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Background: To evaluate the preoperative predictive value of radiomics in the diagnosis
of breast cancer (BC).

Methods: By searching PubMed and Embase libraries, our study identified 19 eligible
studies. We conducted a meta-analysis to assess the differential value in the preoperative
assessment of BC using radiomics methods.

Results: Nineteen radiomics studies focusing on the diagnostic efficacy of BC and
involving 5865 patients were enrolled. The integrated sensitivity and specificity were 0.84
(95% CI: 0.80–0.87, I2 = 76.44%) and 0.83 (95% CI: 0.78–0.87, I2 = 81.79%), respectively.
The AUC based on the SROC curve was 0.91, indicating a high diagnostic value.

Conclusion: Radiomics has shown excellent diagnostic performance in the preoperative
prediction of BC and is expected to be a promising method in clinical practice.

Keywords: breast cancer, radiomics, cancer prediction, meta-analysis, systematic review
INTRODUCTION

Breast cancer (BC) is the most commonly diagnosed cancer among women, accounting for 23% of
all female cancers worldwide, and its related mortality is increasing by 4% each year (1). Traditional
screening methods for BC, including X-ray mammography (MMG), breast ultrasound (US), and
breast magnetic resonance imaging (MRI), rely mainly on qualitative characteristics, such as the
lesion density, shape of lesion margins, and enhancement pattern. These imaging methods for BC
screening have limitations in the sensitivity and specificity of diagnosis. As a result, biopsies are
often performed to provide a definitive diagnosis for the patient. In the era of precision medicine,
improvements in the performance of BC detection are urgently needed to reduce unnecessary
Abbreviations: BC, Breast cancer; CI, Confidence interval; ROC, Receiver operating characteristic; SROC, Summary receiver
operating characteristic; AUC, Area under curve; MMG, Mammography; US, Ultrasound; MRI, Magnetic Resonance Imaging;
TP, True positive; FP, False positive; TN, True negative; FN, False negative; RA, Radiomics algorithm; ML, Machine learning;
DL, Deep learning; BI-RADS, Breast Imaging Reporting and Data System; DWI, Diffusion-weighted imaging; DCE, Dynamic
contrast-enhanced.
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biopsies, which are invasive and painful. Radiomics is an
emerging application that can extract innumerable quantitative
image features (including descriptors of tumor shape, size,
intensity, and texture) that are difficult to recognize with the
naked eye from almost any medical image (2). The traditional
imaging diagnostic mode is more dependent on the experience of
radiologists and has strong subjectivity. Compared with
traditional imaging diagnosis mode, radiomics is an emerging
application that can extract innumerable quantitative image
features (including descriptors of tumor shape, size, intensity,
and texture) that are difficult to recognize with the naked eye
from almost any medical image (2). These image features may be
related to the microscopic structure and tissue biological
information of tumors. Based on this, combined with clinical,
pathological and genetic information, the imaging support
system for clinical decision making can be constructed. A
number of studies have shown that the radiomics model can
improve the accuracy of breast cancer diagnosis by extracting
texture features of lesion and contralateral normal breast
respectively and constructing benign/malignant classifiers
(3, 4). Radiomics features have proven to be of significant
value in differentiating between benign and malignant breast
tumors (5, 6).Therefore, radiomics provides a promising method
for improving the sensitivity and specificity of the diagnosis of
BCs. By refining BC detection, radiomics has the potential to
reduce unnecessary invasive biopsies. In addition, Shimauchi et al.
(7) found that the performance of radiologists during diagnostic
tasks improved when a computer-aided diagnosis system was
used. Hence, the purpose of this study was to evaluate the
diagnostic efficacy of radiomics in predicting BC.
MATERIALS AND METHODS

Literature Retrieving
PubMed and EMBASE databases were comprehensively
searched by two reviewers (L-ZK and YJ) using the following
keywords: radiomics and BC, breast carcinoma, breast tumor, or
breast neoplasm. The deadline of this retrieval was September 10,
2021. Two reviewers independently screened the abstracts of all
manuscripts, and full publications were downloaded when the
decision of including an article was ambiguous. Discussion was
conducted to resolve disagreements on article inclusion. The
reference lists of eligible studies were also searched for potential
additional studies.

Selection Criteria
The inclusion criteria were as follows: (1) diagnosis of BC on the
basis of pathologic criteria; (2) breast imaging, including US,
MRI, and/or digital MMG, was performed before biopsy or
resection; and (3) radiomics analysis based on breast images
was conducted.

The exclusion criteria were as follows: (1) preoperative
administration of anticancer therapy (chemotherapy or
radiotherapy); (2) the pathological diagnosis was not clear; and
(3) imaging analysis based only on non-radiomics methods.
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Data Extraction and Study Quality
Assessment
Two investigators (L-ZK and YJ) independently extracted the
number of BC and non-BC cases, sensitivity, and specificity
reported in the eligible studies. Using these data, we calculated
the number of true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) results. If there were
more than one model in the same group of patients, we used the
model with the higher diagnostic accuracy in our meta-analysis.
All studies included were quality assessed using the QUADAS-2
scale (8) in Revman 5.5 (Cochrane Library Software,
Oxford, UK).
Statistical Analysis
The pooled sensitivity and specificity were estimated. We also
calculated pooled positive and negative likelihood ratios.
Heterogeneity between the included studies was assessed by
Cochrane’s Q-test and I2 statistics. The summary receiver
operating characteristic (SROC) curve and the area under the
SROC curve (AUC) were also constructed to evaluate the
diagnostic value of combined studies (9). AUCs of 0.5–0.7
indicated low diagnostic power, AUCs of 0.7–0.9 indicated
moderate diagnostic power, and AUCs of 0.9–1.0 indicated
high diagnostic power (10, 11). All statistical analyses were
performed using Stata version 15.0 (Stata Corp), and P< 0.05
was considered statistically significant.
FIGURE 1 | Flow diagram of literature screening according to PRISMA.
PRISMA, Preferred Reported Items for Systematic Reviews and Metaanalyses.
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RESULTS

Literature Selection and Quality
Assessment
Details of the selection procedure are shown in Figure 1. After
the removal of duplicate articles, we reviewed the abstracts of 219
articles identified in the initial review. Nineteen eligible studies
involving 5865 patients were included (12–30). Among them,
3500 patients were pathologically diagnosed with BC and 2365
patients as non-BC. The basic characteristics of all eligible studies
are displayed in Table 1, and the quality assessment of all
included studies based on the QUADAS-2 scale is shown
in Figure 2.

Radiomics for the Preoperative Prediction
of BC
A total of 5865 patients, comprising 3500 BC and 2365 non-BC
patients, were assessed using a radiomics method. Figure 3
Frontiers in Oncology | www.frontiersin.org 3
shows the forest plots of the diagnostic meta-analysis and
combined results. The integrated sensitivity and specificity
were 0.84 (95% CI: 0.80–0.87, I2 = 76.44%) and 0.83 (95% CI:
0.78–0.87, I2 = 81.79%), respectively. The AUC based on the
SROC curve was 0.91 (Figure 4), demonstrating a high
diagnostic value.

Subgroup Analyses and Sensitivity
Analyses
Subgroup analyses were performed and included five different
conditions and eleven subgroups. Radiomics models showed
moderate to high diagnostic value in each subgroup of imaging
modalities (MMG, US, and MRI), study design (prospective and
retrospective), data source (China and America), modeling
method [Radiomics algorithm (RA), machine learning (ML),
and deep learning (DL)]. Both conventional and functional
imaging analyses provided a high diagnostic accuracy of BC.
The results are displayed in Table 2. Repeating the meta-analyses
TABLE 1 | Basic characteristics.

Study Study
Design

Region NO. Radiomics
algorithm

Subgroup Imaging
modality

BC non-
BC

TP FP FN TN Feature type

Zhang,2017
(28)

Retrospective China 117 Conventional
algorithm

Conventional
image

US 42 75 36 8 6 67 7 radiomic features

Hu,2018 (15) Retrospective China 88 Machine learning Functional
image

MRI 52 36 42 8 10 28 5 radiomic features

Luo,2019 (21) Retrospective China 315 Conventional
algorithm

Conventional
image

US 68 143 52 24 16 119 9 radiomic features
35 69 29 5 6 64

Li,2019 (19) Retrospective USA 182 Conventional
algorithm

Conventional
image

MMG 106 76 83 18 23 58 32 radiomic features

Drukker,2019
(13)

Prospective USA 109 Conventional
algorithm

Conventional
image

MMG 35 74 34 36 1 38 9 radiomic features

Whitney,2019
(27)

Retrospective USA 462 Deep learning Functional
image

MRI 296 212 222 46 74 166 38 radiomic features

Ji,2019 (17) Retrospective China 1979 Machine learning Functional
image

MRI 421 114 352 20 69 94 10 radiomic features

Gibbs,2019
(14)

Retrospective USA 149 Conventional
algorithm

Functional
image

MRI 9 32 6 0 3 32 4 Clinical and 1 radiomics
feature

Chen,2019
(12)

Retrospective China 81 Conventional
algorithm

Functional
image

MMG, MRI 40 41 33 8 7 33 14 radiomic features

Truhn, 2019
(26)

Retrospective Germany 447 Conventional
algorithm

Functional
image

MRI 787 507 616 78 171 429 10 radiomic features

Lei, 2019 (18) Retrospective China 419 Conventional
algorithm

Conventional
image

MMG 78 81 63 18 15 63 6 radiomic features
28 25 25 9 3 16

Mao, 2019
(22)

Retrospective China 173 Conventional
algorithm

Conventional
image

MMG 79 59 78 1 1 58 51 radiomic features
20 15 17 1 3 14

Gullo,2020
(20)

Retrospective USA 430 Conventional
algorithm

Functional
image

MRI 40 76 25 7 15 69 1 Clinical and 10 radiomics
features

Hu,2020 (16) Retrospective USA 612 Conventional
algorithm

Functional
image

MRI 657 159 520 36 137 123 75 radiomic features

Parekh,2020
(23)

Retrospective USA 138 Conventional
algorithm

Functional
image

MRI 97 41 80 8 17 33 10 radiomic features

Qiao,2020
(24)

Retrospective China 267 Conventional
algorithm

Functional
image

MRI 136 131 115 25 21 106 246 radiomic features

XY Zhou,2020
(30)

Retrospective China 228 Conventional
algorithm

Functional
image

MRI 158 70 149 5 9 65 9 radiomic features

Zhou,2020
(29)

Retrospective China 227 Deep learning Functional
image

MRI 91 62 83 17 8 45 1 Clinical and 5 radiomics
features48 26 41 9 7 17

Sakai,2020
(25)

Retrospective Japan
+USA

24 Machine learning Conventional
image

MMG 31 20 21 5 10 15 6 radiomic features
Ma
rch 20
22 |
MMG, Mammography; US, Ultrasound; MRI, Magnetic Resonance Imaging; BC, Breast cancer; TP, True positive; FP, False positive; TN, True negative; FN, False negative.
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A

B

FIGURE 2 | Methodological quality of the studies included in the meta-analysis according to the QUADAS 2 tool for risk of bias and applicability concerns. Green,
yellow, and red circles represent low, unclear, and high risk of bias, respectively. (A) Individual studies, (B) summary.
FIGURE 3 | Forrest plot of the effect size calculated as log odds ratio for 19 studies investigating the diagnostic accuracy of radiomics in the differentiation of
BC from breast masses. Numbers are pooled estimates, with 95% confidence intervals (CIs) depicted with horizontal lines. Heterogeneity statistics are shown at
bottom right.
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after removing studies of adjusted unreported variables did not
change our findings (Table 3).
DISCUSSION

We compared the preoperative predictive value of radiomics in
the diagnostic performance of BC in different studies. The results
showed that the diagnostic value of radiomics was high in
predicting BC with an aggregated sensitivity, specificity, and
AUC of 0.84, 0.83, and 0.91, respectively. Although the number
and types of features varied among the 19 included studies, which
Frontiers in Oncology | www.frontiersin.org 5
may influence the aggregated sensitivity and specificity,
radiomics was shown to have good predictive ability of BC in
each study. Significant heterogeneity was identified in our study.
Specifically, the screening methods, selection of the scanner
manufacturer and model, acquisit ion methods, and
reconstruction parameters were shown to contribute to the
heterogeneity in imaging data.

Sensitivity analyses showed that our results were reliable and
stable after each study was sequentially removed, and the
unreported adjusted variables were omitted.

The specificity and AUC of conventional and functional
imaging analyses were similar, but conventional imaging had a
FIGURE 4 | Hierarchical summary receiver operating characteristic curve (SROC) plot of diagnostic performance in predicting BC of the included radiomic models.
The numbers in circles correspond to the order of the articles in Table 1.
TABLE 2 | Subgroup analyses.

Subgroup Number of study Sensitivity Specificity PLR NLR AUC

Main effect 19 0.84 0.83 4.9 0.2 0.9
Imaging modality
MRI 9 0.83 0.82 4.5 0.21 0.89
MMG 6 0.87 0.79 4.2 0.16 0.91
US 5 0.82 0.87 6.2 0.21 0.9

Study Design
Prospective 1 0.97 0.51 2.2 0.44 0.84
Retrospective 18 0.83 0.84 5.2 0.2 0.9

Region
China 10 0.86 0.85 5.7 0.16 0.92
USA 8 0.77 0.8 3.9 0.28 0.85

Imaging technique
Conventional image 6 0.88 0.82 4.9 0.15 0.92
Functional image 13 0.82 0.83 4.9 0.22 0.9

Modeling methods
Radiomic algorithm 5 0.87 0.8 4.3 0.16 0.91
Machine/Deep learning 14 0.83 0.84 5.2 0.21 0.9
March 2022 | Vol
ume 12 | Article 83
MMG, Mammography; US, Ultrasound; MRI, Magnetic Resonance Imaging; AUC, Area under curve; PLR, Positive likelihood ratio; NLR, Negative likelihood ratio.
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slightly higher sensitivity. A possible explanation is that
conventional imaging analyses included in this meta-analysis
were combined with special examination methods. Li et al.
combined the radiomic analysis of breast tumors and the
parenchyma to improve the diagnostic accuracy of BC (19).
Luo et al. used a nomogram combined with radiomics and the
Breast Imaging Reporting and Data System (BI-RADS) score to
predict BC (21). As for imaging modalities, the sensitivity and
AUC of predicting BC by MMG were slightly higher than those
of MRI and US, but the specificity was slightly lower. The use of
new ultrasound imaging techniques, such as ultrasound
elastography and contrast-enhanced ultrasound, may improve
the detection of BC. Multi-modal MRI imaging techniques can
detect most early-stage BCs, and the specificity of MRI is usually
higher than that of MMG and US (31). In terms of modeling
methods, ML and DL were widely studied, among which support
vector machines and convolutional neural networks were the
most commonly used. Logistic regression was also applied
because the status of the breast mass (BC or non-BC) is a
dichotomous variable. The results showed that radiomics based
on either modeling method could achieve high diagnostic
efficiency in predicting BC. Lastly, different data sources and
study designs influenced the aggregated sensitivity, specificity,
and AUC. Thus, more studies focusing on these subgroups
are needed.

The preoperative diagnosis and clinical staging of BC are
implemented mainly through the visual observation and analysis
of medical images. The BI-RADS (32) score is a standardized
description of imaging features of breast tumors, and it provides
an approximate risk of malignancy to a lesion but lacks a
characteristic evaluation of the intrinsic heterogeneity in
tumors reflecting different biological behaviors of BC. To
overcome limitations in the observation of tumor images by
the naked eye, artificial intelligence has been increasingly
Frontiers in Oncology | www.frontiersin.org 6
applied to the mining and use of medical image data to meet
the growing need for individualized evaluation (33). With the in-
depth study of radiomics, models based on radiomics features
have been shown to be a promising non-invasive method for
BC classification and prediction (34). Reportedly, radiomics
models based on features extracted from preoperative
MMG, US, or MRI images had a relatively high predictive
performance (12–30). Texture feature analysis based on US
sonoelastography was first used to propose a quantitative
radiomics approach for the feature selection and classification
of breast tumors (28). Subsequently, many studies performed
feature extraction from multi-parameter MRI images,
including T2-weighted (T2w) MRI sequences, diffusion-
weighted imaging (DWI) sequences, and dynamic contrast-
enhanced (DCE)-MRI sequences, and constructed well-
performed radiomics predictive models using ML or
DL methods (12, 15, 16, 20, 23, 24, 26, 29, 30). A recent
study suggested that mammography radiomics combined with
quantitative three-compartment breast image analysis could
reduce unnecessary breast biopsies (13).

Our meta-analysis of preoperative BC prediction using
radiomics methods has two advantages. First, to the best of our
knowledge, this study involving 19 articles and 5865 breast
masses is the first meta-analysis to assess the diagnostic
efficacy of radiomics models in predicting BC before surgery.
Secondly, this study evaluated the diagnostic efficacy of
radiomics models in predicting BC by comparing imaging
modalities, modeling methods, and other subgroups, thereby
providing ideas for subsequent radiomics research.

There are several inherent limitations to this study that need
to be discussed. First, the methodology of radiomics studies
included in this analysis was different as different medical centers
use various examination equipment, and the selection of imaging
modality, feature extraction, and modeling methods provides an
TABLE 3 | Sensitivity analyses.

Study removed Sensitivity Specificity PLR NLR AUC

No 0.84 0.83 4.9 0.2 0.9
Zhang, 2017 (28) 0.84 0.83 4.8 0.2 0.9
Hu, 2018 (15) 0.84 0.83 5 0.19 0.9
Luo, 2019 (21) 0.84 0.82 4.8 0.19 0.9
Li, 2019 (19) 0.84 0.83 5 0.19 0.9
Drukker, 2019 (13) 0.83 0.84 5.2 0.2 0.9
Whitney, 2019 (27) 0.84 0.83 5 0.19 0.9
Ji, 2019 (17) 0.84 0.83 5 0.2 0.9
Gibbs, 2019 (14) 0.84 0.82 4.7 0.2 0.9
Chen, 2019 (12) 0.84 0.83 5 0.19 0.9
Truhn, 2019 (26) 0.84 0.83 4.9 0.19 0.9
Lei, 2019 (18) 0.84 0.84 5.2 0.19 0.91
Mao, 2019 (22) 0.82 0.81 4.4 0.22 0.89
Gullo, 2020 (20) 0.84 0.84 4.9 0.19 0.9
Hu, 2020 (16) 0.84 0.83 5 0.19 0.9
Parekh, 2020 (23) 0.84 0.83 5 0.19 0.9
Qiao, 2020 (24) 0.84 0.83 5 0.2 0.9
XY Zhou, 2020 (30) 0.83 0.82 4.7 0.21 0.89
Zhou, 2020 (29) 0.84 0.83 5.2 0.2 0.9
Sakai, 2020 (25) 0.84 0.83 5 0.19 0.9
March 202
2 | Volume 12 | Article 83
AUC, Area under curve; PLR, Positive likelihood ratio; NLR, Negative likelihood ratio.
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infinite number of combinations. Second, the code used for
feature extraction and model building was not publicly
available for any of the 19 studies included in this analysis,
preventing replication and independent validation of the
research results. Third, because our study used summary
statistics rather than individual raw data, it was not possible to
achieve more reliable results. However, it was possible to achieve
more precise delineation and control potential residual
confounding, a common limitation of meta-analyses.
CONCLUSIONS

Our study shows that radiomics models based on preoperative
imaging features are useful for the prediction of BC and have
high diagnostic efficacy and consistency among studies.
Radiomics is expected to provide a new quantitative diagnostic
method for clinical work, but more well-designed prospective
radiomics trials are needed to demonstrate its effectiveness and
ability to translate into clinical practice.
Frontiers in Oncology | www.frontiersin.org 7
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