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Abstract: Infectious disease is the major cause of morbidity and mortality in developing 

countries, particularly in children. Increasing evidence suggests that protein-calorie 

malnutrition is the underlying reason for the increased susceptibility to infections observed 

in these areas. Moreover, certain infectious diseases also cause malnutrition, which can 

result in a vicious cycle. Malnutrition and bacterial gastrointestinal and respiratory 

infections represent a serious public health problem. The increased incidence and severity 

of infections in malnourished children is largely due to the deterioration of immune 

function; limited production and/or diminished functional capacity of all cellular 

components of the immune system have been reported in malnutrition. In this review, we 

analyze the cyclical relationship between malnutrition, immune response dysfunction, 

increased susceptibility to infectious disease, and metabolic responses that further alter 

nutritional status. The consequences of malnutrition are diverse and included: increased 

susceptibility to infection, impaired child development, increased mortality rate and 

individuals who come to function in suboptimal ways. 

Keywords: gastrointestinal infections; malnutrition; respiratory infections; malnourished 

children; immune response dysfunction 
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1. Introduction 

Deficiency in macronutrients such as protein, carbohydrates and fat provoke protein-calorie 

malnutrition (PCM), and when combined with micronutrient deficiencies, they are among the most 

important nutritional problems with hundreds of millions of pregnant women, elderly and young 

children particularly affected. Malnutrition is one of the most important underlying causes of child 

mortality in developing countries, particularly during the first 5 years of life [1]; the major causes for 

this are poverty, world conflicts, lack of education, natural disasters and poor access to health 

care.PCM usually manifests early in children between 6 months and 2 years of age and is associated 

with early weaning, delayed introduction of complementary foods, a low-protein diet and severe or 

frequent infections [2]. Nearly one-third of children in the developing world are malnourished [3].  

Diverse studies have demonstrated that malnutrition increases the risks of infection and death [4,5]. 

The most frequent causes of death in children under 5 years old are acute diarrhea and acute 

respiratory infection. Several studies have shown that malnutrition is frequently causally associated 

with these deaths [6]. However, as malnutrition rarely appears as cause of death on death certificates, 

its impact is largely underestimated.  

Several studies have been conducted to examine associations among malnutrition, deficiencies in 

cell-mediated immunity, and the incidences of gastrointestinal or respiratory infections in children 

under 5 years of age. In 2001, the World Health Organization (WHO) established the external Child 

Health Epidemiology Reference Group (CHERG) to develop estimates of the proportion of deaths in 

children younger than age 5 years attributable to pneumonia, diarrhea, malaria and measles. Of the 

estimated 8,795 million deaths in children younger than 5 years worldwide in 2008, infectious diseases 

caused 68% (5,970 million), with the largest percentages due to pneumonia (18%), diarrhoea (15%), 

and malaria (8%) [7].A separate study reported different risk estimates, with stronger associations 

between nutritional status and mortality for gastrointestinal and acute respiratory infections that 

coincide with malnutrition [8]. 

The relationship between nutritional status and the immune system has been a topic of study for 

decades. Several studies have demonstrated that PCM impairs host immune responses, including  

cell-mediated immunity [9] and secretory IgA production [10,11]. PCM is a major cause of secondary 

immune deficiency in the world. 

In this paper, we focus on describing the association between malnutrition and immune system 

dysfunction and how this relationship impacts susceptibility to bacterial gastrointestinal and 

respiratory infections; further, we also discuss the elevated mortality from infectious disease observed 

in malnourished children. We have reviewed the published literature to identify studies that addressed 

the relation between malnutrition and mortality from gastrointestinal and respiratory infections. 

MEDLINE (National Library of Medicine, Bethesda, MD) was searched for original articles  

using the PUBMED query program. Also we used databases such as EMBASE and Scopus. These 

databases were searched from 1950 up to 2010 for literature published either in English, Spanish or in 

a foreign-language publication with an English abstract. 

Combinations of the following groups of keywords were used: malnourished children, malnutrition, 

protein energymalnutrition, gastrointestinal infections, respiratory infections, pneumonia, and immune 

response. Then a separate search was conducted to identify publications related to the immune 
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response versus the main etiologic agents of gastrointestinal and respiratory infection in children  

with malnutrition.  

In each section of this review, gastrointestinal infections and respiratory infections are presented 

separately. Studies that examined the relation between malnutrition and other types of pathogenic 

agents (for example, infections associated with HIV or other viruses), were not included in this review. 

Also, studies that were conduced in adult malnourished were excluded. 

2. Malnutrition 

Nutritional status affects every aspect of a child’s health, including normal growth and development, 

physical activity, and response to serious illness. Malnutrition may originate from the deficiency or 

absence of any nutrient. The establishment and severity of malnutrition depends on the cause, intensity 

and duration of the nutritional deficiency. It can be caused, primarily, by an inadequate diet or, 

secondarily, by deficiency in gastrointestinal absorption and/or increase in demand, or even, by an 

excessive excretion of nutrients [12]. Protein-calorie malnutrition (PCM), also known as  

protein-energy malnutrition, is defined by the WHO as being a pathological condition that results from a 

lower ingestion of protein and calories, which occurs more frequently in children under five years of age.  

Figure 1 shows the direct and indirect causes of malnutrition. It is important to reflect on the 

thoughts of Joaquin Cravioto, a prominent Mexican nutritionist: ―The basic origin of malnutrition is to 

be found in the malfunctioning of society as a whole and the accompanying injustices‖ [13]. 

Figure 1. Direct and indirect causes of malnutrition, showing that poverty is the  

main underlying cause of malnutrition and its determinants. Adapted from Müller and 

Krawinkel [14]. 

 

In 2009, the WHO estimated that 27% of children in developing countries under the age of 5 years 

are malnourished. Approximately 178 million children (32% of children in the developing world) 

suffer from chronic malnutrition. Although the prevalence of childhood malnutrition is decreasing in 
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Asia, countries in South Asia still have both the highest rates of malnutrition and the largest numbers 

of malnourished children. Indeed, the prevalence of malnutrition in India, Bangladesh, Afghanistan, 

and Pakistan (38–51%) is much higher than in sub-Saharan Africa (26%) [3]. In Mexico, the most 

recent national nutrition survey estimated that 1.8 million children under 5 years of age are 

malnourished [15].  

Malnutrition is diagnosed by anthropometric measurements and physical examination. Correlation 

of malnutrition and growth retardation allows assessment of the individual nutritional state, which is 

usually measured as body mass index (BMI). BMIs are given as weight-for-height [16]. PCM is 

defined by measurements that fall below 2 standard deviations under the normal weight-for-age 

(underweight), height-for-age (stunting) and weight-for-height (wasting) [17]. Wasting indicates recent 

weight loss, whereas stunting usually results from being chronically underweight. Of all children under 

5 years of age in developing countries, about 31% are underweight, 38% have stunted growth and 9% 

show wasting [14]. 

Underweight, stunting, and wasting forms PCM each represent different histories of nutritional 

deficits. Occurring primarily in the first 2–3 years of life, linear growth retardation (stunting) is 

frequently associated with repeated exposure to adverse economic conditions, poor sanitation, and the 

interactive effects of poor energy and nutrient intake and infection. Low weight-for-age indicates a 

history of poor health or nutritional deficiencies, including recurrent illness and/or starvation. In 

contrast, low weight-for-height is an indicator of wasting or thinness and is generally associated with 

recent illness, weight loss or a failure to gain weight [18]. 

In addition, malnutrition is frequently classified on the basis of deficits of weight-for-age (w/a) or 

height-for-age [19,20]. In this system, children are classified into three groups according to 

malnutrition severity based on their weight compared to the weight average for their age. First degree 

or mild cases of malnutrition include children whose weights are 76–90% of the average weight. 

Children with second degree or moderate cases have weights between 61–75% of the average, and 

children with third degree or severe malnutrition weigh 60% or less than their peers [19]. With time, 

the so-called ―Gómez classification‖ has been used widely both to classify individual children for 

clinical referral and to assess malnutrition in communities [21]. The stratification of malnutrition as 

mild, moderate or severe has helped to systematize clinical observations and has allowed for the 

comparison of findings between different researchers [13]. Moreover, the risk of death is directly 

correlated with the degree of malnutrition [22]. In developing countries, about 3.5% of children under 

the age of 5 years suffer from severe malnutrition. Although mild and moderate types of childhood 

malnutrition are even more prevalent, their significance in childhood morbidity and mortality is less 

well recognized [3]. 

Severe PCM appears in three principal clinical forms: (1) marasmus, characterized by chronic 

wasting condition and a gross underweight status that is habitually associated with early weaning; (2) 

kwashiorkor, characterized by moderate growth retardation, changes to hair and skin color, edema, 

moon facies, and hepatosplenomegaly; and (3) marasmic kwashiorkor, characterized by severe wasting 

and the presence of edema. Marasmus appears by caloric and protein insufficiency, whereas 

kwashiorkor develops from protein deficiency [23]. 

Epidemiological and experimental observations have proven that malnourished children are more 

susceptible to infectious disease; therefore, PCM is considered a strong risk factor for higher morbidity 
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and mortality rates in infectious disease [24]. Several studies on the effects of malnutrition at the 

immunological level have been conducted in humans and in experimental animal models. Multiple 

immune system abnormalities, including lymphoid organ atrophy, profound T-cell deficiency, altered 

ratios of T-cell subsets, and decreased natural killer (NK) cell activity and cytokine production have 

been described in PCM individuals. In addition, these studies indicate that malnutrition decreases  

T-cell function, cytokine production and the ability of lymphocytes to respond appropriately to 

cytokines. In severely malnourished children, both acquired immunity as well as innate host defense 

mechanisms are affected [25-27]. 

In children under 5 years of age, malnutrition is responsible, directly or indirectly, for 54% of the 

10.8 million deaths per year and contributes to every second death (53%) associated with infectious 

disease among this age group in developing countries (Figure 2) [28]. Additionally, mild and moderate 

forms of malnutrition primarily account for the burden of malnutrition worldwide. For the surviving 

children, malnutrition has lifelong implications because it severely reduces a child’s ability to learn 

and grow to their full potential. Thus, malnutrition leads to less productive adults and weaker national 

economic performance [28]. 

Figure 2. Distribution of 10.5 million deaths among children younger than 5 years of age 

in all developing countries. Adapted from Benguigui and Stein [28]. 

 

The malnutrition-infection complex can be viewed under two aspects, malnutrition compromising 

host defense, or infection either aggravating a previously existing deficient nutritional status or 

triggering malnutrition through disease pathogenesis. Malnutrition can facilitate pathogen invasion and 

propagation; further, it can increase the probability of a secondary infection occurring, thus modifying 

both disease pathogenesis and prognosis [29].  
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Certain infectious diseases also cause malnutrition. It appears that there is a vicious cycle involved, 

where malnutrition increases disease susceptibility and disease causes a reduction in food intake. The 

relationships among malnutrition, immune suppression and infection are complicated by the severe 

effects that a number of infections exert on nutrition. Examples of how infections can contribute to 

malnutrition include: (1) gastrointestinal infection that lead to diarrhea, (2) chronic infections that 

cause cachexia and anemia; and (3) intestinal parasites that cause anemia and nutrient deprivation [16].  

Acute diarrhea and pneumonia occur most frequently during the first 2–3 years of life when 

immunocompetence is impaired and when children are first being exposed to pathogens. Infection can 

suppress appetite and directly affect nutrient metabolism, leading to poor nutrient utilization [18]. 

3. Immune System 

The immune system is capable of mounting effective immune responses to an almost infinite 

variety of foreign pathogens or tumor cells, while avoiding harmful immune responses to self. This 

system consists of a sophisticated array of cells that have developed mechanisms to both recognize and 

eradicate a wide variety of pathogenic microorganisms [30].  

Both innate immunity and adaptive immune responses depend upon the activities of white blood 

cells, or leukocytes. Innate immune defenses are those components of the immune system, such as 

macrophages, monocytes, and neutrophils that function without requiring previous exposure to a 

particular antigen. Adaptive or acquired immune responses develop in response to specific antigens 

and pathogens and exhibit memory qualities, rapidly responding if the antigen or pathogen is 

encountered again in the host’s lifetime. The combination of these two systems defends the host 

against infection. Innate immunity provides a first line of defense against pathogens and can be 

activated rapidly following infection; this response is non-specific and involves epithelial barriers, 

circulating phagocytes (mainly neutrophils and macrophages), and other cytotoxic cells, such as NK 

cells; further, complement proteins and positive acute-phase proteins (APP) also play a role [31,32]. 

In the first part of an immune response, the defenses of the body include the epithelial cells that line 

the internal and external surfaces of the body and the phagocytes that can engulf and digest invading 

microorganisms. In addition to killing microorganisms, several phagocytes also induce the next  

phase of the early response, and, if the infection is not cleared, they also activate adaptive immune 

responses [33]. APP are regulated by proinflammatory cytokines produced primarily by macrophages 

and neutrophils, such as IL-1, TNF-α, IL-6, and IL-12, as well as anti-inflammatory cytokines, such as 

IL-10, which down-regulate inflammation once pathogens have been eliminated [34]. Central to the 

development of an organized host cellular response to infection is the recruitment of immune effector 

cells, such as neutrophils, monocytes, and lymphocytes to the site(s) of infection. In recent years, a 

large number of signaling molecules, which have come to be known as chemokines, have been 

identified as key molecules in recruiting immune cells [35]. 

 

4. Relationship between Malnutrition and Infection 

A great number of field studies have demonstrated that the relationship between infection and 

malnutrition is bidirectional (Figure 3) [36,37].The site of interaction as well as the type of pathogen 
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can largely determine which type of immune response will proceed, and whether it will be an optimal 

response. Initiation of both innate and adaptive immune responses involves the activation and 

proliferation of immune cells and the synthesis of an array of molecules; the associated DNA 

replication, RNA expression, protein synthesis and protein secretion consumes additional anabolic 

energy. Consequently, the nutritional status of the host critically determines the outcome of  

infection [16].  

Figure 3. Relationship between nutrition and infection. Adapted from Brown [37]. 

 

There are multiple mechanisms of action in the relationship between malnutrition and susceptibility 

to bacterial infections diseases. For instance, PCM impairs normal immune system development [26]. 

Stimulation of an immune response by infection increases the demand for metabolically derived 

anabolic energy, leading to a synergistic vicious cycle of adverse nutritional status and increased 

susceptibility to infection (Figure 4). Infection itself can cause a loss of critical body stores of protein, 

energy, minerals and vitamins. During an immune response, energy expenditure increases at the same 

time that the infected host experiences a decrease in nutrient intake [38]. The metabolic response to 

infection includes hypermetabolism, a negative nitrogen balance, increased gluconeogenesis and 

increased fat oxidation, which is modulated by hormones, cytokines and other pro-inflammatory 

mediators [39]. During an infection, a negative nitrogen balance occurs after fever induction and then 

it increases and persists for days to weeks after the febrile phase. Additionally, negative nitrogen 

balance appears to correlate with net loss in body weight; both conditions are the result of reduced 

food intake and infection induced-increased nitrogen excretion [40,41].  

Malnourished children suffer in greater proportion from bacterial gastrointestinal and respiratory 

infections [42]. The first line of defense against these types of infection is the innate immune response, 

particularly epithelial barriers and the mucosal immune response [34]. PCM significantly compromises 

mucosal epithelial barriers in the gastrointestinal, respiratory and urogenital tracts. For example, 
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vitamin A deficiencies induce the loss of mucus-producing cells. This loss of the protective mucus 

blanket increases susceptibility to infection by pathogens that would ordinarily be trapped in the mucus 

and swept away by the cleansing flow of mucus out of the body. Barrier defects of mucous membranes 

are critical in the pathogenesis of respiratory and gastrointestinal tract infections [38]. 

Figure 4. Protein Energy Malnutrition Increases Prevalence of Infection, Leading to 

Energy loss for the Individual. Adapted from Schaible et al. [16]. 

 

In particular, mucosal barrier immunity is impaired in the malnourished host in the gastrointestinal 

tract due to the altered architecture and composition of the intestinal mucosal tissues which includes 

flattened hypotrophic microvilli, reduced lymphocyte counts in Peyer’s patches or reduced IgA 

secretion [43]. Secretory IgA is an important component of the mucosal immune response that protects 

the upper respiratory and gastrointestinal tracts against infection with pathogenic organisms.  

Previously, it has been reported that total IgA concentration is reduced in the intestinal mucosa of 

protein-malnourished mice [44,45]. The authors suggest that protein malnutrition may decrease IgA 

content by suppressing the proliferation and/or maturation of IgA-producing B-cells. Additionally, 

studies have shown that protein malnutrition suppresses the expression of the epithelial  

IgA-transporting protein, which decreases the total IgA concentration in the intestinal lumen [46]. 

Thus, PCM appears to impair IgA-dependent mucosal immune defenses, including the production of 

IgA by plasma cells and its secretion into the lumen of the intestine [45].  

In protein-malnourished mice, significantly decreased levels of IL-4 were reported in the small intestinal 

mucosa. Interestingly, these findings correlated with reduced secretory IgA production [45]. Malnourished 

mice, which are more susceptible to infection, exhibit altered innate immune responses and decreased nitric 

oxide production from resident peritoneal macrophages compared to control mice [47]. 
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The level and features of the APP response are dependent on host nutritional state and infection 

severity [48]. Severe malnutrition affects the APP response by reducing the availability of precursors 

for APP synthesis or by reducing the synthesis of modulating proinflammatory cytokines such as IL-1 

and IL-6. Proinflammatory cytokines responses during the acute phase of infection are affected by 

malnutrition. Specifically, serum IL-1 concentrations are markedly lower in infected, malnourished 

children compared to infected, well-nourished children [49]. It has been reported that severely 

malnourished children mount only a partial APP response to the infection, particularly; children with 

edematous malnutrition had higher plasma concentrations of C reactive protein, -1-antitrypsin and 

haptoglobin [50]. 

Complement, another element of the innate immune response, is also altered during malnutrition. 

Specifically, serum levels of C3 tend to be decreased in severely malnourished children compared to 

normal children [51]. As the initial events in phagocytosis and microbial killing are largely 

complement dependent, this deficiency resulted in a significant impairment in leukocyte microbicidal 

capacity early in infection, which was particularly evident for gram-negative organisms [26]. 

Additionally, serum levels of leukotrienes, which enhance leukocyte accumulation and phagocyte 

capacity, have been reported to be markedly diminished in children with PCM. For example, decreased 

leuokotriene levels were associated with reduced microbial ingestion and killing by phagocytic  

cells [52]. Moreover, it has been reported that experimental malnutrition impairs leukocyte exudation 

into local inflammatory sites by reducing production of the chemokine macrophage inflammatory 

protein [53]. In addition to decreased chemokine production, there is a decrease in the functionality  

of the chemokine that is produced; combined, these factors can result in an inadequate  

inflammatory response. 

The changes in mucosal immune function presumably account for the increased mortality seen in 

malnourished children. Therefore, PCM may increase susceptibility to gastrointestinal and respiratory 

infections, possibly as a result of impaired mucosal immune response and/or systemic alterations of 

immune response.  

5. Gastrointestinal Infections Associated with Malnutrition 

PCM and gastrointestinal bacterial infections frequently coexist in humans living in developing 

countries. It is estimated that more than 10 million children under 5 years of age die each year 

worldwide [54]. More than two million children die each year in developing countries from diarrheal 

diseases. Infection adversely affects nutritional status through reductions in dietary intake and 

intestinal absorption, increased catabolism and sequestration of nutrients that are required for tissue 

synthesis and growth [55].  

Of 3 million premature deaths due to diarrheal diseases, approximately 58% are associated with 

malnutrition [56]. The close relationship between diarrheal disease and malnutrition has not escaped 

the attention of the scientific community. Global estimates for mortality from diarrheal diseases have 

declined from approximately 4.6 million annual deaths during the mid-1980s to the current estimate of 

1.6–2.1 million. However, although rates of mortality from diarrhea have decreased, morbidity rates 

remain as high as ever [57].  
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In a recent descriptive and prospective study, 335 children under 6 years of age that were admitted 

to a hospital in Colombia for severe acute malnutrition (83%) or moderate acute malnutrition 

associated with illness (17%). The most common complication upon admission was diarrhea (68.4%) 

and the most common complication during hospitalization was sepsis (9%). Children with moderate 

acute malnutrition had similar complications and mortality when compared to children with severe 

acute malnutrition [58]. 

The epithelium of the gastrointestinal tract is formed by a single layer of cells. This biological 

structure separates the intestinal lumen from the internal body, functioning as the intestinal barrier. It 

regulates important functions such as intestinal digestion, secretion, and absorption of nutrients [59].  

Gastrointestinal infections impair weight and height gains and physical and cognitive development. 

Mechanistically, these outcomes have been attributed to damage to the mucosal barrier and villus 

atrophy, which reduces nutrient absorption. In PCM, decreased intestinal villus heights have been 

observed, mostly likely caused by a significant reduction in enterocyte numbers and proliferation. 

Overall, these changes resulted in decreases in total surface area and mucosal mass [60,61]. Several 

reports suggest that these lesions continue throughout childhood and into adulthood [62]. Furthermore, 

moderate-to-severe malnutrition alone can alter villus and crypt architecture [63]. Malnutrition can 

also increase lamina propria macrophage and lymphocyte populations and proinflammatory cytokine 

production in the intestinal mucosa, which may further alter intestinal barrier function [64].  

The rate of protein turnover in the gut mucosa is very high and is therefore sensitive to changes in 

host nutritional status [65]. Welsh et al. [66] reported a significant increase in intestinal permeability in 

malnourished children that was associated with activation of lamina propria mononuclear cells and 

enterocytes, leading the authors to conclude that intestinal barrier function is significantly 

compromised in malnourished patients. Further, abnormal intestinal permeability in kwashiorkor 

malnourished children was associated with diarrhea, sepsis, and death. Diarrhea and death were 

associated with both decreased absorption due to diminished absorptive surface area, and increased 

intestinal permeability caused by impaired barrier function [67]. Interestingly, an increased 

inflammatory state in the lamina propria might also impair intestinal barrier function and ultimately 

lead to increased intestinal permeability and weight and height growth deficits in children [68]. 

The gastrointestinal associated lymphoid tissues (GALT) comprise a secondary lymphoid tissue 

where effector immune responses directed gastrointestinal pathogens occur. Peyer’s patches, an 

example of GALT, are aggregates of lymphoid follicles located along the small intestinal mucosa that 

protects the body; they respond to antigens that have passed through mucosal surface barriers [69]. 

Structurally, Peyer’s patches contain proliferating B-lymphocytes, dendritic cells, macrophages and 

T-cells. Antigens in the lumen of the gut are transported to the Peyer’s patches and initiate the 

immunologic response. This response is principally mediated by IgA production from activated B 

lymphocytes. This secretory IgA is released into the intestinal lumen. The main function of secretory 

IgA is to neutralize foreign pathogens by preventing binding to and penetration of epithelial cells. 

Moreover, the secreted cytokines for the epithelial barrier, part of mucosal immunity, regulate local 

immune responses [69]. Gut mucosal immunity is very susceptible to PCM, this is associated with 

dysregulated cytokine production [70]. 

In children, malnutrition increases both the frequency (37%) and duration (73%) of diarrheal 

illnesses, resulting in a doubling of the diarrhea burden (days of diarrhea) [71]. In contrast, other work 
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has showed that nutritional status may not play an important role in increasing the susceptibility of 

children to diarrhea [72]. It has been proposed that children in poor communities are malnourished 

because they do not get enough food, not because they suffer from diarrhea [73]. However, when the 

interrelationship between diarrhea and malnutrition was investigated in a population with moderate 

malnutrition, both low weight-for-age and diarrhea itself are associated with increased diarrhea  

risk [74]. 

Gastrointestinal infections, such as diarrhea and gut helminth infections, directly affect the  

integrity, morphology, and function of the absorptive mucosa of the intestine possibly resulting in 

malabsorption [75]. It is has been propose that an important proportion of childhood malnutrition is 

due to impaired intestinal absorptive function resulting from multiple and repeated gastrointestinal 

infections [76]. Malnutrition can cause blunting of the villus architecture and a reduction in the brush 

border, which ultimately results in nutrient malabsorption and a further decline in nutritional status if 

not treated appropriately [3]. A proposed mechanism whereby diarrhea causes malnutrition includes 

metabolic changes derived from infection and/or intestinal malabsorption [77]. 

A direct correlation between malnutrition severity and the magnitude of decrease in lactase, and 

maltase activities has been reported. [61]. Moreover, it has been shown that changes in the 

microvillous membrane of the small intestine are related to alterations in carbohydrate and lipid 

absorption. This phenomenon results from the malnutrition-induced diminished activity of 

disaccharidase and dipeptide hydrolase, enzymes that located in the intestinal microvillous membrane. 

Therefore, the malabsorption of dipeptides and disaccharides might contribute to diarrhea and growth 

failure in malnourished children [78].  

Lactose is the major source of dietary carbohydrate during infancy; therefore, the effect of 

malnutrition on mucosal lactase specific activity is of particular importance during this time period [78]. 

A significant reduction in lactase activity in patients with malnutrition has been reported [79].  

In relation to metabolic changes, acute infections cause anorexia and decrease nutrient intake. 

Studies show that children with diarrhea consumed 18% less calories per day compared to healthy 

children [80]; this impact becomes more distinct the more severe the infection. Furthermore, recent 

reviews demonstrate that metabolic changes in PCM include amino acid and protein deficiencies, 

carbohydrate and energy deficiencies, hypolipidemias, hypolipoproteinemias, hormonal imbalance and 

deficiencies of anti-oxidant vitamins and enzymes [81]. 

Helicobacter pylori is a causative agent of disease states of varying severity including chronic 

gastritis, or gastric adenocarcinoma [82]. H. pylori infection is strongly associated with other 

gastrointestinal infections and chronic malnutrition. H. pylori infection occurs primarily in early 

childhood, and in developing countries it has a severe impact on general health [83]. In children,  

H. pylori infection can be the initiator of a vicious cycle of events than leads to malnutrition and 

growth retardation in children that impacts both morbidity and mortality [83,84].  

Several studies show an association between acute H. pylori infection and transient or extended 

periods of hypochlorhydria (i.e., reduction in gastric acid secretion) in children. Furthermore, other 

data showed that H. pylori-infected children have impaired gastric acid secretion [85,86], which can 

provoke diarrhea [83]. 

Gastrointestinal pathogenic bacteria can either be ingested or ascend from the distal bowel; however, 

their survival is usually limited by gastric acidity. Therefore, the hypochlorhydria can result in 
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bacterial overgrowth in the stomach; further, the expanded bacterial populations may also contribute 

increasing the intragastric pH [87]. Also, hypochlorhydria increases susceptibility to enteric infections 

such as salmonellosis, cholera, giardiasis, Shigellosis, and others due to the loss of the gastric acid 

barrier [83,88]. 

A combination of PCM and coinfection with enteropathogens that provoke diarrhea acquired as a 

consequence of H. pylori-induced hypochlorhydria is likely to have a profound impact on pediatric 

populations where the prevalence of H. pylori infection is high [83]. Indeed, the incidence of H. pylori 

infection in malnourished children is greater than in well-nourished children [89], due to high IL-1 

production that is associated with hypochlorhydria that favors chronic H. pylori infection [82].  

Acid concentrations and gastric juice secretion rates are diminished in severely malnourished 

children [75]. Further, these children exhibited elevated levels of bacterial colonization associated with 

the reduced gastric acid barrier. These data suggest that the gastric acid barrier may be a protective 

factor in children [90]. Therefore, hypochlorhydria may allow subsequent bacterial infection of the 

upper gastrointestinal tract in severely malnourished children [90,91]. Infection of the intestinal tract 

with several well known bacterial pathogens can profoundly disrupt intestinal function with or without 

causing overt dehydrating diarrhea. Diarrhea is a syndrome that is frequently not differentiated clinically by 

specific etiologic agent. In addition, diarrhea is a frequent complication of malnutrition [78,92-94]. 

Additionally, malnutrition is considered a host factor that influences susceptibility to amebiasis [95]. 

Mondal et al. [96] investigated the association of gastrointestinal infection-induced episodes of 

diarrhea with the nutritional status of children. They concluded that amebiasis, caused by the invasion 

of the intestinal wall by the protozoan parasite Entamoeba histolytica, is strongly associated with a 

high incidence of diarrhea in malnourished children. E. histolytica infection results from ingestion of 

the parasite through fecal-contaminated food or water. In developing countries, infection with  

E. histolytica has been observed in 2–10% of diarrheal episodes in children. E. histolytica-induced 

amebiasis is estimated to result in 50 million infections and 100,000 deaths worldwide each year [97]. 

Secretory IgA antibodies are associated with protective immune responses against E. histolytica 

diarrhea and colonization [98,99]. Therefore, the increased incidence of E. histolytica in malnourished 

children may result from the significantly decreased number of IgA-secreting cells present in the small 

intestine lamina propria of malnourished children [100]. 

Other responses against E. histolytica include innate immune responses. Macrophages are central  

to innate and acquired immune responses; they are activated by a variety of stimuli. IFN- induces  

the differentiation and activation of monocyte-macrophages and enhances their microbicidal  

activity [101,102]. Particularly, IFN- activates macrophages to kill E. histolytica in vitro; consistent 

with this, mice that are susceptible to amebiasis showed deficient IFN- production [95]. The effects of 

malnutrition on macrophage function have been reported in several studies [103,104]. In relation to has 

been demonstrated that malnutrition results in impaired macrophage phagocytosis, impaired 

production of superoxide anion and reduced cytokine production [105]. Additionally, data from our 

previous study showed a significant decrease in IFN- production by CD4+ and CD8+ T-cells from 

malnourished children [27].  

Additionally, well-nourished children colonized with E. histolytica showed more IFN- production 

than healthy well-nourished children without infection. Therefore, the authors concluded that IFN- 

was associated with protection from E. histolytica infection [95]. Consistent with these findings, 
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PBMC from malnourished children stimulated with soluble amebic antigen exhibited significantly 

lower production of IFN- compared to well-nourished children [106]. Therefore, they concluded that 

the susceptibility of malnourished children to amebiasis might be explained, at least in part, by a 

deficiency in the ability of their cells to produce IFN- in response to amebic antigen. Decreased 

gastric acidity accompanied by a specific decrease in IFN- production in malnourished children, 

suggests that malnutrition may predispose children to amebiasis by suppressing normally protective 

cell-mediated immune responses. 

A broad group of microorganisms cause diarrhea in children making identification of the etiologic 

agent difficult .Bacterial enteric pathogens that cause most cases of severe acute diarrhea include 

Vibrio cholerae, Shigella spp., Salmonella spp., enteropathogenic Escherichia coli (EPEC), 

enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC) and Cryptosporidium spp. [96,107-110]. 

Furthermore, intestinal helminth infections may also impair intestinal function, absorption and  

growth [111,112]. 

CHERG has also estimated morbidity from specific enteric pathogens based on broad reviews of 

studies that have documented the etiologic agents of diarrhea. The most frequent bacterial etiologies of 

diarrhea at the community level were ETEC (14%) and EPEC (9%). Although Campylobacter spp. 

(12.6%) and EPEC (9%) were most frequent in outpatient studies, EPEC (16%) and ETEC (9%) were 

the most frequent species in inpatient studies. The CHERG findings also suggest that much more 

morbidity than mortality is caused by certain enteric pathogens such as G. lamblia, Cryptosporidium 

spp., E. histolytica, and Campylobacter spp.; in contrast, enteric pathogens such as rotavirus, 

Salmonella spp. and V. cholerae seem to be important causes of mortality [113].  

Cryptosporidium spp. and EAEC modify and provoke mucosa inflammation, also cause disease 

mainly by inducing host production of cytokines. Also, EPEC induces important changes in epithelial 

cell function [113]. Intestinal infections with Salmonella spp. and Shigella spp. also activate the 

production of cytokines and chemokines that cause inflammation that affects intestinal epithelial cell 

function [114]. Specifically, Shigella spp. invades intestinal epithelial cells, which results in barrier 

disruption and inflammation [115]. 

In relation to cytokines, several studies indicate that malnutrition decreases T-cell function, cytokine 

production, and the ability of lymphocytes to respond appropriately to cytokines [27,116,117]. 

Malnourished children have been shown to have altered capacities to produce several cytokines  

(i.e., IL-2, IL-4, IL-6, IL-10, etc.). González et al. [118] observed that lymphocytes obtained from 

malnourished children were unable to secrete normal quantities of cytokines or to achieve adequate 

immunologic function and proposed that the altered physiology of lymphocytes may be the 

predominate cause of the immune impairment observed in malnourished children. 

6. Respiratory Infections Associated with Malnutrition 

A strong and consistent association has been demonstrated between malnutrition and mortality from 

respiratory infections; further, malnutrition is considered to be a more important risk factor for 

pneumonia than for diarrhea [119,120]. Acute respiratory infections (ARIs) are the leading cause of 

high mortality and morbidity among children under 5 years of age [121]; they are also the most 

frequent cause of health services used around the world. ARIs represent between 30–50% of pediatric 
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medical consultations and between 20–40% of hospitalizations in children. The risk factors for 

acquiring respiratory infections are poverty, restricted family income, low parental education level, 

lack of breastfeeding and, most importantly, malnutrition [122].  

As above mentioned, the establishment of malnutrition depends on the cause and duration of the 

any nutritional deficiency. It can be caused, secondarily, by increase in demand of nutrients [12]. 

The infection may be either aggravating a previously existing deficient nutritional status or 

triggering malnutrition through disease pathogenesis [29]. It has been demonstrated that certain 

infectious diseases cause malnutrition. These diseases cause a reduction in food intake. One example 

of how respiratory infections can contribute to malnutrition is that chronic infections may be cause 

cachexia [15]. The respiratory infections, as pneumonia, occur most frequently during the first  

24–36 months of life when immunocompetence is impaired and when children are first being exposed 

to pathogens. The stimulation of an immune response by respiratory infection increases the demand for 

metabolically derived anabolic energy, this lead to adverse nutritional status. Moreover, a respiratory 

infection itself can cause a loss of critical body stores of protein and energy. During an immune 

response, energy expenditure increases at the same time that the infected host experiences a decrease 

in nutrient intake [37]. Additionally, negative nitrogen balance appears to correlate with net loss  

in body weight; this result in reduced food intake and infection induced-increased nitrogen  

excretion [39,40]. During an infection, a negative nitrogen balance occurs after fever induction and 

then it increases and persists for days to weeks after the febrile phase. Therefore, the malnutrition may 

be a consequence of repeated respiratory infections, common in young children [123]. 

The incidence of Streptococcus pneumoniae in children younger than 5 years of age in developing 

countries varies greatly [122]. In developing countries, more than 8,795 million children die each year. 

In 2008, more than 5,970 million children died due to infectious diseases; approximately 18%  

(1,575 million) of these deaths were caused by pneumonia [7]. In contrast, other data show that there 

are more than 9 million deaths among children under the age of five globally each year, of which, 

about three million deaths are due to pneumonia [55,124]. Regardless of the total numbers, the 

majority of ARI-related deaths occur in developing countries. Although these numbers represent the most 

rigorous estimate of child deaths caused by S. pneumoniae, they are probably an underestimate [125]. 

In America, approximately 100,000 deaths per year caused by ARI in children under 1 year of age 

have been reported since the 1980s. Five countries contributed to 85% of these deaths: Brazil (40%), 

Mexico (19%), Peru (14%), Bolivia (7%) and Haiti (5%). The Pan American Health Organization 

(PAHO) estimates that the percentage of deaths attributed to ARI varies from 2% to 16%. Meanwhile, 

in countries such as Canada and the United States, the percentage of deaths attributed to ARI in this 

age group is 2% [122].  

Childhood clinical pneumonia is caused by a combination of risk factors related to the host, the 

environment and infectious agent [126]. In developing countries, identifying the etiology is difficult, 

and WHO recommends diagnosing pneumonia based on clinical parameters. However, based on 

available evidence, several studies have identified Streptococcus pneumoniae and Haemophilus 

influenzae as the most important pathogens associated with childhood pneumonia [127,128]. Further, 

Staphylococcus aureus and Klebsiella pneumoniae have also been linked to cases of severe  

pneumonia [129]. In microbiologic studies, Streptococcus pneumoniae has been identified in 30–50% 

of pneumonia cases and H. influenzae type b in 10–30% of cases. S. aureus and K. pneumoniae were 
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the next most prevalent etiologic agents of pneumonia [126]. However, with the increased use of 

pneumococcal and H. influenzae type b vaccines in developing countries, it is likely that these 

pathogens will become relatively less important as causative agents of pneumonia [130]. Bacterial 

pathogens in children with pneumonia in developing countries obtained from several studies are shown 

in Figure 5.  

Figure 5. Agents pathogens in children with pneumonia and severe malnutrition in 

developing countries. Adopted from Chisti et al. [130]. 

 

Streptococcus pneumoniae is a leading cause of bacterial pneumonia, meningitis, and sepsis in 

children worldwide. Pneumococcal disease is preceded by asymptomatic nasopharyngeal colonization, 

which is especially high in children. The natural route of infection with S. pneumoniae starts with 

colonization, which may progress to invasive disease if immunological barriers are crossed [131]. 

Haemophilus influenzae type b (Hib) is mostly an opportunistic pathogen that causes invasive 

infections, such as pneumonia in children under 5 years of age. The incidence of Hib pneumonia and 

Hib invasive disease in children younger than the age of 5 years in developing countries is 7 and 21–60 

per 100,000 per year, respectively [132,133]. Rudan et al. [126] reported that in developing countries 

with a high burden of pneumonia, 15–30% of radiological pneumonia cases, and most likely the same 

proportion of pneumonia deaths, is due to Hib. 

Up to two-thirds of malnourished children that are hospitalized are diagnosed with pneumonia [134]; 

generally, the etiologic agent is S. pneumoniae. Despite the availability of antibiotics, mortality and 

morbidity rates remain high, especially in high-risk groups like malnourished children [135]. 

Pneumonia is common in malnourished children and is frequently associated with fatal outcome [136], 

especially in malnourished children younger than 24 months of age [137]. Although ARIs are caused 

by a wide variety of bacterial agents, studies consistently reported a two- to threefold greater risk of 

mortality associated with malnutrition [138]. Therefore, pneumonia and malnutrition are two of the 

biggest killers in childhood disease [130]. 
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A recent study that described clinical and laboratory features of infants with pneumonia 

demonstrated an elevated fatality rate in severely malnourished children compared to well-nourished 

infants [139]. A study examining the prevalence of respiratory infections to the prevalence of 

malnutrition in children under 5 years of age, found that acute upper respiratory infections were most 

prevalent among children with acute malnutrition. However, lower respiratory infections were most 

prevalent among children with either acute or chronic malnutrition. As most previous studies did not 

examine the effects of malnutrition on acute upper and lower respiratory infections separately, these 

results provide additional information to this complex area of study [123]. 

To identify potential differences in the etiology of pneumonia between children with and without 

severe malnutrition, Chisti et al. [130] conducted an excellent review study to quantify the degree by 

which moderate and severe degrees of malnutrition increase the mortality risk in pneumonia. They 

found that children with pneumonia and moderate or severe malnutrition showed a higher mortality 

risk. For severe malnutrition, reported relative risks ranged from 2.9 to 121.2; odds ratios ranged from 

2.5 to 15.1. For moderate malnutrition, relative risks ranged from 1.2 to 36.5. These results show  

a significant association between moderate and severe malnutrition and mortality among children  

with pneumonia. 

Furthermore, studies have demonstrated that pneumonia is more common among children with 

marasmic-kwashiorkor than among other types of malnourishment [140]. Additionally, in children 

under the age of 2 years, malnutrition is associated with a significant increase in ARI morbidity, also, 

severe pneumonia is associated to increase the mortality rate [141,142]. In a study performed with 

severely malnourished children, the mortality in children with Kwashiorkor was 13.4%. Mortality was 

28% in children with marasmus and 48.3% in children with unclassified malnutrition. The main causes 

of death in children younger than 18 months of age were dehydration and pneumonia; in children from 

19 to 60 months of age, it was pneumonia [143]. 

The data currently available suggest that the spectrum and frequency of causative agents of bacterial 

pneumonia in severely malnourished children may differ from that observed in children without severe 

malnutrition [130]. A study analyzing the etiology of pneumonia in severely malnourished children 

showed that the type and frequency of causative pathogenic microorganism differed from those 

reported in children without severe malnutrition [130].  

Streptococcus pneumoniae and Haemophilus influenzae were the two microorganisms isolated most 

frequently from the blood, lung or pleural fluid from well-nourished (33%) and malnourished children 

(11%) with pneumonia [127,128]. However, according to Chisti et al. [130] Klebsiella ssp. and  

S. aureus were the most common causative organisms in severely malnourished children. These 

findings suggest that Klebsiella species and S. aureus are probably the main bacterial causes of 

pneumonia in malnourished children. Additionally, pathogenic viruses have been isolated from 

malnourished children with pneumonia. Although Mycobacterium tuberculosis was detected in 18% of 

malnourished children with pneumonia [140], the role of Mycobacterium tuberculosis presenting as an 

acute lower respiratory infection in severely malnourished children has not been well studied. 

A prospective study of staphylococcal lower respiratory infections in children aged 1–48 months 

reported that 68% of the cases were diagnosed as bronchopneumonia. Of the 9.7% of patients in the 

study that that died, they were all malnourished children who did not receive antibiotics prior to 
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disease presentation. Further, they all exhibited bronchopneumonia and Staphylococcus aureus 

positive blood cultures [144]. 

In the absence of an organized and effective immune response, antibiotics alone are usually 

incapable of eradicating bacterial pathogens [145]; therefore, antibiotics only have slight effect on 

early mortality from bacteremia and sepsis due to Streptococcus pneumoniae [146]. As we mentioned 

above, the innate immune response provides a first line of defense against infection. It has been 

estimated that the innate immune system provides protection against 98% of encountered  

pathogens [147]. The upper respiratory tract is the ecological niche for many bacterial species.  

S. pneumoniae is part of the commensal flora of the upper respiratory tract, as mentioned above. 

Together with Haemophilus influenzae, Staphylococcus aureus, M. catarrhalis, and various hemolytic 

streptococci, S. pneumoniae colonizes the nasopharyngeal tract [148]. 

Effective respiratory tract host defense against pathogens depends on the interaction of type-specific 

antibodies, complement, and neutrophils or other phagocytic cells [149,150]. If pathogens overcome 

these defenses and gain entry into the blood stream, systemic protection is mediated by anticapsular 

antibodies [151]. A reduced mucosal immune response might lead to persistent and recurrent 

colonization and subsequent infection, whereas an efficient local immune response to the pathogen 

eliminates colonization and prevents recolonization.  

The pneumococcal cell wall is highly immunogenic, it is the cause of the intense inflammatory 

reaction that accompanies pneumococcal infection; it stimulates the influx of inflammatory cells, 

activates the complement cascade and induces cytokine production [152]. In general, the mucosal 

immune system develops faster than the systemic immune system, and functions from the age of  

6 months. IgG and secretory IgA antibodies directed against capsular polysaccharides and  

surface-associated proteins have been observed in saliva of children under five years in response to 

colonization with S. pneumoniae [131].  

There is evidence that the susceptibility of malnourished children to respiratory infections caused 

by encapsulated bacteria is due to defects in the production of IgG antibodies. However, malnutrition 

produces a profound depression on acquired cell-mediated immune competence, whereas humoral 

competence is less predictably affected. In contrast, in a recent study examined the effect of 

undernutrition on the humoral immune profile in children less than 60 months of age with pneumonia. 

The children were admitted to hospital with moderate-severe pneumonia, and undernutrition was 

associated with hypoalbuminemia and reduced humoral immune responses [153]. 

Immunoglobulin levels of malnourished children have been reported by various researchers to be 

comparable to well-nourished children; however, IgA levels are decreased in malnutrition [10]. In 

addition, previous report shows that the mean percentages of IL 4-producing T-cells are increased in 

malnourished children compared to well-nourished children [27]. Moreover, high levels of serum IL-4 

have been found in malnourished children [154]. The high levels of IL-4 could contribute to the elevated 

levels of serum immunoglobulins reported in malnourished children [10]. The secretory IgA is a 

principal component of the mucosal immune response that protects the upper respiratory tracts against 

infection with pathogenic organisms; therefore, the diminished IgA levels observed in malnourished 

children may be responsible for diminished immune responses against respiratory infections.  

In general, acute bacterial infections, such as Streptococcus pneumonia, are characterized by the 

predominance of neutrophils in the inflammatory reaction [155]. Chemokines are likely to play a 
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major role in this type of immune response. A significant reduction of phagocytic capabilities and 

diminished killing capabilities of neutrophils in malnourished children has been reported [25]. 

Furthermore, in malnourished patients although there is a close-to-normal neutrophil chemotaxis  

and phagocytosis, minor defects in the generation of reactive oxygen intermediates and bacterial 

killing have been demonstrated [156]. Several investigators have demonstrated that malnutrition 

results in impaired macrophage phagocytosis, impaired superoxide anion production and reduced 

cytokine production [105]. Moreover, malnutrition has been shown to cause retarded macrophage 

differentiation [157]. 

However, protection against bacterial respiratory infections is also mediated by opsonin-dependent 

phagocytosis. Antibody-initiated complement-dependent opsonisation, which activates the classic 

complement pathway, is thought to be the main immune mechanism protecting the host against  

S. pneumonia infection [148]. In several studies, complement components were significantly lower in 

malnourished children [158,159]. In particular, C3 and factor B were depressed in malnourished 

patients [160]. Overall, complement production in response to infection and inflammation is 

inadequate in malnourished individuals [145]. These data suggest that a relative complement 

deficiency with decreased resistance to infections exists in malnourished children. 

Malnourished mice infected with Streptococcus pneumoniae exhibited more lung injuries, impaired 

leukocyte recruitment and reduced antibody and cytokine production compared to well-nourished  

mice [100]. Diverse experimental evidence indicates that cytokines play an important role in the 

nutrition-infection complex [161]. Accordingly, an impairment of cytokine production has been 

reported in malnutrition [118,162]. 

Macrophages from protein-malnourished animals produced less TNF-α in response to  

infection [54,163]. Particularly, phagocytes in the respiratory tract of infected malnourished mice 

showed reduced TNF-α production and activity compared to infected well-nourished mice [101]. In 

contrast, other studies have shown that TNF-α production by PBMC from malnourished children did 

not differ compared to well-nourished children [164]. Consistent with this, IL-6 production in 

malnourished children was similar to well-nourished children. However, these results differ from those 

of Doherty et al. [165] who reported a diminished IL-6 production in severely malnourished children. 

In contrast, other studies found that IL-6 levels were significantly increased in the supernatants  

of phytohemagglutinin (PHA)-stimulated cultures from malnourished children compared to  

well-nourished children [166,167].  

In a more recent study from our laboratory [27], production of IL-2, IFN-, IL-4 and IL-10) were 

evaluated in CD4+ and CD8+ T-cells. Peripheral blood CD4+ and CD8+ T-cells from malnourished 

children showed reduced IL-2 and IFN- production compared to well-nourished infected children. In 

contrast, an increase in Type 2 cytokine production was found. Decreased IL-2 and IFN- production 

has also been observed in other studies [168,169]. 

An important increase in the percentage of CD4+ and CD8+ IL 10-expressing cells is evident in 

malnourished children [27]. IL-10, which is produced by a variety of cells including T lymphocytes, B 

lymphocytes, and monocytes has been identified as a cytokine with important anti-inflammatory and 

immunosuppressive properties [170]. IL-10 is a major cause of ineffective anti-pathogen immune 

responses, as it inhibits many of the individual steps in antimicrobial immunity [171]. Therefore, IL-10 
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may be an important immunosuppressive factor related to the impaired immune response observed in 

malnourished children.  

Altered levels of the proinflammatory cytokines granulocyte-macrophage colony stimulating factor 

(GM-CSF), IL-8 and IL-6 have been observed in the culture supernatants of PBMCs isolated from 

malnourished children. Specifically, GM-CSF levels were lower in malnourished children compared to 

well-nourished children, while IL-8 and IL-6 levels were higher in malnourished children compared to 

well-nourished children. These altered cytokine responses in PBMCs from malnourished children 

suggest severely impaired inflammatory responses [172]. 

When malnourished and well-nourished mice were challenged with S. pneumoniae, lung 

colonization and bacteremia were significantly greater in malnourished mice. The malnourished mice 

showed diminished numbers of leukocytes and neutrophils in the blood and in bronchoalveolar lavages. 

Although a moderate increase of leukocytes was observed after challenge with S. pneumoniae, there 

was a decrease of leukocytes on day 5 post-infection, most likely due affected cell release from the 

bone marrow [100]. Reduced capacity of leucocytes to kill ingested microorganisms and decreased 

ability of lymphocytes to replicate, coupled with lower concentrations of the cells responsible for  

cell-mediated immunity, results in higher morbidity due to infectious diseases [173]. Another probable 

explanation for the reduced bacterial clearance and increased mortality observed in malnourished 

children with pneumonia is defective alveolar macrophage function.  

7. Malnutrition, Leptin and Bacterial Infections 

Leptin has been identified to function as a prominent regulator of immune system activity, linking 

the function of the immunologic system to nutritional status [174-177]. Leptin is produced by adipose 

tissue in proportion to fat mass and is produced during the acute phase response. From an 

immunological point of view, leptin-deficient mice (ob/ob) display reduced cellularity in the spleen 

and thymus, and show increased susceptibility to infection.  

Leptin levels normally increase acutely during infection and inflammation [178,179]. Moreover, it 

has been demonstrated that leptin plays an important role in T-cell mediated immune responses [180]. 

However, serum leptin levels are reduced in infected children who are severely malnourished [181,182]; 

therefore, diminished leptin concentrations in malnourished children may be involved in immune 

system dysfunction and increased susceptibility to infections [164]. Leptin has been shown to prevent 

lymphoid atrophy, reconstitute lymphoid cellularity [183] and to restore circulating lymphocyte 

populations during malnutrition [184]. Furthermore, macrophages obtained from leptin-deficient mice 

are deficient in phagocytosis, the addition of exogenous leptin to macrophages has been shown to 

augment macrophage phagocytosis, bacteriocidal activity and cytokine synthesis [174,176]. Infection 

has been shown to increase serum leptin levels in vivo [185]. 

Additionally, leptin administration restores a normal immune response. In 2007, Rodríguez et al. 

studied the effect of leptin on peripheral blood CD4+ and CD8+ T-cell cytokine production and 

activation in malnourished children. We demonstrated that leptin enhances IL-2 and IFN- secretion 

while inhibiting IL-4 and IL-10 production. These results demonstrate that human leptin can also 

modulate the activation of CD4+ and CD8+ T-cells from infected malnourished children [186]. 
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The role of leptin in Gram-negative bacterial pneumonia was investigated by comparing the 

responses of normal mice and leptin-deficient mice following Klebsiella pneumoniae inoculation. As 

expected, normal mice displayed increased blood and lung leptin levels in response to bacterial 

pneumonia [187]. Compared to normal mice, leptin-deficient mice exhibited increased mortality  

and reduced bacterial clearance from the lung. This increased susceptibility to bacterial pneumonia  

in the leptin-deficient mice was associated with reduced alveolar macrophage phagocytosis of  

K. pneumoniae in vitro; importantly, in vitro alveolar macrophage phagocytosis function was restored 

by the addition of exogenous leptin [187]. Also, Leptin can augment IFN- synthesis during the course 

of bacterial pneumonia, which could enhance macrophage effector function. Therefore, leptin plays an 

important role in host defense against bacterial pneumonia.  

These data indicate that leptin is an essential component of antibacterial host defense and those 

malnourished children are more susceptible to bacterial gastrointestinal and respiratory infections may 

be because they exhibit diminished levels of leptin. 

8. Conclusions 

Here, we focused on describing the interactions between malnutrition and immune system 

dysfunction and the determinants that provoke increased susceptibility to gastrointestinal and bacterial 

respiratory infections. PCM adversely affects the immune system; therefore malnutrition is considered 

the most common cause of immunodeficiency throughout the world. In synergy with infection, 

malnutrition contributes to 56% of all childhood deaths worldwide. The causes of malnutrition are 

multiple and complex and infections are a common precipitating factor. Acute gastrointestinal and 

respiratory infections are the most important causes of high morbidity and mortality among 

malnourished children and malnutrition is an important associated factor in these deaths. The studies 

described within this review provide evidence that the combination of several defective immune 

mechanisms synergistically inhibits the development of an adequate host immune response.  

Particularly, defects in the innate immune response resulting from protein calorie malnutrition may 

contribute to the susceptibility of malnourished children to infection. Moreover, several studies have 

demonstrated that malnutrition severely impairs cytokine production, which may also be related to the 

impaired cell-mediated immunity in malnourished children. 

The study of the interactions between malnutrition and the immune system may generate many 

practical and clinical applications. A better understanding of these interactions could contribute to 

more effective approaches to saving children’s lives. Additionally, strategies to more effectively 

reduce child malnutrition are urgently needed.  
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