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OBJECTIVE—This study aimed to verify whether the de-
creased vascular endothelial growth factor (VEGF)–to–pig-
ment epithelium– derived factor (PEDF) ratio can serve as an
indicator for the protective effect of angiotensin-converting
enzyme inhibitors (ACEIs) on diabetic retinopathy (DR) and
to investigate the role of mitochondrial reactive oxygen spe-
cies (ROS) in the downregulated VEGF-to-PEDF ratio.

RESEARCH DESIGN AND METHODS—Diabetic rats and
control animals were randomly assigned to receive perindopril
or vehicle for 24 weeks, and bovine retinal capillary endothe-
lial cells (BRECs) were incubated with normal or high glucose
with or without perindopril. VEGF, PEDF, PPAR�, and uncou-
pling protein-2 (UCP-2) in the rat retinas or BREC extracts
were examined by Western blotting and real-time RT-PCR. The
levels of VEGF and PEDF in cell culture media were examined
by ELISA. Mitochondrial membrane potential (��m) and ROS
production were assayed using JC-1 or CM-H2DCFDA.

RESULTS—The VEGF-to-PEDF ratio was increased in the ret-
ina of diabetic rats; perindopril lowered the increased VEGF-to-
PEDF ratio in diabetic rats and ameliorated the retinal damage.
In BRECs, perindopril lowered the hyperglycemia-induced eleva-
tion of VEGF-to-PEDF ratio by reducing mitochondrial ROS. We
found the decreased ROS production was a result of perindopril-
induced upregulation of PPAR� and UCP-2 expression and the
subsequent decrease of ��m.

CONCLUSIONS—It is concluded that the protective effect of
ACEI on DR is associated with a decreased VEGF-to-PEDF ratio,
which involves the mitochondria-ROS pathway through PPAR�-

mediated changes of UCP-2. This study paves a way for future
application of ACEI in treatment of DR. Diabetes 58:954–964,
2009

D
iabetic retinopathy (DR) is a major cause of
blindness in the working-age population in de-
veloped countries (1), and to search for effec-
tive treatment and prevention measures has

long been a focus of study. The EUCLID Study Group
reported that the antihypertensive drug lisinopril, an an-
giotensin-converting enzyme inhibitor (ACEI), reduced the
risk of retinopathy progression by �50% in patients with
type 1 diabetes, thus greatly reducing the possibility of
proliferative diabetic retinopathy (PDR) (2). Recently,
another ACEI, perindopril, has been found capable of
improving the visual functions, retinal electrogenesis, and
disturbed blood–retinal barrier in patients with preprolif-
erative diabetic retinopathy (DR) (3). Studies also indi-
cated that the protective effect of ACEI on DR-related
damage was associated with a decreased expression of
vascular endothelial growth factor (VEGF) in the retina
(4,5), and VEGF was involved in vascular leakage and
angiogenesis in DR (6). Our previous study demonstrated
that ACEI inhibited retinal VEGF expression independent
of their antihypertensive actions (7). The detailed mecha-
nism by which ACEI counteracts hyperglycemia-induced
VEGF upregulation, however, remains to be further
clarified.

In addition to VEGF, pigment epithelium–derived factor
(PEDF), a potent inhibitor of angiogenesis, has been found
to be involved in the pathogenesis of PDR (8,9). It is well
known that there are quite a few stimulators and inhibitors
of angiogenesis in the eye; among them, VEGF has been
identified as a primary angiogenic stimulator (10) and
PEDF as a major angiogenic inhibitor (9). The time course
of the VEGF-to-PEDF ratio change correlated with the
development and progression of retinal neovasculariza-
tion. The VEGF-to-PEDF ratio represented a dynamic
balance between angiogenic stimulators and inhibitors;
and disturbance of the balance played a key role in the
pathogenesis of DR (11–13). In vitro study revealed that
lowering of the VEGF-to-PEDF mRNA ratio could inhibit
the migration of uveal melanoma cells (14). Despite these
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findings, the influence of ACEI on the VEGF-to-PEDF ratio
remains unknown.

Currently, the specific mechanism of diabetic microan-
giopathy is not completely understood. Recently, a unify-
ing hypothesis has been proposed whereby production of
mitochondrial reactive oxygen species (ROS) in response
to chronic hyperglycemia might be the key initiator for all
of the four pathogenic pathways: the increased polyol path-
way flux, increased formation of advanced glycation end
products, activation of protein kinase C, and increased
hexosamine pathway flux (15–17). This postulate empha-
sized the important role of the increased mitochondrion ROS
production in diabetes complications, including retinopathy.
Therefore, mitochondrial ROS may serve as an important
target for DR treatment. ACEI was demonstrated to attenu-
ate ROS generation in the heart and aorta of diabetic rats and
prevent morphological changes (cardiomyocyte hypertrophy
and perivascular fibrosis) (18). It can be deduced that the
protective effect of ACEI is associated with repression of
oxidative stress.

The aim of the present study is to verify whether the
decreased VEGF-to-PEDF ratio can serve as an indicator
for the protective effect of ACEI on DR and to investigate
the role of ROS in the downregulation of the VEGF-to-
PEDF ratio and the related mechanism. We found that the
decreased VEGF-to-PEDF ratio was associated with the
protective effect of ACEI on DR, and the decrease of
VEGF-to-PEDF ratio was caused by reduced mitochon-
drial ROS production; our study further indicated that the
reduced ROS production was a result of ACEI-induced
upregulation of PPAR� and uncoupling protein-2 (UCP-2)
expression. Our findings indicate that ACEI possesses a
great potential for treatment of DR.

RESEARCH DESIGN AND METHODS

All experiments in this study comply with the requirements of the Association
for Research in Vision and Ophthalmology statement with regard to the “Use
of Animals in Ophthalmic and Vision Research.” All chemicals were reagent
grade quality and were purchased from Sigma Chemicals (St. Louis, MO)
unless stated otherwise.
Animals. Eight-week-old male Sprague-Dawley rats weighing �200 g
(Shanghai Laboratory Animal Center, Chinese Academy of Sciences) were
randomly assigned to receive either 60 mg/kg STZ intraperitoneally or
citrate buffer alone. Rats were categorized as diabetic when the blood
glucose exceeded 16.7 mmol/l at 48 h after STZ administration. One week
after the injection of STZ, diabetic rats were randomly assigned to groups
receiving either 2 mg � kg�1 � day�1 perindopril (Servier, Tianjin, China) by
drinking water for 24 weeks or no treatment at all. Age-matched rats
receiving no STZ served as controls. All rats had free access to standard rat
food and drinking water. Diabetic rats received subcutaneous insulin
(Humulin-N; Eli Lilly & Co., Indianapolis, IN) twice a week to maintain
body weight and maximize survival rate (0 – 4 units).
Cell culture. The primary culture of bovine retinal capillary endothelial cells
(BRECs) was done as described in our previous study (19). The endothelial
cells of three to four passages were used in the following experiments. In each
case, the confluent-cultured BRECs were maintained in free-serum DMEM.
The cells were exposed to normal glucose (5 mmol/l), normal glucose plus
mannitol (25 mmol/l), normal glucose plus perindopril (10 �mol/l), normal
glucose plus H2O2 (500 �mol/l), high glucose (30 mmol/l), high glucose plus
perindopril (10 �mol/l), high glucose plus ROS scavenger N-acetylcysteine
(NAC; 10 mmol/l), high glucose plus perindopril plus NAC, or high glucose
plus perindopril plus NAC plus GW9662 (an inhibitor of PPAR�; 20 �mol/l).
Uncoupling protein-2 antisense oligonucleotide treatment. UCP-2 anti-
sense oligonucleotide synthesis and treatment were conducted as described
previously (20). UCP-2 antisense oligonucleotide sequence was 5�-
TGAGATCTGCAATACA-3�, and the corresponding sense oligonucleotide se-
quence was 5�-TGTATTGCAGATCTCA-3�. After 24 h, the medium was
removed, free-serum DMEM in high glucose was added, and the cells were
allowed to recover for 30 min. Then BRECs were washed once with

free-serum DMEM and exposed to either normal glucose (5 mmol/l) or high
glucose (30 mmol/l) for 24 h.
Retinal digest procedures. Harvested eyes were immediately placed in 4%
buffered paraformaldehyde for 24 h. Retinal trypsin digestion was performed
according to the method described by Cogan and associates (21). Preparations of
retinal vascular networks were placed onto polylysine-coated glass slides in
distilled water and then dried. The preparations were stored at �20°C until
periodic acid Schiff (PAS) and hematoxylin staining. The capillary network was
investigated to determine the numbers of pericytes and acellular capillaries as
previously described (22).
Transmission electron microscopy. Tissue processing, electron micros-
copy, morphometric measurements (retinal capillary basement membrane
thickness [BMT]), and statistics were performed as detailed in our previous
study (6). Enucleated eyes were fixed in 2.5% glutaraldehyde in 0.1 mol/l
cacodylate buffer (pH 7.4) containing 0.2% tannic acid, washed in the same
buffer, and postfixed in 0.5% osmium tetroxide. Tissue sections were block
stained with uranyl acetate, lead stained, dehydrated through a graded series
of ethanol, and embedded in epon. One-micrometer-thick sections were
examined with a JEM-1200EX transmission electron microscope (JEOL,
Akishima, Japan). Computer-assisted morphometric measurements (The Im-
age Center of Beijing University of Aeronautics & Astronautics, Beijing,
China) were done on electron micrographs taken from 12 randomly selected
capillaries of the outer plexiform layer from four different tissue blocks of the
same retina. Only cross-sectioned capillaries were considered. A total of 96
capillaries were evaluated in each experiment group.
Measurement of ROS. ROS production in the cells was assessed using the
fluorescent probe 5-(and-6)-chloromethyl-2�,7�-dichlorodihydrofluorescein di-
acetate acetyl ester (CM-H2DCFDA; Molecular Probes, Eugene, OR). CM-
H2DCFDA (�ex, 488 nm and �em, 520 nm) is a cell-permeable indicator of ROS
that remains nonfluorescent until acetate groups are removed (H2DCF) by
intracellular esterases and oxidation occurs within the cells. Two hundred
microliters of the cell suspension were loaded into the wells of a FluoroNunc
96-well polystyrene plate together with CM-H2DCFDA (10 �mol/l) for 45 min
at 37°C. Intracellular ROS production was calculated using an H2O2 standard
curve (10–200 nmol/ml). Retinal mitochondria ROS production was detected
as described by Benani et al. (23). Retinal tissues were harvested in cold-
buffered medium (5 mmol/l HEPES in PBS) and immediately frozen in liquid
nitrogen to improve the following probe diffusion. After rapid thawing,
medium was discarded. Samples were exposed to 8 �mol/l CM-H2DCFDA
dissolved in 400 �l fresh medium and were incubated at 37°C for 30 min under
agitation. Medium was then removed, and samples were further incubated in a
lysis buffer (0.1% SDS, Tris-HCl, pH 7.4) for 15 min at 4°C. After homogenization,
samples were centrifuged at 6,000g for 20 min at 4°C. Supernatants were collected
and subjected to fluorescence analysis as stated previously.
Mitochondrial membrane potential. 5,5�,6,6�-tetrachloro1,1�,3,3�-tetraethyl-
benzimidazolylcarbocyanine iodide (JC-1; Molecular Probes) is a potentio-
metric dye that exhibits membrane potential–dependent loss as J-aggregates
(polarized mitochondria) that are converted to JC-1 monomers (depolarized
mitochondria) as indicated by the fluorescence emission shift from red to
green. Mitochondrial depolarization is indicated by an increase in the green/
red fluorescence intensity ratio. Mitochondrial membrane potential (��m)
measurement in BRECs or retinal tissues was performed using flow cytometry
(Coulter Epics XL; Beckman-Coulter) as described in our previous study and
by Hassouna and associates (19,24).
Real-time RT-PCR. Total RNA was extracted from rat retinal tissue and BRECs
using TRIZOL reagent (Invitrogen Life Technologies, Gaithersburg, MD) and
stored at �80°C. The DyNAmo Flash SYBR Green qPCR kit (Finnzymes Oy,
Espoo, Finland) was used according to the manufacturer’s instructions. The
primer sequences (sense/antisense) used were as follows: PEDF, 5�-CAGAAGA
ACCTCAAGAGTGCC-3�/5�-CTTCATCCAAGTAGAAATCC-3�; VEGF, 5�-GCG-
GGCTGCTGCAATG-3�/5�-TGCAACGCGAGTCTGTGTTT-3�; UCP-2, 5�-TCTGA
CCATGGTGCGTACTGA-3�/5�-GACAATGGCATTACGAGCAAC-3�; PPAR�1,
5�-TTCTGACAGGACTGTGTGACAG-3�/5�-ATAAGGTGGAGATGCAGGTTC-3�;
PPAR�2, 5�-GCTGTTATGGGTGAAACTCTG-3�/5�-ATAAGGTGGAGATGCAGG
TTC-3�; and �-actin, 5�-GCACCGCAAATGCTTCTA-3�/5�-GGTCTTTACGGATG
TCAACG-3�. The specificity of the amplification product was determined by a
melting curve analysis. Standard curves were generated for the expression of
each gene by preparing serial dilutions with known quantities of each cDNA
template. Relative quantification of the signals was performed by normalizing
the signals of different genes with the �-actin signal. Signal intensities in the
control lanes were arbitrarily assigned a value of 1.0.
Western blotting. Retinas were removed rapidly and frozen in liquid
nitrogen. The frozen tissues were homogenized with lysis buffer (50 mmol/l
Tris-HCl [pH 7.4], 10% glycerol, 2 mmol/l EDTA, 150 mmol/l NaCl, 1 mmol/l
MgCl2, 50 mmol/l glycerophosphate, 2 mmol/l Na3VO4, 20 mmol/l NaF, 1
mmol/l phenylmethylsulfonylfluoride, 10 �g/ml leupeptin, 10 �g/ml aprotinin,
and 1% Nonidet P-40) and were centrifuged at 12,000 rpm for 15 min at 4°C.
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BREC extracts were prepared with the same lysis buffer. The protein
concentrations in the supernatants were measured using the Bio-Rad DC
protein assay. Fifty micrograms of protein from each sample (retinas or
BRECs) were subjected to SDS-PAGE using a Bio-Rad miniature slab gel
apparatus and electrophoretically transferred onto a nitrocellulose sheet. The
sheet was blocked in 5% nonfat dried milk solution and incubated overnight
with partially purified goat anti-PEDF (Chemicon International) monoclonal
antibody, mouse anti-VEGF (Chemicon, Temecula, CA) monoclonal antibody,
rabbit anti–UCP-2 polyclonal antibody (Merck & Co.), and rabbit anti-PPAR�
polyclonal antibody (MILLIPORE). �-Actin (monoclonal anti-�-actin; Sigma
Chemical) expression was used as an internal control.
ELISA. The PEDF concentrations in cell media were measured using a
2-antibody sandwich ELISA. Assays were performed in 96-well immunoplates
(Chemicon International). VEGF ELISA was performed using a Quantikine
VEGF assay kit (R & D Systems) to quantify the levels of VEGF in cell media.
Serial dilutions of recombinant human VEGF and PEDF were included in all
assays to serve as standards.

The experimental data were expressed as means 	 SD. Group means
were compared by a one-way ANOVA using the GraphPad Prism 4.0
software system (GraphPad, San Diego, CA) and the statistical software
program SPSS13.0 for Windows (Chicago, IL). Pearson correlation tests
were also performed. P values 
0.05 were considered significant in all
cases.

RESULTS

Perindopril inhibited the increase of VEGF-to-
PEDF ratio and attenuated retinal damages in
diabetic rats. The retinal expression of PEDF and VEGF
was significantly increased in the diabetic rats compared
with that in the nondiabetic rats at both mRNA and protein
levels, whereas the VEGF-to-PEDF ratio was still signifi-
cantly increased in diabetic rats compared with that in the
nondiabetic rats (P 
 0.01) (Fig. 1A–C). Pathological
damage of the retina occurred in diabetic rats at an early
stage (Fig. 2A–C). Compared with the nondiabetic rats, the
number of pericytes in the retinas of diabetic rats was
significantly reduced (P 
 0.01), and the number of
acellular capillary segments and BMT were significantly
increased (P 
 0.01) (Fig. 2D–F). Statistical analysis
showed that the VEGF-to-PEDF ratio was negatively cor-
related with the number of pericytes and positively corre-
lated with acellular capillary segments and BMT before
and after perindopril treatment (Table 1). Perindopril
significantly inhibited the increase of VEGF-to-PEDF ratio
in diabetic rats (Fig. 1A–C) and attenuated the damages to
the retinas (Fig. 2A–F), and the decrease of the VEGF-to-
PEDF ratio was significantly correlated with the attenua-
tion of retinal damage (Table 1). In addition, we found that
the nonfasting blood glucose was markedly higher in the
diabetic rats than in the nondiabetic rats (28.5 	 4.3
mmol/l versus 4.3 	 0.5 mmol/l, P 
 0.01), and perindopril
showed no effect on hyperglycemia in diabetic rats (27.3 	
3.8 mmol/l versus 28.5 	 4.3 mmol/l, P � 0.05). The body
weights of diabetic rats and perindopril-treated diabetic
rats were significantly lower than that of nondiabetic rats
(377 	 28 g or 392 	 36 g versus 594 	 45 g, P 
 0.05).
Decreased VEGF-to-PEDF ratio is associated with
reduced mitochondrial ROS generation after perin-
dopril treatment. Compared with nondiabetic rats, the
production of mitochondrial ROS, ��m, and the expres-
sion of UCP-2 and PPAR� protein were significantly in-
creased in the retinas of diabetic rats (P 
 0.01).
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FIG. 1. Changes of retinal VEGF and pigment epithelium-derived factor
(PEDF) levels in the control rats (control), diabetic rats (DM), and
diabetic rats treated with perindopril (DM � P). A: Real-time RT-PCR
determination of VEGF and PEDF mRNAs relative to the control values.
B: Western blotting analysis of VEGF and PEDF protein expression in the
three groups. Equal protein loading was confirmed with the �-actin

antibody. C: VEGF-to-PEDF ratios (protein) in the three groups. Levels
of VEGF and PEDF were first normalized by �-actin at each time point.
The normalized VEGF level was divided by the corresponding PEDF
levels for VEGF-to-PEDF ratio. Data are means � SD from eight rats
per group, and the experiments were repeated independently at least
three times with similar results. **P < 0.01 versus control, #P < 0.05
versus DM.
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Perindopril treatment reduced ROS production and ��m
but further upregulated the expression of UCP-2 and
PPAR� protein (Fig. 3A–D). Pearson correlation analysis
indicated that the decrease of the VEGF-to-PEDF ratio
was correlated with the reduction of mitochondrial ROS in
the perindopril-treated group (Fig. 3B) (r � 0.749, P �

0.032). In addition, statistical analysis showed that there
was a correlation between mitochondrial ROS and ��m
(r � 0.902, P � 0.003), between ��m and UCP-2 (r �
0.823, P � 0.012), and between UCP-2 and PPAR� levels
(r � 0.887, P � 0.005) in the perindopril-treated group.
Perindopril inhibited hyperglycemia-induced eleva-

tion of VEGF-to-PEDF ratio through reducing ROS

production. To understand the mechanism underling the
inhibitory effect of perindopril on the VEGF-to-PEDF ratio, an
in vitro study was performed with BRECs. Exposure of
BRECs to high glucose increased ROS production, up-
regulated VEGF mRNA and protein in cell extracts or
media, downregulated PEDF mRNA and protein in cell
extracts or media, and elevated the VEGF-to-PEDF ratio
(protein in cell extracts or media), whereas these
changes were significantly inhibited by 10 �mol/l perin-
dopril (Fig. 4A–F). Our results also showed that NAC, an
ROS scavenger, arrested the elevation of the VEGF-to-
PEDF ratio (upregulating VEGF and downregulating
PEDF). We also found that incubation with H2O2 up-
regulated VEGF, downregulated PEDF, and elevated
VEGF/PEDF ratio in BREC extracts or media (Fig.

TABLE 1
Correlation analysis between retinal VEGF-to-PEDF ratio and
early histopathological lesions in diabetic rats with or without
perindopril treatment (n � 8)

r P

DM
Number of pericytes �0.808 0.015
Number of acellular vessels 0.863 0.006
BMT 0.796 0.018

DM  P
Number of pericytes �0.773 0.025
Number of acellular vessels 0.923 0.001
BMT 0.800 0.017

DM, diabetic rats; DM  P, diabetic rats treated with perindopril.
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5A–F). The effect of H2O2 on VEGF-to-PEDF ratio was
time- and dose-dependent (data not shown). To rule out
the influence of osmolarity on the ratio, mannitol was
used to treat the cells, and the results showed that
mannitol had no effect on the VEGF-to-PEDF ratio (data
not shown).

Perindopril reduced ROS production through upregu-
lating PPAR� and UCP-2 and downregulating mito-
chondrial membrane potential. UCP-2 expression has
been reported to be associated with ROS generation (25),
and PPAR� has been shown to modulate the transcrip-
tion activities of genes involved in energy metabolism,
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including the mitochondrial uncoupling proteins, UCP-1,
UCP-2, and UCP-3 (26). To investigate the mechanism by
which perindopril reduces ROS production, we examined
the mRNA and protein expression of UCP-2 and PPAR� in
BRECs exposed to normal and high glucose. We found
that the mitochondrial membrane was hyperpolarized
under high glucose conditions and the production of ROS
was increased; the production of ROS was positively
correlated with ��m (r � 0.779, P � 0.023); we also found
that perindopril significantly decreased hyperglycemia-
induced mitochondrial membrane hyperpolarization and
the subsequent increased ROS production (Figs. 4A and

6A and B). We found that hyperglycemia induced upregu-
lation of UCP-2 mRNA and protein; perindopril also up-
regulated UCP-2 expression in BRECs exposed to normal
or high glucose with or without NAC (Fig. 6C and D).
Incubation with UCP-2 antisense oligonucleotide greatly
enhanced the hyperglycemia-induced ��m and ROS
production, whereas it blocked the inhibitory effect of
perindopril on the ��m and ROS production (Figs. 4A
and 6A and B). In addition, as shown in Fig. 7A–C,
hyperglycemia increased the expression of PPAR�1 and
PPAR�2 mRNA and PPAR� protein; perindopril could
upregulate their expression under normal conditions
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and further upregulate their expression under hyper-
glycemia conditions. We also found that high glucose
combined with GW9662, an inhibitor of PPAR�, inhib-
ited the upregulation of UCP-2 in BRECs; besides,
GW9662 blocked the upregulating effect of perindopril
on UCP-2 (Fig. 7A–C).

DISCUSSION

Recently, the protective effect of ACEI on DR has increas-
ingly become a focus of study (2–6). We observed the
changes of the VEGF-to-PEDF ratio in the rat retinal
tissues and BRECs in the presence of normal or high

glucose; we also observed the effect of perindopril on
changes of the VEGF/PEDF ratio in diabetic rats and in
BRECs exposed to high glucose. We confirmed that ACEI
exerted a protective effect on DR (2–5,27,28), and for the
first time, we found that this protective effect was associ-
ated with a decreased VEGF-to-PEDF ratio (downregulat-
ing VEGF and upregulating PEDF). We found the
decreased VEGF-to-PEDF ratio was a result of reduced
mitochondrial ROS production, and the reduced ROS
production was attributable to decreased ��m, which was
a result of ACEI-induced upregulation of PPAR� and
UCP-2 expression.
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We found that VEGF was upregulated and PEDF was
downregulated in the vitreous of patients with PDR, which
subsequently elevated the VEGF-to-PEDF ratio and was
accompanied by retinal neovascularization (data not
shown), whereas in diabetic Sprague-Dawley rats, both
VEGF and PEDF were upregulated. (A similar result was
also noticed in a study with spontaneously diabetic Torii
rats, an animal model of type 2 diabetes [29].) Neverthe-
less, as a result of even more upregulation of VEGF, the
VEGF/PEDF ratio was still significantly elevated com-
pared with that of the controls; the elevation was also
accompanied by early vascular damages; and a significant
correlation was found between the severity of damage and
the VEGF/PEDF ratio. In this study, we found that ACEI
perindopril downregulated VEGF and upregulated PEDF,

which subsequently resulted in a lowered VEGF-to-PEDF
ratio and relieved vascular damage in the retina of diabetic
rats; and the lowering of VEGF-to-PEDF ratio was signif-
icantly correlated with the relief of the vascular damage. It
is therefore indicated that the protective effect of ACEI on
DR was associated with the decreased VEGF-to-PEDF
ratio, which may serve as an effective marker for the
development, progression, and treatment outcome of DR.

To further explore the mechanism by which ACEI exerts
its protective effect on DR, we investigated the possible
role of mitochondrial ROS, which is taken as a key initiator
for all of the four pathogenic pathways of diabetic mi-
croangiopathy (15–17). We found that high glucose could
induce ROS production, which was consistent with our
previous study (19); we also noticed that ACEI inhibited
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the retinal and cellular production of ROS and blocked the
elevation of the VEGF-to-PEDF ratio. We discovered that
H2O2 upregulated VEGF, downregulated PEDF, and ele-
vated the VEGF-to-PEDF ratio and that NAC, an ROS
scavenger, could inhibit hyperglycemia-induced changes
of VEGF and PEDF expression and elevation of the
VEGF-to-PEDF ratio. These findings suggest that ROS
is an upstream molecule of VEGF and PEDF and that
ACEI lowers the VEGF-to-PEDF ratio through inhibiting
hyperglycemia-induced ROS production.

Hyperglycemia-induced ROS production is primarily
thought to be associated with mitochondria and NADPH
oxidase (30). A previous study found that both hypergly-
cemia and angiotensin II, through activating membrane-
bound NADH-/NADPH oxidase, could induce superoxide
anion generation in human vascular endothelial cells (31).
ACEI was also found to inhibit TGF-� and prevent activa-
tion of NADPH oxidase so as to attenuate renal damage
(32). Mitochondrial ROS was reported to play a very
important role in the pathogenesis of DR (16,17,19). Con-
sistent with these studies, our results also revealed that
hyperglycemia induced NADPH oxidase activation (data
not shown) and mitochondrial membrane hyperpolariza-
tion and promoted ROS production. We noticed that
perindopril suppressed hyperglycemia-induced activation
of NADPH oxidase in a manner similar to that of diphe-
nyleneiodonium in cultured BRECs under hyperglycemic
conditions (data not shown).

We discovered, for the first time, that perindopril inhib-
ited the mitochondrial ROS production by increasing the
expression of UCP-2, homologous to UCP-1 (33), found in
various human tissues, and one of its major functions is as
a sensor and negative regulator of ROS production (25).
We found that hyperglycemia could compensatorily up-
regulate UCP-2 so as to negatively modulate ��m and ROS
because treatment with specific UCP-2 antisense oligonu-
cleotide could increase hyperglycemia-induced mitochon-
drial membrane hyperpolarization and subsequent ROS
generation. We also found that perindopril upregulated
UCP-2 and reduced ROS in BRECs exposed to normal
glucose, high glucose, or high glucose plus NAC, indicating
ACEI can directly upregulate UCP-2; meanwhile, this
effect of perindopril could be blocked by the specific
UCP-2 antisense oligonucleotide, suggesting that perindo-
pril exerts it effect through UCP-2. It can be concluded that
ACEI can attenuate oxidative stress through both the
NADPH oxidase pathway and the UCP-2/mitochondrial
pathway. In view of the important role of ROS in the
pathogenesis DR, the inhibitory effect of ACEI on mito-
chondrial ROS production might be an important mecha-
nism for treatment of diabetes complications.

We also investigated the specific mechanism by which
ACEI induces UCP-2 upregulation and found that PPAR�,
a ligand-activated transcription factor belonging to the
nuclear receptor superfamily, was involved in the process.
PPAR� has two isoforms, �1 and �2, and they differ at their
NH2 terminus, which has the same sequence except for the
additional 28 amino acids at the NH2-terminus of PPAR�2.
PPAR�2 is rich in the different adipose tissues, whereas
PPAR�1 has a broader expression pattern, including the
gut, brain, vascular cells, and specific kinds of immune and
inflammatory cells (34,35). The measurement of PPAR�
protein expression by anti-PPAR� polyclonal antibody
could be used to determine the total protein of PPAR�1
and �2. Owing to its critical role in fat metabolism and the
role of PPAR� activators in diabetes prevention, PPAR�

has been extensively studied in patients with diabetes
(36). It has been reported that PPAR� could benefit
vascular function and inhibit neovascularization, retinal
leukostasis, and retinal leakage (37–40). Until now, no one
has studied the effect of ACEI on PPAR�. Our study is the
first to find that perindopril could upregulate PPAR�1 and
�2 in BRECs exposed to normal-glucose or high-glucose
conditions; besides, PPAR� inhibitor GW9662 could inhibit
the upregulation of UCP-2 expression induced by high
glucose or perindopril, suggesting that the upregulation of
UCP-2 expression is mediated, at least in part, by PPAR�.

In conclusion, our study suggests that ACEI exerts a
protective effect on DR and this protective effect can be
reflected by a decreased VEGF-to-PEDF ratio, which is a
result of reduced mitochondrial ROS production—itself
caused by ACEI-induced increase of PPAR� and subse-
quent upregulation of UCP-2 expression. It is indicated
that ACEI possesses a great potential for treatment of DR;
a long-term prospective study based on large samples is
needed to verify the clinical effect of ACEI for DR.
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