation stays in costly settings and shifting therapeutic
care towards home-based services. Wang et al. recently conducted a natural experimental design
with propensity score matching to evaluate the impact of a medical referral system in stroke patients
and to examine the longitudinal effects of the system on functional status [29]. They concluded that
rehabilitative post-acute care improves functional status outcomes of stroke rehabilitation and that
achieving a vertically integrated medical system for stroke rehabilitation requires improvements in
the post-acute care ward qualifications of local hospitals, acceleration of inter-hospital transfer, and a
sufficient duration of intensive rehabilitative post-acute care.

The second most important forecasting predictor of postoperative mortality after hip fracture was
surgeon volume, which is consistent with previous reports that surgeons who perform a high volume
of hip fracture surgeries consistently achieve superior outcomes [30,31]. Therefore, these treatment
strategies should be carefully analyzed and emulated. Clearly, postoperative outcomes depend not
only on patient management, but also on the skill and experience of individual surgeons. Meanwhile,
high-volume surgeons in high-volume hospitals are most likely to achieve good postoperative outcomes
because they are well supported by highly interdisciplinary healthcare teams [32,33]. Furthermore,
this study revealed significantly lower mortality in hip fracture surgeries performed in high-volume
hospitals compared to those performed in low-volume hospitals, which is also consistent with previous
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results [32,33]. Additionally, hip fracture patients after surgery are typically burdened by a host
of hip-related co-morbidities that increase their risk of poor postoperative outcomes, including
complications, long length of stay, high mortality, and high treatment costs [34]. Our global sensitivity
analysis also indicated that postoperative mortality tends to increase with CCI score.

Several limitations are inherent in this large national population-based analysis. First,
the independent and dependent variables obtained in this retrospective claims dataset is not as
precise as that collected by analysis of dataset in prospective cohort study due to possible errors in the
coding of primary diagnoses and surgical modalities. Second, postoperative complications associated
with hip fracture after surgery were not evaluated, which limits the validity of the comparison. Third,
although outperformed ANNs were developed by the training, testing, and validation datasets in
different patients within the national population, our forecasting measure requires further validation in
another independent population. Fourth, we identify that the specific note on postoperative mortality
of this forecasting models may limit the performances of ANNs to a small subset of patients who
have a high likelihood of death during the study period. Finally, only ANN and Cox models were
used to predict postoperative mortality after hip fracture. Other than mortality, accuracy in predicting
other postoperative outcomes, such as patient-reported quality of life, were not compared because
the relevant information was not included in the database. However, given the robust magnitude
and statistical significance of the effects in this study, these limitations are unlikely to compromise
the results.

5. Conclusions

In conclusion, compared with the statistical Cox proportional hazard model, the ANN model in this
study had higher overall performance indices in predicting postoperative mortality after hip fracture.
Global sensitivity analysis also showed that the referral to lower-level medical institutions was the most
important confounder to predict the postoperative mortality after hip fracture. These preoperative
and postoperative forecasting predictors evaluated in this study could be addressed in health care
consultations to educate candidates for hip fracture surgery in the expected recovery rehabilitation
courses and healthcare outcomes. Although multidisciplinary healthcare teams can consider using
ANNs to improve the prediction of prognostic accuracy, additional studies are needed to evaluate the
performance indices of ANNs by adding additional predictors included in the ANN model and to
determine whether clinicians and health researchers can effectively use the ANN model to predict
outcomes and to optimize the clinical management of hip fracture patients who receive surgery.
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