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Abstract

Background: Sepsis is an inflammatory response caused by infection with pathogenic microorganisms. The body
shock caused by it is called septic shock. In view of this, we aimed to identify potential diagnostic gene biomarkers of
the disease.

Material and methods: Firstly, MRNAs expression data sets of septic shock were retrieved and downloaded from
the GEO (Gene Expression Omnibus) database for differential expression analysis. Functional enrichment analysis was
then used to identify the biological function of DEmRNAs (differentially expressed mRNAs). Machine learning analysis
was used to determine the diagnostic gene biomarkers for septic shock. Thirdly, RT-PCR (real-time polymerase chain
reaction) verification was performed. Lastly, GSE65682 data set was utilized to further perform diagnostic and prog-
nostic analysis of identified superlative diagnostic gene biomarkers.

Results: A total of 843 DEmRNAs, including 458 up-regulated and 385 down-regulated DEmRNAs were obtained in
septic shock. 15 superlative diagnostic gene biomarkers (such as RAB13, KIF1B, CLEC5A, FCERTA, CACNA2D3, DUSP3,
HMGN3, MGST1 and ARHGEF 18) for septic shock were identified by machine learning analysis. RF (random forests),
SVM (support vector machine) and DT (decision tree) models were used to construct classification models. The accu-
racy of the DT, SYM and RF models were very high. Interestingly, the RF model had the highest accuracy. It is worth
mentioning that ARHGEF18 and FCERTA were related to survival. CACNA2D3 and DUSP3 participated in MAPK signal-
ing pathway to regulate septic shock.

Conclusion: Identified diagnostic gene biomarkers may be helpful in the diagnosis and therapy of patients with
septic shock.

Keywords: DEmMRNAs (differentially expressed mRNAs), Diagnostic gene biomarkers, Machine learning analysis,
Prognostic, Septic shock

Background

Sepsis is an inflammatory response caused by infec-
tion with pathogenic microorganisms. The body shock
caused by it is called septic shock. Sepsis is a reaction to
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systemic infections [1, 2]. Septic shock, associated with
critical hypotension, is common acute diseases in the
ICU (intensive care unit) [2, 3]. It is estimated that about
8 million people worldwide die from sepsis (usually sep-
tic shock) every year, and abnormalities in the circulatory
system, cells, and metabolism can significantly increase
mortality [1, 4].

Most of septic shock is caused by microbial infec-
tions (bacteria, viruses, fungi, etc.) [5]. In early microbial
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infections, humoral reactions are activated, in which
immune cells (macrophages, neutrophils, etc.) recognize
and destroy invading organisms [6]. Reduced blood ves-
sel volume, cardiac dysfunction and peripheral vasodi-
lation are major causes of septic shock [6, 7]. In view of
this, active fluid resuscitation and anti-infective symp-
tomatic treatment are performed in these patients [8—
10]. However, 28-day and hospital mortality in patients
remain very high [8]. Moreover, the probability of re-
admission after discharge from hospital is higher than
that of ordinary ICU patients, and a considerable propor-
tion of patients have cognitive dysfunction after treat-
ment [11-13].

Diagnosis and prognostic detection of diseases at the
molecular level are now the general trend of develop-
ment, which is also widely used by researchers in sep-
sis [14, 15]. Mohammed et al. used high-throughput
sequencing technology to identify potential biomarkers
and signaling pathways related to septic shock [16]. In
addition, some researchers use TSD (transcriptomic sig-
nature distance) and meta-analysis to analyze the tran-
scriptome data of septic shock patients [17, 18]. Machine
learning is a branch of computer science and statistics
that play an important role in the detection, diagnosis
and treatment of diseases [19, 20]. Machine learning has
also been used to study septic shock [21, 22]. However,
most of these studies use machine learning to predict the
progression of septic shock. Machine learning is rarely
used to identify potential diagnostic and prognostic bio-
markers of septic shock. Therefore, in order to identify
potential diagnostic gene biomarkers of septic shock,
machine learning method was performed, followed by
prognostic analysis in this study. Our study could be
valuable in understanding the pathological mechanism
of septic shock and exploring novel diagnostic gene bio-
marker for the diagnostic and therapy of the disease.

Methods
Database
GEO [23] (Gene Expression Omnibus) database, mainly
based on chip data, is developed by NCBI (National

Table 1 Dataset retrieved from the GEO database
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Center for Biotechnology Information). GSE4607,
GSE13904, GSE26378, GSE26440, GSE65682 and

GSE95233 data sets were obtained (Table 1). The origi-
nal file was downloaded and the RMA algorithm was
used for background adjustment and normalization. If
multiple probes correspond to the same gene, the aver-
age value was taken. Among them, GSE4607, GSE13904,
GSE26378, GSE26440 data sets were used for differen-
tial expression analysis and machine learning (test set),
and GSE65682 data set was used for survival analysis.
The GSE95233 data set was used for electronic expres-
sion verification of gene biomarkers (validation set). In
this study, the GSE65682 data set was based on the chip
data of GPL 13667 platform, and GSE4607, GSE13904,
GSE26378, GSE26440 and GSE95233 data sets were
based on the GPL570 platform. In order to avoid the
difference caused by the detection technology of dif-
ferent platforms, the GSE65682 data set was not ana-
lyzed together with other data sets. Since the GSE4607,
GSE13904, GSE26378 and GSE26440 data sets all came
from GPL570 platform. Batch effect processing using
the SVA package showed that the results of batch effect
between the four data sets was not significant (Additional
file 1: Fig. S1).

Identification of DEmRNAs (differentially expressed
mRNAs)

In this study, Limma and metaMA packages were exe-
cuted for identification of the DEmRNAs. The inverse
normal method was used in the metaMA software pack-
age to merge P values. The FDR (false discovery rate) is
the result obtained by repeating the test and correction of
the original P value by the Benjamin and Hochberg meth-
ods [24, 25]. The FDR<0.01 and |Combined.ES (effect
size)|> 1.5 were screening thresholds of DEmRNAs.

Functional enrichment

To identify the function of identified genes, the DAVID
(Database for Annotation, Visualization and Integrated
Discovery, https://david.ncifcrf.gov/) database was used
for GO (Gene Ontology, http://www.geneontology.org/)

GEOID Samples (Normal Type Platform Year Author Type
control:Septic shock)

GSE4607 15:69 Blood GPL 570 2006 Hector R Wong mMRNA
GSE13904 18:106 Blood GPL 570 2008 Hector R Wong mMRNA
GSE26378 21:82 Blood GPL 570 2011 Wong HR MRNA
GSE26440 32:98 Blood GPL 570 2011 Wong HR mRNA
GSE65682 42:479 Blood GPL 13667 2015 Scicluna BP mRNA
GSE95233 22:102 Blood GPL 570 2017 Pachot A mRNA
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and KEGG (Kyoto encyclopedia of genes and genomes,
http://www.genome.jp/kegg/pathway.html)  functional
enrichment analysis [26—28]. P<0.05 was the threshold
of significantly enriched GO and KEGG terms.

Identification of the superlative diagnostic gene
biomarkers

Firstly, the R language in glmnet package was used to
reduce data dimensions. The package not only has a large
number of models, but also is much faster [29]. Secondly,
the random forest algorithm was used to sort the impor-
tance of mRNA according to the Mean Decrease Accu-
racy value from large small. Then, the superlative number
of features was identified by adding one differentially
expressed mRNA at a time in a top down forward-wrap-
per approach. The superlative DEmRNAs with diagnostic
value was selected for septic shock to establish a classifi-
cation model including DT (decision tree), SVM (support
vector machine) and RF (random forests). The ‘rpart’
packet in R (https://cran.r-project.org/web/packages/
rpart/), ‘e1071 package in R (https://cran.r-project.org/
web/packages/e1071/index.html) and ‘random forests’
packet  (https://cran.r-project.org/web/packages/rando
mPForest/) was used to establish the DT model, SVM
model and RF model, respectively. Tenfold cross-valida-
tion was used to compare the average misjudgment rates
of the three models. Tenfold cross-validation was used to
avoid the overfitting effect [30, 31]. The diagnostic ability
of classification prediction was evaluated by the accuracy,
sensitivity, specificity, and AUC (area under curve) val-
ues in the ROC (receiver operating characteristic) curve.
Subsequently, the Matthew’s Correlation Coefficient of
the model was calculated using the mcc function in the
mltools package (https://pypi.org/project/mltools/1.0.2/).

Electronic expression verification, diagnostic

and prognostic analysis of superlative diagnostic gene
biomarkers

The GSE95233 data set (124 blood samples from 102
cases and 22 normal controls) was used for electronic
expression verification. The GSE65682 data set (521
blood samples from 479 cases and 42 normal controls)
contains 28 days of survival information of patients. This
data set was used to further analyze the diagnostic and
survival ability of key diagnostic gene biomarkers.

In vitro validation of identified DEmRNAs

The inclusion criteria for patients were diagnosed with
septic shock. Detailed inclusion criteria for patients
with septic shock were as follows: (1) the body tempera-
ture>38 C or <36 C; (2) heart rate>90 times per min-
ute or greater than 2 standard deviations in the normal
heart rate range of different ages; (3) respiratory rate >20
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times per minute or PaCO2 (partial pressure of car-
bon dioxide in artery) <32 mmHg; (4) white blood cell
count>12.0 x 10°/L or <4.0 x 10°/L, or more than 10%
immature neutrophils; (5) patients with initial septic
shock; (6) patients had cardiovascular organ dysfunction,
acute respiratory distress syndrome, dysfunction of two
or more other organs; (7) patients had complete clinical
data, including gender, age, height, weight, etc. Patients
with a history of cancer or other diseases, chemother-
apy, radiotherapy, etc., and incomplete clinical data were
excluded. The individuals in the normal control group
were gender and age matched with the case group and
had no disease before and within 2 weeks after sampling.
Those individual who took glucocorticoids, had a his-
tory of febrile disease or any chronic/acute disease that
is slightly associated with inflammation within 2 weeks of
sampling were excluded.

According to the above criteria for septic shock, 16
blood samples from 8 patients and 8 normal controls
were obtained for RT-PCR (real-time polymerase chain
reaction). Total RNA was extracted by using RNAliquid
ultra-speed whole blood (liquid sample) kit (RN2602,
Beijing Huitian Oriental Technology Co., Ltd.). Fast-
Quant cDNA synthesis kit (KR106, TTANGEN) was used
to synthesize the cDNA. RT-PCR was performed using
SuperReal PreMix Plus (SYBR Green) SuperReal rea-
gent (FP205, TTANGEN). Each experiment was repeated
three times. GAPDH (glyceraldehyde-3-phosphate dehy-
drogenase) and ACTB (actin beta) were used as internal
control for gene detection. The relative expression levels
were calculated as fold-changes using the 2744t method
[32].

This study was approved by the ethics committee the
Second Affiliated Hospital of Shandong First Medical
University (20200406).

Statistical analysis

The GraphPad Prism was used to perform all statistical
analyses. The significance cutoff of RT-PCR was P=0.05
(Duncan’s multiple range test). One-way ANOVA (anal-
ysis of variance) with orthogonal contrasts and mean
comparison procedures were used to detect differences
between cases and normal controls. Experiments were
independently repeated at least 3 times.

Results

DEmRNAs

According to screening criteria of FDR<0.01 and |Com-
bined.ES|>1.5, a total of 843 DEmRNAs were identi-
fied. Among which, 458 were up-regulated and 385 were
down-regulated (Additional file 3: Table S1). The heat
map of top 100 DEmRNAs is shown in the Fig. 1.
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Fig. 1 Heat map of top 100 DEmRNAs. The figure shows the bidirectional hierarchical clustering results of the top 100 DEmRNAs and samples. A full
chain method combined with Euclidean distance is used to establish clustering (row: DEmRNA, column: sample). The color cluster tree on the right
indicates the relative expression level of MRNA. Red indicates below the reference channel. Blue indicates the above reference
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Functional enrichment analysis of DEmRNAs

In order to understand the potential biological func-
tion of DEmRNAs, GO and KEGG functional enrich-
ment analysis were performed. In GO terms of BP
(biological process), all DEmRNAs were mainly
involved in immune response, positive regulation of
immune system process and leukocyte activation. In
GO terms of CC (cell composition), all DEmRNAs
were mainly involved in vesicle, cytoplasmic vesicle
and nucleolus. In GO terms of MF (molecular func-
tion), all DEmRNAs were mainly involved in protein
dimerization activity, cytokine binding and non-mem-
brane spanning protein tyrosine kinase activity. The
result is shown in Fig. 2A. Several signaling pathways
in the KEGG enrichment analysis were identified, such
as T cell receptor signaling pathway, primary immu-
nodeficiency, MAPK signaling pathway, Jak-STAT
signaling pathway and Fc epsilon RI signaling pathway
(Fig. 2B). Among the 15 superlative diagnostic gene
biomarkers, CACNA2D3 and DUSP3 participated in
the MAPK signaling pathway.

Identification of superlative diagnostic gene biomarkers
After reducing data dimensions, a total of 28 DEmR-
NAs were retained (Table 2). 28 DEmRNAs were ranked
in order of importance according to Mean Decrease
Accuracy value (Fig. 3A). According to the sequence of
RF sequencing results, one mRNA was added succes-
sively from top to bottom. The RF algorithm was used
for classification. The tenfold cross-validation was used
to obtain the accuracy rate and AUC (Fig. 3B, C). It can
be seen that when the number of mRNAs reached 15, the
accuracy reached the maximum value for the first time.
Therefore, the first 15 DEmRNAs (KLRF1, UPP1, RAB13,
KIF1B, CLEC5A, NARF, DUSP3, FCER1A, CACNA2D3,
HMGN3, ECRP, HDAC4, LHFPL2, MGST1 and ARH-
GEF18) were selected as the superlative diagnostic gene
biomarkers. The heat map analysis of the 15 superlative
diagnostic gene biomarkers is shown in Fig. 4.
Classification models were constructed based on the
screened 15 genes. The RF model had the highest accu-
racy. The accuracy, sensitivity, specificity and AUC of
each model using the tenfold cross-validation process is
listed in Table 3. In addition, the AUC in the ROC curve
of DT, RF and SVM, was respectively 0.962, 0.993, and
0.991 (Fig. 5). The diagnostic efficacy of the model com-
posed of these 15 genes was also validated using the
GSE95233 data set. The results showed that in the vali-
dation set, our diagnostic model also showed better per-
formance (Additional file 2: Fig. S2B-D). In addition, the
Matthew’s Correlation Coefficient also showed that our
model showed high accuracy in the test set. Although the
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performance in the verification set was not as good as
the test set, it also had better accuracy (Additional file 4:
Table S2). Significantly, of 15 superlative diagnostic gene
biomarkers, the AUC values of CLEC5A, DUSP3, ECRP,
HDAC4, KIF1B, KLRF1, NARF, RAB13 and UPP1 were
higher than 0.9, the sensitivity and specificity were higher
than 0.8 in the ROC curve analysis (Fig. 6).

Electronic expression verification, diagnosis

and prognostic analysis of superlative diagnostic gene
biomarkers

In order to further verify the expression of 15 diagnos-
tic gene biomarkers, expression verification was per-
formed using the GSE95233 data set. The results showed
that ARHGEF18, CACNA2D3, FCER1A, HMGN3 and
KLRF1 were significantly down-regulated in disease
group, while CLEC5A, DUSP3, ECRP, HDAC4, KIF1B,
LHFPL2, MGST1, NARF, RAB13 and UPP1 were sig-
nificantly down-regulated compared with normal control
group (Additional file 2: Fig. S2A). This verification result
was completely consistent with the previous analysis
result. The data set of GSE65682 was selected to perform
further diagnosis and prognostic analysis of identified
superlative diagnostic gene biomarkers (Fig. 7). The anal-
ysis results showed that only ARHGEF18 and FCER1A
were related to survival. The AUC, sensitivity and speci-
ficity of ARHGEF18 were respectively 0.997, 0.967 and
1.000. The AUC, sensitivity and specificity of FCER1A
were 0.985, 0.929 and 1.000, respectively (Fig. 7A, B).
Box plots showed the expression levels of ARHGEF18
and FCERI1A in different populations (Fig. 7C, D). In the
survivor population, the expression levels of ARHGEF18
and FCERIA were significantly down-regulated, which
was consisted with the bioinformatics analysis. The level
of gene expression was the lowest among dead people.
ARHGEF18 and FCERIA may influence the treatment
effect of patients to a certain extent. Then the online sur-
vival software package (https://cran.r-project.org/web/
packages/survival/index.html) was used to analyze the
prognostic value of ARHGEF18 and FCER1A. The results
showed that ARHGEF18 and FCER1A were significantly
negatively correlated with survival (Fig. 7E, F).

RT-PCR validation

The information of enrolled individuals is shown in
Table 4. According to diagnostic analysis, prognostic
analysis and literature reports, ARHGEF18, CLEC5A,
FCER1A, HDAC4, KLRF1, DUSP3 and UPP1 were
selected for RT-PCR verification. The primers are shown
in Table 5. The results showed that CLEC5A, DUSP3,
HDAC4 and UPP1 were up-regulated trend and FCER1A
and KLRF1 were down-regulated trend (Fig. 8). The genes
expression trend in the verification result was consistent
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with the bioinformatics analysis, except for ARHGEF18.  Discussion

Small sample size may cause some inconformity. In addi- Based on the machine learning method, 15 DEmR-

tion, further research is needed. NAs, such as HMGN3, CACNA2D3, DUSP3, MGST]1,
CLEC5A, KIF1B, RAB13, ARHGEF18 and FCERIA,
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Table 2 28 differentially expressed mRNAs after reducing data dimensions

ID Symbol Combined. effect size P value False discovery rate Up/Down
1845 DUSP3 1.966918 <222e—16 <1.64e—15 Up
3017 HISTTH2BD 1.805068 <2.22e—16 <1.64e—15 Up
4257 MGST1 1.871323 <2.22e—16 <1.64e—15 Up
5872 RAB13 2.507966 <2.22e—16 <1.64e—15 Up
6854 SYN2 1562134 <2.22e—16 <1.64e—15 Up
7378 UPP1 2.807998 <222e—16 <1.64e—15 Up
8344 HISTTH2BE 1.705221 <2.22e—16 <1.64e—15 Up
9759 HDAC4 1.892591 <222e—16 <1.64e—-15 Up
10124 ARL4A 1.554429 <2.22e—16 <1.64e—15 Up
10184 LHFPL2 1.50707 <2.22e—16 <1.64e—15 Up
23095 KIF1B 2.805012 <2.22e—16 <1.64e—15 Up
23601 CLEC5A 2375364 <2.22e—16 <1.64e—15 Up
26502 NARF 1.747345 <2.22e—16 <1.64e—15 Up
643332 ECRP 1.947246 <2.22e—16 <1.64e—15 Up
404201 WDFY3-AS2 1.551524 <2.22e—16 <1.64e—15 Up
1521 CTSW —1.56967 <2.22e-16 <1.64e—15 Down
2205 FCERTA —2.07841 <2.22e—16 <1.64e—15 Down
3587 ILTORA —1.56804 <222e—16 <1.64e—15 Down
4603 MYBL1 —1.74565 <2.22e-16 <1.64e—15 Down
6252 RTN1 —1.74447 <2.22e—16 <1.64e—15 Down
9252 RPS6KAS —1.70288 <2.22e—16 <1.64e—15 Down
9324 HMGN3 —1.88269 <2.22e—16 <1.64e—15 Down
10314 LANCL1 —1.56694 <222e—16 <1.64e—15 Down
23370 ARHGEF18 —1.78719 <2.22e—16 <1.64e—15 Down
51348 KLRF1 —2.74432 <2.22e—16 <1.64e—15 Down
55799 CACNA2D3 —1.58142 <2.22e—16 <1.64e—15 Down
83939 EIF2A —1.72077 <2.22e—16 <1.64e—15 Down
222643 UNC5CL —1.51897 <2.22e—-16 <1.64e—15 Down

were determined as the superlative diagnostic gene bio-
markers. The final survival analysis showed that only
FCER1A and ARHGEF18 had obvious prognostic value.

HMGNS3 (high mobility group nucleosomal binding
domain 3) plays an important regulatory role in pan-
creatic cells [33]. In patients with sepsis, high blood
sugar is a risk factor for poor prognosis. During sepsis,
the rapid changes in microvascular circulation in skel-
etal muscle have a serious hindrance to the delivery of
insulin [34]. HMGN3 can reduce the level of glucagon
in the plasma [35] to maintain stable blood sugar level
in the body. In this study, HMGN3 was down-regulated
in patients, which laid the foundation for further verifi-
cation of the role in sepsis.

MGST1 (microsomal glutathione s-transferase 1),
an important redox and detoxification enzyme, play a
crucial role in cell defense and hematopoiesis [36, 37].
CLECS5A (c-type lectin domain containing 5A) is a Syk
(spleen tyrosine kinase) coupled c-type lectin, mainly

expressed in myeloid cells, such as macrophages and
neutrophils [38], participates in host defense, inflam-
mation, platelet activation and development [39]. KIF1B
(kinesin family member 1B) gene belongs to the kinesin
superfamily, which is responsible for encoding proteins
that transport mitochondria and synaptic vesicle precur-
sors within the cell [40]. In addition, KIF1B is found to be
a tumor suppressor gene [41, 42], which has a potential
role in mitochondrial morphological changes. KIF1B and
mitochondrial metalloproteinase YME1L1 (YME1 like 1
ATPase) coordinately regulate mitochondrial fission to
induce mitochondrial apoptosis [43]. In the early stage
of sepsis, released NO (nitric oxide) can directly block
mitochondrial respiration and cause body shock when
accumulated to a certain degree [6]. The potential role of
KIF1B in mitochondria suggested that it may play a role
in septic shock. RAB13 (RAB13, member RAS oncogene
family) is present in all macrophage-related cells [44]. In
our study, MGST1, CLEC5A, KIF1B and RAB13 were
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Table 3 Ten-fold cross-validation results of each model

Classifier Accuracy Sensitivity Specificity AUC
DT 0.935 0.949 0.953 0.962
RF 0.978 0.969 0.977 0.993
SVM 0.963 0.955 0.953 0.991

DT decision tree, RF random forest, SVM support vector machines, AUC area
under curve

all up-regulated in patients. This showed that MGST1,
CLEC5A, KIF1B and RAB13 could play a crucial role in
septic shock.

KLRF1 (killer cell lectin like receptor F1) is an acti-
vating homodimeric C-type lectin-like receptor, which
plays an important role in regulating the activity of

natural killer cells and monocytes [45]. Recently,
UPP1 (uridine phosphorylase 1) is reported to play an
important role in immune and inflammatory biologi-
cal process of disease [46—48]. Previous studies have
found that the expression of UPP1 is increased in the
brain of sepsis rats [49]. HDAC4 (histone deacetylase
4) plays an important regulatory role in sepsis and may
be an effective target for sepsis treatment [50, 51]. The
expression level of NARF (nuclear prelamin A recog-
nition factor) in multiple sclerosis (a chronic neuroin-
flammatory disease) was increased [52]. So far, we have
not found any studies on ECRP (ribonuclease A family
member 2C, pseudogene) and LHFPL2 (LHFPL tetras-
pan subfamily member 2) in inflammatory or immune
diseases. This article may first report that ECRP and
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Fig. 6 ROC curve of 15 superlative diagnostic gene biomarkers. AUC area under curve, ROC receiver operating characteristic

LHFPL2 play a role in the progression of septic shock.
In our study, KLRF1 (down-regulated), UPP1 (up-reg-
ulated), HDAC4 (up-regulated), NARF (up-regulated),
ECRP (up-regulated) and LHFPL2 (up-regulated) were
all abnormally expressed and could be considered as
potential diagnostic biomarkers. These results sug-
gested that KLRF1, UPP1, HDAC4, NARF, ECRP and
LHFPL2 play a key role in septic shock. It provides a
potential direction for further research on septic shock.

The protein encoded by ARHGEF18 (Rho/Rac gua-
nine nucleotide exchange factor 18) plays an important
role in activating eosinophils and other white blood cells

[53]. Sepsis is a high-risk disease caused by host reaction
disorder and endangering the safety of life [54]. Eosino-
phils are components of white blood cells of the immune
defense system, and play a role in evolution of inflamma-
tion and disease [55, 56]. FCER1A (Fc fragment of IgE
receptor Ia) is an IgE receptor (immunoglobulin recep-
tor), which is the initiating factor of allergic reactions and
plays a role in allergic inflammation [57, 58]. The interac-
tion between FCER1B and other immunoglobulin-related
inflammatory genes will increase the risk of asthma [59].
In this study, ARHGEF18 and FCER1A were related to
survival. In the enriched GO function, ARHGEF18 is
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Table 4 Clinical information of patients and normal controls in the RT-PCR

S/N Age Sex Family history Body temperature Heart rate (times/  Other complications
(C) min)

S 21 Male No 393 128 Anemia

S 72 Female Diabetes 40 117 Unconscious

S 53 Female No 392 116 Stomach ache

S 50 Female No 386 127 Stomach ache

S 84 Female No 377 104 Expectoration

S 60 Male No 39 94 No

S 62 Female No 375 110 Abdominal pain, Lung infection

S 53 Male No 378 118 Difficulty breathing

N 83 Female No 36.5 135 No

N 22 Female No 364 101 No

N 63 Female No 373 122 No

N 66 Female No 36.7 79 No

N 68 Female No 368 89 No

N 45 Male No 36.5 85 No

N 69 Male No 36.5 95 No

N 65 Male No 366 112 No

P septic shock patients, N normal control

mainly involved in regulating cell death and apoptosis.
FCERI1A is mainly involved in regulating immune regu-
lation and metabolic processes. This further showed that
ARHGEF18 and FCER1A may be related to the survival
of septic shock patients.

The MAPK (mitogen-activated protein kinase) sign-
aling pathway play a crucial part in the regulation of

Table 5 Primer sequence in the RT-PCR

Primer name Primer sequence (5'to 3"

GAPDH-F (Internal reference)
GAPDH-R (Internal reference)
ACTB-F (Internal reference)
ACTB-R (Internal reference)

5-CTGGGCTACACTGAGCACC-3
5-AAGTGGTCGTTGAGGGCAATG-3
5-TCCGCAAAGACCTGTACGC-3
5-CTGGAAGGTGGACAGCGAG-3

ARHGEF18-F 5-ACGCCAGCAAAGAAGACGT-3
ARHGEF18-R 5-CAGGCGGTCATCAGTGGTT-3
CLEC5A-F 5-GCAATTGTCAACACGCCAGA-3
CLEC5A-R 5-GCCAATGGTCGCACAGTTG-3
DUSP3-F 5-GAAGATATGGGGCAACTGGA-3
DUSP3-R 5-ATGCACGTGTTCAGCTTGAG-3
FCERTA-F 5-GTTCTTCGCTCCAGATGGC-3
FCERTA-R 5-TTGTGGAACCATTTGGTGGAA-3
HDAC4-F 5-AGCGTCCGTTGGATGTCAC-3
HDAC4-R 5-CCTTCTCGTGCCACAAGTCT-3
KLRF1-F 5-GGGAATATCTGGAACCGTGA-3
KLRF1-R 5-CTGCAGATCTCGAAGCACAA-3
UPP1-F 5-TGGAGTCCTCGGTGTTTGC-3
UPP1-R 5-GCTCAGGCCTTGCTCAGTT-3

diseases, such as anti-inflammatory, analgesic, protec-
tive injury, etc. [60]. MAPK contains three sub-path-
ways p38MAPK (p38 mitogen-activated protein kinase),
ERK-1/2 (extracellular signal-regulated kinase), and
JNK (c-Jun-terminal kinase) [61, 62]. Among them, the
p38MAPK and JNK signaling pathways play a role in
hamowanie wzrostu, inflammation and pro-apoptotic
signaling [60]. MAPK pathway can be activated by extra-
cellular signals, such as cytokines involved in inflam-
matory response, growth factors that regulate growth
and metabolism, bacterial complexes [60]. Inhibiting
the activation of the MAPK pathway can reduce lung
injury caused by septic shock [63]. In the KEGG enrich-
ment, CACNA2D3 and DUSP3 were taken part in the
MAPK signaling pathway. CACNA2D3 (calcium voltage-
gated channel auxiliary subunit alpha2delta3) plays an
important role in canceration [64-66]. CACNA2D3 is
expressed in low levels in endometrial cancer tissues and
cells [64]. Overexpression of CACNA2D3 in vitro sig-
nificantly inhibits tumor cell proliferation and migration
[64]. CACNA2D3, as a new tumor suppressor gene, can
significantly inhibit lymph node metastasis of esophageal
squamous cell carcinoma in clinical studies [67]. Lymph
nodes are immune sites for lymphocytes, which lays the
foundation for studying the role of CACNA2D3 in septic
shock. DUSP3 (dual specificity phosphatase 3), also called
VHR (vaccinia-H1 related phosphatase), is a founding
member of the bispecific protein phosphatase group
[68]. DUSP3 plays a role in Staphylococcus aureus infec-
tion [69], DUSP3, a positive regulator of innate immune
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response [70], is the main protein tyrosine phosphatase
in macrophages mediating cellular processes (includ-
ing immune responses) [71]. This further illustrates that
MAPK signaling pathway may play an irreplaceable role
in septic shock by regulating related genes such as CAC-
NA2D3 and DUSP3.

However, this study has certain limitations. Firstly, the
sample size of the RT-PCR experiment is small, which
may lead to a certain degree of error. More blood samples
from septic shock patients are further needed to verify the
expression of the identified mRNAs. Secondly, the molec-
ular mechanism of DEmRNAs during septic shock has
not been studied. More experiments are needed to further
research the underlying mechanism of the disease.

Conclusions

In this study, in order to identify potential diagnos-
tic gene biomarkers of septic shock, machine learning
method was performed, followed by prognostic analy-
sis. 15 superlative diagnostic gene biomarkers (KLRF1,

UPP1, RABI13, KIF1B, CLEC5A, NARE, DUSP3,
FCER1A, CACNA2D3, HMGN3, ECRP, HDAC4,
LHFPL2, MGST1 and ARHGEF18) for septic shock
were identified by machine learning analysis. It is worth
mentioning that ARHGEF18 and FCER1A were related
to survival. CACNA2D3 and DUSP3 participated in
MAPK signaling pathway to regulate septic shock.
Identified diagnostic gene biomarkers may be helpful in
the diagnosis and therapy of patients with septic shock.
This study can provide a basis for the research of septic
shock.
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