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Abstract

The early diagnosis of melanoma is critical to achieving reduced mortality and increased survival. Although clinical
examination is currently the method of choice for melanocytic lesion assessment, there is a growing interest among
clinicians regarding the potential diagnostic utility of computerised image analysis. Recognising that there exist significant
shortcomings in currently available algorithms, we are motivated to investigate the utility of lacunarity, a simple statistical
measure previously used in geology and other fields for the analysis of fractal and multi-scaled images, in the automated
assessment of melanocytic naevi and melanoma. Digitised dermoscopic images of 111 benign melanocytic naevi, 99
dysplastic naevi and 102 melanomas were obtained over the period 2003 to 2008, and subject to lacunarity analysis. We
found the lacunarity algorithm could accurately distinguish melanoma from benign melanocytic naevi or non-melanoma
without introducing many of the limitations associated with other previously reported diagnostic algorithms. Lacunarity
analysis suggests an ordering of irregularity in melanocytic lesions, and we suggest the clinical application of this ordering
may have utility in the naked-eye dermoscopic diagnosis of early melanoma.
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Introduction

With an incidence rate increasing over the last few decades,

melanoma has become a major public health concern in many

Western countries [1]. Although life expectancy in patients with

advanced disease has not significantly improved during this time,

the prognosis in patients with early and localised disease remains

favourable. Hence the early diagnosis of melanoma is critical to

achieving reduced mortality and increased survival [2]. Early

diagnosis is facilitated by primary or specialist medical skin

surveillance. For high-risk groups, such as those with multiple

atypical or dysplastic naevi, photographic records enhance

detection. Evidence suggests that dermoscopy – an in-vivo method

capable of revealing sub-surface structures and improving colour

resolution – can improve diagnostic accuracy in trained users

[3,4]. However, there exist limitations to the clinical assessment of

melanocytic lesions. Poorly trained clinicians do not perform as

well in melanocytic lesion diagnosis as their well-trained

counterparts, and subjectivity, even among experts, is common-

place in dermoscopic pattern analysis [5]. The computerised

analysis of melanocytic lesions is an endeavour that attempts to

address these latter two problems [6]. Discriminatory software

aims to help the poorly trained clinician achieve higher sensitivity

and specificity in diagnosis, and the use of computer algorithms

removes subjectivity in dermoscopy analysis. Computerised

analysis of pictorial data can also be viewed as a third in-vivo

window of critical analysis, complementing naked eye and

dermoscopic examination. It is possible software can recognise

features – in the digital representation and analysis of colour

intensity throughout a lesion – when the eye cannot, and therefore

improve the diagnostic accuracy of even well trained and

experienced clinicians.

Lacunarity, a measure first introduced by Mandelbrot [7], and

subsequently described by others [8–10], was initially used to

characterise a property of fractals. However, lacunarity analysis can

be applied to objects that are not self-similar [10]. Various

investigators have taken advantage of this non-restrictive property

by applying lacunarity analysis to imagery in a number of diverse

fields including geology [11], ecology [12], radiology [13] and

dermatology [14]. Lacunarity is a measure of translational

invariance of an object [11], and quantifies aspects of patterns that

exhibit scale-dependent changes in structure. Dermoscopic images

of melanocytic lesions exhibit rich multi-scaled and multi-textured

structures that we hypothesise are directly amenable to lacunarity

analysis. Clumping of colour intensity at one or more length scales is

associated with a violation of translational invariance and high

lacunarity values, while colour or texture homogeneity is equivalent

to translational invariance and low lacunarity values. Lacunarity

values can be expected to correlate with, for example, heterogeneity

of red, entropy, main axis asymmetry, border irregularity, and

contrast – all key parameters known to be of significant

discriminatory value in the automated differentiation of benign
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and dysplastic naevi from melanoma [15–17]. Indeed, lacunarity

calculations have recently been implemented in the assessment of

melanocytic lesions. Lacunarity was shown to exhibit higher values

in melanoma compared with non-melanoma [18], and it has been

proposed that lacunarity may have diagnostic utility as an

independent parameter in melanoma diagnosis if combined with

mean diameter and range of blue [14].

We perform our analysis as follows. The position of a polarised

dermoscopic image of a melanocytic lesion is identified manually

by locating the four points of the lesion that correspond to its

upper and lower, and left and right extremities. The image is then

cropped at these four reference points and lacunarity analysis is

applied to the resultant standardised image. Our lacunarity

calculation is a measure of the variation in either normalised

8-bit red, green or blue (RGB) colour intensity across the whole

image. An 8-bit RGB image exhibits 28 or 256 grades of color

intensity in red, green and blue. Normalised intensities are rescaled

to values between 0 and 1. A pixel is chosen at random within the

image at location mi,j. Colour intensity is then summed for a range

of box sizes x2 centred at m with odd-valued edge sizes ranging

from x = 3 to x = xmax pixels wide. For example, if xmax = 7 colour

intensity would be summed over boxes centred at m with sizes 9,

25 and 49 pixels. This procedure is then repeated for y randomly

chosen mij, and the y values with respect to a given box size are

used to calculate lacunarity for that box size (see Methods). For the

example above this would yield a lacunarity value associated with

box sizes 9, 25 and 49 – the lacunarity vector. The maximum box

size used (xmax) will determine the length of the lacunarity vector,

while the number of random centres (y) used is the centre count.

The mean value of the lacunarity vector is then taken as the

singular lacunarity measure for the image. Plotting the logarithm

of the lacunarity vector values versus the logarithm of the

corresponding box size yields a lacunarity plot – the slope of the

line is a measure of the objects’ fractal dimension while the

correlation between the points and the line of best fit is a measure

of the self-similarity, or ‘‘fractal-like’’ nature of the image [11].

There are significant differences between our methods and those

reported above [18]. First, we minimise the problems associated

with boundary recognition algorithms by using a minimal

segmentation procedure. Second, we apply our image analysis to

dermoscopic images rather than native images. Third, we measure

8-bit normalised red, green or blue colour intensity rather than

either greyscale intensity or binary threshold red, green or blue

colour intensity. Fourth, we measure lacunarity for different box

sizes, generating a lacunarity vector for each image at one of three

maximal box sizes. This methodology allows us to fully explore the

capabilities of lacunarity in capturing geometric information about

the distribution of colour intensity within an image.

Here we present the first comprehensive analysis of the utility of

lacunarity in melanocytic lesion assessment. We show that this

measure can discriminate melanoma from non-melanoma with a

sensitivity and specificity comparable to previously reported

diagnostic algorithms, and without many of the limitations of the

latter. We find that the lacunarity measure suggests a natural

ordering of irregularity in melanocytic lesions, and show how

lacunarity analysis can reveal additional information regarding

their geometric structure.

Methods

Image acquisition and pre-processing
Three hundred and twelve dermoscopic images of melanocytic

lesions were obtained from the Department of Dermatology at the

Medical University of Graz in Austria. All images were obtained

from Caucasian patients and corresponded to one image per

patient. No other demographic details were available. Digitised

photographs were taken over the period 2003 to 2008. Polarised

dermoscopic images of all lesions were obtained using a DermLite

FOTO lens (3Gen LLC, Dana Point, California, USA) coupled to

a digital camera (Nikon CoolPix 4500; Nikon Corporation, Tokyo,

Japan) without flash using the camera’s auto setting. Patient

consent was obtained for the use of all images for research

purposes, and all dermoscopic images shown are reproduced with

permission.

Of the 312 lesions, 111 were considered benign by an expert

dermatologist (RHW) using standard dermoscopic diagnostic

criteria and were not excised. These lesions were used in another

study [19]. Although it is possible some of these benign lesions

were given an incorrect diagnosis, we expect the false negative rate

to be very low, probably negligible, given that the diagnosis was

made by an expert dermatologist with over 15 years experience in

dermoscopy. Of the remaining 201 lesions, all were excised and

examined microscopically by expert dermatopathologists using

standard histopathologic diagnostic criteria. Of these excised

lesions, 102 lesions were diagnosed as melanoma and 99 lesions

were diagnosed as dysplastic.

Images were obtained as large JPEG files by one of us (SG) and

were subsequently processed in two steps prior to analysis. First,

the images were cropped to a rectangle or square such that the

boundary of the lesion was adjacent to all four edges of the image

(a very small number of the pre-processed JPEG’s were of lesions

that completely filled the frame). Second, each image was then

compressed to a size where the shortest axis was 120 pixels wide.

Three lesions were excluded following cropping, as their native

resolution was less than 120 pixels along the shortest axis.

Otherwise, all images were included and all artefacts, where

present, were left untouched. Finally, to preserve differential

information between images we did not perform histogram

equalisation or brightness normalisation. Histogram equalisation

removes contrast differences between lesions, while brightness

normalisation removes differences in color intensity between

lesions. These transformations have undesirable consequences

for pigmented lesion diagnosis. For example, uniform benign

lesions with subtle contrast and diminished red intensity may

transform to lesions with high contrast and high red intensity – and

thus be indistinguishable from unprocessed images of melanoma.

The lacunarity algorithm
Lacunarity is defined as the non-dimensional ratio of the second

and first moments of mass distribution. Here we equate mass with

pixel RGB intensity, hence we are implementing lacunarity as a

measure of the distribution of color intensity over an image. The

first moment is equivalent to the mean

SsT~
1

N

Xi~N

i~1

si

where si is a mass element of edge size x centred at position i of N

boxes covering the object. The second moment is equivalent to the

sum of two components: the variance, given by

v~
1

N{1

Xi~N

i~1

si{SsTð Þ2,
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and the mean squared, denoted SsT2, giving the lacunarity (L)

L xð Þ~ vzSsT2

SsT2
;

where L(x), for the two-dimensional case, is a function of box size

x2. In general, boxes are generated by a ‘gliding box’ procedure

where a subset N of the total number of discretised elements

(pixels) comprising the object are used as centres [11]; here we

select centres at random.

For most purposes reported in the literature the maximal box

size is one-half of the length of the smallest axis of the image; here

we use three maximal box size diameters – one-eighth, one-half

and one-quarter of the length of the smallest axis of the image,

hence we performed three maximal box-size lacunarity calcula-

tions for each image.

The lacunarity algorithm assesses the red, green and blue

components of the image separately. For each image the position

of 1000 random pixels were generated consecutively by a random

number generator and assigned as box centres. The first and

second moments ranging from the smallest box-size (9 pixels) to

the largest (either 225, 841 or 3481 pixels) were calculated about

the centres as they were generated. This procedure generated a

lacunarity vector for each image in the red, green and blue

components. Depending on maximal box size, these vectors

contained either 7, 14 or 29 elements. Images were thus assigned

nine lacunarity values according to the mean of their red, green

and blue vector values for each of three maximal box-sizes.

Data analysis
Sensitivity and specificity ROC curves were generated auto-

matically for each colour and maximal box size with a window

range of 0.0025.

To determine whether there were significant differences

between diagnostic groups, and since raw lacunarity values were

skewed and could not be normalised by a suitable transformation,

lacunarity values were compared using a three way non-

parametric test (Kruskal-Wallis) and a two-way non-parametric

test (Wilcoxon Rank Sum).

To assess whether there were any differences between diagnostic

groups regarding their fractal dimension and degree of self-

similarity (Pearson’s correlation coefficient) non-parametric tests

were used (Kruskal-Wallis and Wilcoxon Rank Sum) since these

data were skewed and could not be transformed to normality.

To assess the correlation between the clinical irregularity scores

and lacunarity values, Spearman’s rank correlation was calculated

using an index of 1 to 6 for clinical irregularity scores, and

lacunarity values in the red spectrum at intermediate box size for

each image. Finally, to assess the inter-observer agreement in

clinical irregularity scores, a linear-weighted kappa statistic was

evaluated.

Results

Validation of algorithm settings
The two important algorithmic settings that have a direct

bearing on computational time in calculating lacunarity with

respect to a given image are the centre count and the image size

(see Methods). The values chosen for the centre count and

minimum image axis size, 1000 and 120 pixels respectively, were

found, after multiple test simulations, to be a reasonable

compromise between accuracy, reproducibility and speed of

computation. To invesigate accuracy and reproducibility,

consider the melanocytic lesions and their associated lacunarity

values as shown in Fig. 1. Here we have taken one lesion from

each diagnostic group and repeated the lacunarity calculation

100 times. Compared with the values found by an exhaustive

centre count of 40,000 – the true value – no values calculated

with a centre count of 1000 were found to be in error by more

than 0.008, a value two orders of magnitude smaller than the

range of lacunarity values obtained from all images in this

analysis. To investigate reproducibility, we performed a one-way

ANOVA (analysis of variance) on the repeated lacunarity values

from each diagnostic group. The within-group variation only

accounted for 0.3% of the total (within and between-group)

variation, thus demonstrating the reproducibility of the method.

Finally, although native resolution analysis is prohibitively time-

consuming since increases in image size were found to be

associated with exponential increases in CPU time, all calculated

lacunarity values, as a function of image size, and therefore CPU

time, do not vary by more than 0.011 (Fig. 1). The compromise in

accuracy with removal of image detail is therefore small and

within the range of statistical uncertainty given by the centre

count result.

Algorithm diagnostic performance
The diagnostic performance of the algorithm was assessed with

the centre count set to 1000 and with a minimal image axis width

of 120 pixels. We evaluated lacunarity for all images in the red,

green and blue spectra, and for three different maximal box sizes.

We then sought to determine whether lacunarity values differ

between the following pairs: dysplastic and benign naevi,

melanoma and benign naevi, melanoma and dysplastic naevi,

and melanoma and non-melanoma, and if so, which colour and

maximal box size combination is the best discriminator. Receiver

operated characteristic (ROC) curves were generated for all

colours for all three maximal box sizes to determine whether

lacunarity can distinguish between the diagnostic pairs above. We

found that lacunarity analysis of images at the smaller and

intermediate maximal box sizes was superior to image analysis at

the larger box size, independent of colour, while the red spectrum

was clearly superior to either green or blue, independent of

maximal box size. Lacunarity values for the red spectrum at

intermediate maximal box size for each diagnostic group are

shown as box-plots in Fig. 2.

To determine optimal sensitivities and specificities from these

ROC data, we used the following procedure: we took the 5 points

where the sum of sensitivity and specificity was largest, and among

those 5 points, chose the single point with the highest sensitivity,

with the constraint that the specificity must be greater than 50.

ROC curves for the red spectrum at intermediate maximal box

size are shown in Fig. 3, with the optimal points highlighted.

Optimal sensitivity and specificity results for different maximal box

sizes in the red spectrum are presented in Table 1, while Table 2

shows the T and z test statistics for diagnostic group differences

(including the Kruskal-Wallis test for three-way differences) in

lacunarity as a function of colour for the intermediate maximal

box size.

The results presented in Table 1 for the intermediate maximal

box size include a lacunarity value (L) that can be potentially used

as discriminator between diagnostic categories. For example, in

our cohort of images, 91% of melanomas were associated with

lacunarity values greater than 1.0275, while 61% of non-

melanomas were associated with lacunarity values less than

1.0275. We then asked whether our lacunarity values possess

any utility as a three-way diagnostic discriminator. Using

L = 1.0175 (Table 1) to distinguish dysplastic naevi from benign

Lacunarity and Melanoma
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naevi, and L = 1.0425 (Table 1) to distinguish dysplastic naevi from

melanoma, (hence melanocytic lesions associated with lacunarity

values between 1.0175 and 1.0425 would be classified as

dysplastic) we find a diagnostic accuracy, when applied to all

our images, of 0.66, 0.40 and 0.76 for benign naevi, dysplastic

naevi, and melanoma respectively. These values are derived from

the diagonal entries of the associated three-way matrix of

confusion (Table 3).

Lesion irregularity and the structure of melanocytic
lesions

We next examined the diagnostic groups with respect to their

fractal dimension and degree of self-similarity (Table 4). Here we

analysed data for the red spectrum at intermediate maximal box

size. We found that there were significant differences in the fractal

dimension between groups; the largest difference was found

between benign naevi and melanoma where the fractal dimension

was closer to 2 in the former. We then assessed the degree of self-

similarity of images from different diagnostic groups by determin-

ing how well the points of the lacunarity plot fit the line of best fit;

this is given by Pearson’s correlation coefficient (R2). Although the

Kruskal-Wallis test yielded a significant result, we found that there

was no significant difference in R2 values between dysplastic naevi

and melanoma. However, the Wilcoxon Rank Sum test demon-

strated significant differences in R2 values between benign naevi

and both dysplastic naevi and melanoma.

Lacunarity analysis suggests there may exist an ordering of

irregularity based on an images’ singular lacunarity value. This

classification is presented in Table 5 and illustrated schematically

and by example in Fig. 4. To test whether the clinical

Figure 1. Lacunarity values as a function of box count and image resolution. Lacunarity values for the benign naevus (A), dysplastic naevus
(B) and melanoma (C) of 100 repeated calculations where the box-counts were 1000 for each (column 2) and as a function of image resolution
(column 3). For all plots in column 2 the points cluster about the true value (drawn as a horizontal line) obtained by exhaustive sampling (40,000 box-
counts). Note that all data points shown in column 3 lay within the error range shown in column 2. The three native resolution JPEGs, with a
minimum axis width of 480 pixels, are shown as the right-most data point of the plots shown in column 3. The lacunarity calculation at this resolution
required over 12 hours of CPU time to complete.
doi:10.1371/journal.pone.0007449.g001
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implementation of this scheme correlates with calculated lacunar-

ity values, two dermatologists expert in dermoscopy (HPS, JM)

evaluated all 309 lesions at analysis resolution without prior

knowledge of the diagnosis and assigned an irregularity score to

each image in accord with this classification. In both cases

Spearman’s rank correlation was found to be positive (rs = 0.59,

p,0.0001 and rs = 0.47, p,0.0001 respectively) thus demonstrat-

ing a statistically significant – although moderate – correlation

between the clinically determined irregularity scores and their

associated lacunarity values. The inter-observer agreement was

found to be fair: the linear weighted kappa statistic between HPS

and JM was 0.32.

Finally, lacunarity plots were generated for a sample cohort of

images. We found that these plots can reveal additional

information regarding the geometric structure of melanocytic

lesions not accessible by the single-number lacunarity measure.

They can be used to identify the typical length scale of irregularity

in simple internal asymmetry (see Table 5), and can classify

hierarchical internal asymmetry into either multi-scaled or fractal

subtypes (Fig. 5).

Discussion

In summary, our results demonstrate that lacunarity analysis is a

potentially useful method of automating the assessment of

melanocytic lesions. We now briefly explore its utility in the

context of existing diagnostic algorithms.

The majority of investigators with an interest in the automated

diagnosis of dermoscopic images of melanocytic lesions apply an

artificial neural network [15,16,20–26] or a related algorithm

[17,27–29] to a training set of melanocytic lesions. For example,

the aim of an artificial neural-network is to learn how to recognise

various patterns of distinct inputs across multiple logic gates and

respond with an appropriate output pattern. For melanocytic

lesion diagnosis, the neural-network is usually one logic gate, and

the inputs represent parameters in image evaluation. The network

is set the task of optimising the number of inputs and their

respective weights so that the output is appropriate to the given

image [20]. The end result is a much smaller set of predictive

variables, which are then used to test a sample cohort of images.

The range of sensitivities and specificities reported testify, in the

main, to the effectiveness of the various automated procedures.

However, there are a number of easily identifiable problems with

their associated algorithms, some of which are outlined below.

First, it is impossible to combine training-set results generated by

different algorithms. The final sets of discriminatory parameters

are different for each protocol, and the algorithms used in their

implementation differ substantially. There exists an obvious

imperative to reduce and standardise parameter sets. Second,

there is a trade-off between the number of parameters used to

discriminate melanocytic lesions and the ability of the algorithm to

generalise accurately when applied to new lesions. High

specificities flag the possibility of over-training with a consequent

reduction in sensitivity when tested on new lesions, particularly in

the differentiation of dysplastic naevi from early melanoma. Third,

it is unclear whether images should be ‘cleaned up’ prior to

analysis. Automated removal of artefacts such as hair shafts or air

bubbles requires sophisticated image processing software and may

create new artefacts. Fourth, identification of the boundary of a

given lesion is problematic for computer algorithms, especially in

melanoma or otherwise atypical naevi where regression and poorly

defined borders are common. In one algorithm the investigator

was required to manually draw the boundary in 24% of cases [30],

rendering the process less than perfectly objective. Finally, many

programs are licensed ‘black boxes’ hence their algorithmic details

will never be completely transparent and open to independent

scrutiny.

Lacunarity analysis has a number of inherent advantages over

existing algorithms. First, as a measure with considerable overlap

with previously reported diagnostic parameters, implementing the

lacunarity calculation may facilitate a reduction in parameter

numbers, thus reducing the risk of over-training [18]. Second,

lacunarity analysis is algorithmically simple, transparent and fully

reproducible. Third, the lacunarity algorithm is relatively

insensitive to the presence of artefacts, such as hair shafts, that

only occupy a small region of the image. Fourth, the results are

robust to reductions in image resolution. The images analysed

here were about 120 pixels wide; files of this size are easily

electronically transferred by mobile phone where bandwidth

limitations may exist. Fourth, our lacunarity analysis does not

Figure 2. Box-plots of lacunarity values for the red spectrum at intermediate maximal box size with respect to diagnostic groups.
Shown are medians, quartiles and 95% quantiles. The dashed line represents the optimal lacunarity value (L = 1.0275) that discriminates between
melanoma and non-melanoma. Note the presence of outliers in the dysplastic naevi group.
doi:10.1371/journal.pone.0007449.g002
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require the shape of the melanocytic lesion to be identified. Fifth,

our lacunarity algorithm is readily applicable to non-polarised

images since the major dermoscopic features and patterns found in

polarised images are also present in non-polarised images [31].

Finally, the algorithm is readily applicable to multi-spectral images

[32], with the caveat that discriminatory lacunarity values may

need to be determined using a training set for each wavelength. It

is possible that analysing images with our algorithm using specific

visible or infrared wavelengths may be superior to broadband

visible red.

Based on a pilot study of 309 dermoscopic images of

melanocytic lesions, the lacunarity measure that characterises a

given image has been shown to be a promising parameter in the

automated differentiation of melanoma from non-melanoma.

Lacunarity analysis can distinguish melanoma from benign naevi

with a SE of 92 and a SP of 81, and it can distinguish melanoma

from non-melanoma with a SE of 91 and a SP of 61. These figures

are comparable to those previously reported for artificial neural

networks and related diagnostic algorithms [15–17,21,25,26].

Although the results presented above are encouraging, it is

important to consider why our algorithm may fail to diagnose

melanoma, why it may diagnose non-melanoma as melanoma,

and whether it offers any particular advantages in difficult lesions.

First, we consider the 9 cases where, with respect to the optimal

lacunarity value used in the discrimination between melanoma

and non-melanoma, the algorithm incorrectly diagnosed melano-

ma as non-melanoma. Surprisingly, 6 of those cases exhibited

markedly diminished greyscale red intensity, thus accounting for

their lower lacunarity values. We next consider cases where, with

respect to the optimal lacunarity value used in their discrimina-

tion, dysplastic naevi were incorrectly diagnosed as melanoma.

Examination of the greyscale red intensities for 14 of the dysplastic

naevi associated with the highest lacunarity values, and diagnosed

as melanoma, revealed a near absence of red intensity in the skin

surrounding the lesions. This feature greatly increased contrast

between the images and their surrounding skin, and led to images

associated with high lacunarity values. We believe this is an

artefact of the colour cast found in the clinical images. These

Figure 3. Receiver Operated Characteristic (ROC) curves. ROC curves are shown for the lacunarity measure of the red spectrum at maximum
box-size equal to one-quarter of the shortest axis of the image. The following pairs are displayed: dysplastic v benign (A), melanoma v benign (B),
melanoma v dysplastic (C), and melanoma v non-melanoma (D). Lacunarity can distinguish melanoma from benign naevi (B) with a SE of 92 and a SP
of 81, however it does less well in distinguishing melanoma from dysplastic naevi (C), with an optimal SE of 76 and a SP of 54. A SE of 91 and SP of 61
distinguish melanoma from non-melanoma (D) with a discriminatory lacunarity value of 1.0275.
doi:10.1371/journal.pone.0007449.g003
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anomalies in the degree of red intensity highlight the importance

of standardising white balance, and suggest that a potentially

important addition to the algorithm is to measure the red intensity

throughout the lesion and its surrounding skin prior to analysis; if

the maximum value is below some threshold then it may be better

to calculate lacunarity for that image using another colour. Finally,

we examined two melanomas where the clinical suspicion was

moderate. In these cases, the lacunarity algorithm is able to

identify pattern irregularity and textural changes that are not

discernable with dermoscopic images.

Since heterogeneity of structure is one of the key dermoscopic

features used to diagnose melanoma [33], the results presented

herein confirm the hypothesis that as a quantitative measure of

departures from translational invariance, lacunarity provides an

objective assessment of melanocytic lesion irregularity. The

lacunarity measure suggests a classification of lesion irregularity

based on a monotonically increasing lacunarity value, and we are

encouraged by our preliminary results that suggest it may be

possible for the ordering of this classification to be determined

clinically. We expect observer performance (including inter-

observer agreement measures) will improve with further training.

The utility of this scheme in the clinical dermoscopic evaluation of

melanocytic lesions is currently unknown but its implementation

may improve clinical diagnostic accuracy and therefore warrants

further investigation.

It is well known that the boundaries of malignant lesions may

exhibit fractal-like geometries. The fractal dimensions of melano-

cytic lesion border [34] or surface [18] have been previously

investigated, demonstrating increasing boundary fractal dimension

with lesion progression in the former, and no difference between

diagnostic groups in the latter. Here we have found, in contrast to

the results presented by Manousaki et al above, that the two-

dimensional image fractal dimension is near 2 for benign naevi,

lower for dysplastic naevi, and lower again for melanoma. It is not

surprising that benign naevi are associated with a fractal

dimension close to 2 since, in general, their two-dimensional

dermoscopic images fill space uniformly. However, it is important

to note that any object can be assigned a fractal dimension,

irrespective of whether it actually is fractal. A fractal object is

defined as one that is self-similar across all length scales, and is

characterised by a linear lacunarity plot. If the lacunarity plot is

not linear, then assigning a single value (the fractal dimension) to

the slope of the line may not be meaningful. We found that the

degree of self-similarity (Pearson’s correlation for the line of best fit

to the lacunarity plot), could not distinguish dysplastic naevi from

melanoma, hence we conclude that melanoma is not more ‘fractal-

like’ than dysplastic naevi, although we have found melanoma

Table 1. Key lacunarity sensitivities (Sens.), specificities (Spec.) and 95% confidence intervals for melanocytic lesion diagnostic
group discrimination.

Max. box size*

Smallest Intermediate Largest

Sens. Spec. Sens. Spec. Sens. Spec.

Dys v Ben 87 (78–92) 65 (56–74) 86 (76–91) 66 (56–74) 86 (76–91) 55 (44–64)

Mel v Ben 90 (82–95) 85 (76–90) 92 (85–96) 81 (72–87) 95 (88–98) 54 (44–63)

Mel v Dys 73 (63–81) 64 (54–73) 76 (66–84) 54 (44–64) 65 (55–74) 52 (42–62)

Mel v Non-Mel 88 (80–93) 66 (60–72) 91 (83–95) 61 (54–67) 84 (75–90) 55 (48–61)

Ben: Benign.
Dys: Dysplastic.
Mel: Melanoma.
Non-Mel: Non-Melanoma.
*Calculations are for the red spectrum.
doi:10.1371/journal.pone.0007449.t001

Table 2. Tests for differences in means between diagnostic
groups with respect to lacunarity (red, green and blue
spectrum).

Inequalities Test T and z scores

Red Green Blue

Ben v Dys v Mel KW (T) 141.9 p = 0.0000 21.4 p = 0.0000 18.0 p = 0.0000

Dys . Ben WRS (z) 8.6 p = 0.0000 1.9 p = 0.0570 22.1 p = 0.0360

Mel . Ben WRS (z) 11.0 p = 0.0000 4.5 p = 0.0000 2.4 p = 0.0160

Mel . Dys WRS (z) 3.9 p = 0.0001 2.8 p = 0.0050 4.1 p = 0.0000

Mel . Non-Mel WRS (z) 8.8 p = 0.0000 4.3 p = 0.0000 3.7 p = 0.0001

KW: Kruskal-Wallis.
WRS: Wilcoxon rank sum.
Ben: Benign.
Dys: Dysplastic.
Mel: Melanoma.
Non-Mel: Non-Melanoma.
All calculations are for intermediate maximal box size.
Positive z values reflect significance for the diagnostic group inequalities as
shown. p-values are given to 4 significant digits.
doi:10.1371/journal.pone.0007449.t002

Table 3. Matrix of confusion* for melanocytic lesion
diagnosis.

Benign Dysplastic Melanoma Total

Benign 73 14 3 90

Dysplastic 27 39 21 87

Melanoma 10 45 77 132

Total 110 98 101 309

*This matrix is interpreted as follows: for 110 benign lesions, found in the first
column, the algorithm diagnosed 73 as benign, 27 as dysplastic and 10 as
melanoma. The first row shows the number of lesions diagnosed as benign,
with respect to their true diagnosis. The remaining columns and rows,
representing dysplastic naevi and melanoma, are interpreted similarly.

doi:10.1371/journal.pone.0007449.t003
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Figure 4. Schematic representation of pigmented lesion irregularity, associated examples, and their monotonically increasing
lacunarity values. For the schematic representations, lacunarity was calculated using normalised red intensity obtained from the respective RGB
colour space image. No irregularity (A), simple internal asymmetry (B), hierarchical internal asymmetry (C), boundary asymmetry (D), boundary
asymmetry and simple internal asymmetry (E), and boundary asymmetry and hierarchical internal asymmetry (F).
doi:10.1371/journal.pone.0007449.g004

Table 5. Melanocytic lesion irregularity classification.

1. Regular

Lesion symmetry, smooth contour, well-defined edge

Homogeneous internal structure

2. Simple internal asymmetry

Lesion symmetry, smooth contour, well-defined edge

One or more internal structures of the same size and colour

3. Hierarchical internal asymmetry

Lesion symmetry, smooth contour, well-defined edge

Internal structures exhibiting two or more sizes and/or colours

4. Boundary asymmetry

Lesion asymmetry or scalloped contour or poorly-defined edge

Homogeneous internal structure

5. Boundary asymmetry and simple internal asymmetry

Lesion asymmetry or scalloped contour or poorly-defined edge

One or more internal structures of the same size and colour

6. Boundary asymmetry and hierarchical internal asymmetry

Lesion asymmetry or scalloped contour or poorly-defined edge

Internal structures exhibiting two or more sizes and/or colours

doi:10.1371/journal.pone.0007449.t005

Table 4. Tests for differences in means between diagnostic
groups with respect to fractal dimension and the regression
coefficient of the lacunarity plot.

Inequalities Test T and z scores*

Fractal dimension Regression coeff.

Ben v Dys v Mel KW (T) 76.1 p = 0.0000 29.3 p = 0.0000

Dys , Ben WRS (z) 3.9 p = 0.0001 4.8 p = 0.0000

Mel , Ben WRS (z) 8.8 p = 0.0000 4.4 p = 0.0000

Mel , Dys WRS (z) 4.4 p = 0.0000 20.7 p = 0.4840

Mel , Non-Mel WRS (z) 7.7 p = 0.0000 2.6 p = 0.0090

KW: Kruskal-Wallis.
WRS: Wilcoxon rank sum.
Ben: Benign.
Dys: Dysplastic.
Mel: Melanoma.
Non-Mel: Non-Melanoma.
All calculations are for intermediate maximal box size.
Positive z values reflect significance for the diagnostic group inequalities as
shown. p-values are given to 4 significant digits.
*Results are for the red spectrum.
doi:10.1371/journal.pone.0007449.t004
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may exhibit a lower fractal dimension. Although we found benign

naevi were more fractal-like than either dysplastic naevi or

melanoma, this is an artefact since their self-similarity is simply due

to their uniformity. Finally, although we have found that irregular

melanocytic lesions with fractal dimensions that are less than 2 are

either true fractals (Fig. 5b) or multi-scaled (possibly multi-fractal,

Fig. 5d), it is an open and interesting question as to whether this

distinction has any biological significance.

In conclusion, we have demonstrated the utility of lacunarity

analysis in assessing the patterns and textures found in melanocytic

lesions. We suggest lacunarity analysis may find utility in

melanocytic lesion assessment as either part of an artificial

neural-network reduced parameter set or as a stand-alone

measure. Although this pilot study suggests it has diagnostic

potential in the automated classification of melanoma from non-

melanoma, prospective studies are required for validation.

Lacunarity analysis suggests there may exist an ordering of

irregularity in melanocytic lesions, and further investigation is

required to determine whether this ordering has any clinical

utility.
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