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Abstract 

Background:  Heart rate variability (HRV) has been widely used in the non-invasive 
evaluation of cardiovascular function. Recent studies have also attached great impor-
tance to the cardiac diastolic period variability (DPV) examination. Short-term variabil-
ity measurement (e.g., 5 min) has drawn increasing attention in clinical practice, since 
it is able to provide almost immediate measurement results and enables the real-time 
monitoring of cardiovascular function. However, it is still a contemporary challenge to 
robustly estimate the HRV and DPV parameters based on short-term recordings.

Methods:  In this study, a refined fuzzy entropy (rFuzzyEn) was developed by substitut-
ing a piecewise fuzzy membership function for the Gaussian function in conventional 
fuzzy entropy (FuzzyEn) measure. Its stability and robustness against additive noise 
compared with sample entropy (SampEn) and FuzzyEn, were examined by two well-
accepted simulation models—the 1/f α noise and the Logistic attractor. The rFuzzyEn 
was further applied to evaluate clinical short-term (5 min) HRV and DPV of the patients 
with coronary artery stenosis and healthy volunteers.

Results:  Simulation results showed smaller fluctuations in the rFuzzyEn than in 
SampEn and FuzzyEn values when the data length was decreasing. Besides, rFuzzyEn 
could distinguish the simulation models with different amount of additive noise even 
when the percentage of additive noise reached 60%, but neither SampEn nor FuzzyEn 
showed comparable performance. Clinical HRV analysis did not indicate any significant 
differences between the patients with coronary artery disease and the healthy volun-
teers in all the three mentioned entropy measures (all p > 0.20). But clinical DPV analy-
sis showed that the patient group had a significantly higher rFuzzyEn (p < 0.01) than 
the healthy group. However, no or less significant difference was observed between 
the two groups in either SampEn (p = 0.14) or FuzzyEn (p = 0.05).

Conclusions:  Our proposed rFuzzyEn outperformed conventional SampEn and 
FuzzyEn in terms of both stability and robustness against additive noise, particularly 
when the data set was relatively short. Analysis of DPV using rFuzzyEn may provide 
more valuable information to assess the cardiovascular states than the other entropy 
measures and has a potential for clinical application.
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Background
Cardiovascular diseases (CVDs) have become the leading cause of death over the world [1, 
2]. One of the most commonly encountered types of CVDs is coronary heart disease [3], 
which is typically characterized by coronary artery stenosis. At most cases, the deterio-
rated cardiovascular function would have become irreversible after being diagnosed. It is 
thus meaningful to detect the CVDs at an earlier stage before the occurrence of common 
clinical symptom and organic lesion (usually named as a subclinical phase), ideally in a 
non-invasive and non-destructive way [4].

Most CVDs are theorized to bring disruption in autonomic control [2, 5]. Besides, the 
heart rate variability (HRV) has been proved to be capable of probing into the autonomic 
regulation. Thus, researchers have developed the HRV analysis to evaluate the cardio-
vascular functioning indirectly [6–8]. The HRV refers to tiny fluctuations between nor-
mal sinus heartbeats which are often represented by the consecutive RR intervals from 
the ECG data. Previous results have already linked the HRV alterations to CVDs [9–11]. 
Moreover, one cardiac cycle comprises of two complementary electromechanical peri-
ods, viz. cardiac systolic and diastolic periods. Both periods show variability and exhibit 
certain coupling with the heart period [12]. We have shown that the changes of diastolic 
period variability (DPV) in healthy elderly subjects [13] and heart failure patients [14] 
are different from those of HRV. Thus DPV may contribute more information beyond 
the HRV to evaluation of coronary artery stenosis.

Clinically, there is a growing need for short-term (usually about 5 min) HRV and DPV 
examinations, particularly in a scenario of point-of-care diagnosis or mobile healthcare 
service etc. [15, 16]. However, the common time- and frequency-domain methods lack 
reliability and reproducibility in short-term HRV/DPV analysis due to its non-station-
ary nature [6]. Traditional nonlinear measures, such as fractal dimension, correlation 
dimension, and Lyapunov exponents, require sufficient data length (typically should be 
long enough for trajectory reconstruction) [17, 18]. Therefore, they are also inapplicable 
in short-term HRV/DPV examinations.

Entropy measures, such as sample entropy (SampEn), have showed potential in reli-
able short-term analysis [19]. Within a time-series of length N, if two vectors of certain 
length m are close to each other (within a tolerance r), SampEn measures the likelihood 
that the two vectors will remain close on the next incremental comparison. It is however 
limited by sensitivity to both N and r [20]. To attenuate the parameter effects, Chen et al. 
[21] and Xie et al. [22] introduced independently the fuzzy logic to the classification pro-
cedure and defined as fuzzy entropy (FuzzyEn) measure. Nevertheless, switched Fuzz-
yEn values have also been observed under different values of r [23]. Its performance in 
short-term series thus requires further elucidation. Most recently, we have shown that, 
in a multivariate analysis framework, the fuzzy membership function (e.g., the Gauss-
ian function) should be a potential influencing factor to the statistical performance of 
FuzzyEn. After substituting a piecewise function for the Gaussian function, results have 
shown significantly improved stability [24].

Therefore, in this study, we firstly developed a new FuzzyEn measure based on the 
piecewise fuzzy membership function. The performance of our proposed new FuzzyEn—
refined FuzzyEn (rFuzzyEn)—was then tested on synthetic data and the rFuzzyEn was 
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finally applied to analyse the 5-min human HRV and DPV series for both the patients 
with coronary artery stenosis and healthy volunteers.

Methods
Algorithms of SampEn and FuzzyEn

For a normalized (with null mean and unit standard deviation) length-N series 
{xi, i = 1, 2, . . . ,N }, given the input parameter m (embedding dimension), form vector 
X
(m)
i  as X(m)

i = [xi, xi+1, . . . , xi+m−1] (i = 1, 2, . . . ,N −m). Define the distance between 
two vectors X(m)

i  and X(m)
j  by

where i, j = 1, 2, . . . ,N −m. For each X
(m)
i , define the average number of X

(m)
j  

( j = 1, 2, . . . ,N −m ∩ j �= i) which is similar to X(m)
i  by

where r is the threshold parameter, �(·) indicates the Heaviside function. Then, compute 
the mean of B(m)

i (r) by

Similarly, define B(m+1)
i (r) as the average number of X(m+1)

j  which is similar to X(m+1)
i , 

and compute its mean B(m+1)(r), accordingly [19]. Finally, the SampEn can be estimated 
by

For FuzzyEn, the Heaviside function in (2) is substituted by a Gaussian function

more details are available in [25, 26].

Refined FuzzyEn algorithm

The Gaussian function shown in (5) declines smoothly with increasing d. It is differ-
ent from the Heaviside function which provides a rigid boundary (either 1 or 0) to scale 
the similarity degree of two vectors. With the Heaviside function, a slight variation of d 
around r can lead to abrupt changes in calculation of similarity degree. But this effect can 
be largely attenuated in FuzzyEn.

However, damping in Gaussian function appears right after d > 0. But mostly, a small 
d may not necessarily indicate a real difference between two vectors. Recurring to the 
small threshold r in SampEn, it has been initially introduced to distinguish between the 
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(4)SampEn(m, r,N ) = − ln
B(m+1)(r)

B(m)(r)
.

(5)A(d, r) = e− ln (2)(d/r)2 ,
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similar and dissimilar vectors. Any one which is within r of a certain vector is ranked to 
be similar, whereas the distance d (0 ≤ d ≤ r) between them is considered to be artefact 
brought about by possible sampling errors or disturbance [24].

We have introduced a transient plateau at the very beginning of the Gaussian function 
shown in (5) and developed accordingly a new piecewise fuzzy membership function

which can significantly increase stability and consistency of the multivariate fuzzy 
entropy [24]. We thus also expect increased performances of FuzzyEn with this new 
fuzzy membership function. By substituting (6) for the Heaviside function in (2), we 
here define the rFuzzyEn, and will then make further simulation tests on its stability and 
robustness to additive noise in following sections. Subsequently, the so-defined rFuzz-
yEn will be applied to short-term HRV and DPV analysis.

Simulation study

Simulation models

Two well-studied simulation models with inherently stochastic and chaotic natures, 
respectively, were employed in this study. The first one was the power law distribution 
noise—the 1/f α noise model, which corresponds to white noise when α = 0, pink noise 
when α = 1, and finally Brownian motion when α = 2. The pink noise (1/f  noise) has a 
long-range memory effect and is commonly applied to represent the heartbeat rhythms 
[27]. Another model was the Logistic attractor x(n+ 1) = µ× x(n)× (1− x(n)) with 
µ = 3.5 to represent a limit cycle (periodic series), and with µ = 4.0 to represent a chaotic 
regime. This model has also been widely applied to characterize the behaviour of physi-
ological systems [28].

Stability examination

The 1/f α noise models with α = 0, 1, and 2, were applied in this test, respectively. The 
Logistic attractors were not used here because the attractors usually show different regimes 
with different µ values even in very small data set, and thus, even traditional measures can 
well differentiate between each other.

We monitored the conventional SampEn, FuzzyEn and the rFuzzyEn as functions of 
data length N, which was set at 100–2,000 logarithmically in our simulation. All three 
1/f α noise models were produced independently for empirical 20 times for each value 
of N to eliminate random factors [29]. The standard deviation of the 20 realizations was 
used as a measure of stability.

Examination of the robustness against additive noise

The Logistic attractors with µ = 3.5 and 4.0, respectively, were applied in this test, since 
they are significantly different in their complexity levels, and can be distinguished from 
each other simply by all the three entropy measures. However, the intrinsic sequence 
structures will be contaminated by additive noise and the discrimination task will become 
relatively hard with the presence of noise.

(6)A(d, r) =

{

1, 0 ≤ d < r

e
− ln (2)

(

d−r
r

)2

, d ≥ r
,
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To investigate the robustness against additive noise of SampEn, FuzzyEn, and the 
rFuzzyEn, we monitored their performances with the percentage of the additive noise. 
A length N = 300 was applied in this test, since this is approximately the average data 
length for 5 min HRV/DPV series. The additive noise was modelled by independently 
and identically distributed random noise and its percentage was set from 10 to 60% with 
a step of 5%. Both Logistic attractors were performed empirical 20 times independently 
for each value of the noise percentage to eliminate random factors [29]. The entropy 
measure with better robustness against additive noise could distinguish the two Logistic 
attractors even with relatively large noise percentage.

Experimental study

Subjects

Thirty healthy volunteers (aged between 44 and 72, 13 males and 17 females) and 28 
patients with coronary artery stenosis (aged between 42 and 73, 11 males and 17 females, 
p = 0.43 and 0.80, respectively) participated in the experiment. Health status of all vol-
unteers was confirmed by questionnaires on their medical history and routine ECG and 
echocardiography examinations. Those who have undergone percutaneous coronary 
intervention or coronary artery bypass surgery were excluded prior to participation. All 
patients were confirmed by coronary angiography, and had at least one main coronary 
branch stenosed for over 50%. Routine ECG and echocardiography examinations were also 
implemented and no subject had frequent ectopic beats and left ventricular ejection frac-
tion less than 50%. The study obtained full approval from the Institutional Review Board 
of Shandong Provincial Qianfoshan Hospital, and informed consent was required for each 
subject before participation. Table 1 shows their basic characteristics.

Protocol

Measurements were undertaken in a quiet and temperature controlled (25 ± 3°C) room 
at Shandong Provincial Qianfoshan Hospital, Shandong University, by a Cardiovascular 
Function Detection device (CV FD-II) produced by Huiyironggong Tech. Co., Ltd., Jinan, 
China. Before the formal signal recording, each subject lay supine on a measurement 
bed for a 10-min rest to allow cardiovascular system stabilization. ECG electrodes were 
attached to the right wrist and the right and left ankles to acquire a standard limb lead-
II ECG. A photoelectric sensor was attached to the left forefinger tip to acquire fingertip 

Table 1  Basic characteristics of the participants

Data are expressed as number (male/female) or mean ± standard deviation (SD).

Variables Healthy volunteers Patients with coronary artery stenosis p

No. (m/f ) 30 (13/17) 28 (11/17) 0.80

Age (years) 57.0 ± 7.4 58.7 ± 8.4 0.43

Height (cm) 165.8 ± 7.9 165.9 ± 7.5 0.94

Weight (kg) 63.9 ± 10.5 67.5 ± 8.7 0.13

BMI (kg/m2) 23.2 ± 2.5 24.1 ± 2.4 0.23

SBP (mmHg) 117 ± 10 121 ± 8 0.13

DBP (mmHg) 76 ± 5 78 ± 9 0.30
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photoplethysmography (PPG) waves. Subjects were told to breathe regularly and gently 
during the measurement.

For each subject, the ECG and PPG signals were synchronously recorded at a sampling 
frequency of 1 kHz for 5 min. R-wave peaks of ECG signals were extracted by a template-
matching procedure [30]. The raw HRV series were constructed by consecutive R–R 
intervals. The systolic feet and dicrotic notches were detected from PPG by the first-order 
differential signals [31]. DPV series were constructed by intervals between the dicrotic 
notches and the following systolic feet. Anomalous intervals due to ectopic beats or poor 
signal quality were visually identified and removed in both the HRV and DPV series, 
simultaneously (no subject with more than 10% anomalous intervals was screened). Fig-
ure 1 represents the construction approach of RR and diastolic period (DP) intervals.

Time/frequency‑domain analysis

Standard deviation (SD) of the raw HRV or DPV series was applied as the time-domain feature. 
Prior to frequency-domain analyses, the raw HRV and DPV series were evenly resampled with 
a sampling frequency of 4 Hz by spline interpolation. Their corresponding power spectral den-
sity (psd) was finally performed by the Burg’s method with 16th order. For both HRV and DPV, 
the psd was integrated in two frequency bands—from 0.04 to 0.15 Hz to obtain the power of 
low-frequency (LF) band and from 0.15 to 0.4 Hz the power of high-frequency (HF) band.

Entropy analysis

We calculated the rFuzzyEn measure of HRV and DPV, respectively, in the two groups. 
For comparison purposes, the conventional SampEn and FuzzyEn analyses were also per-
formed. Note that in all computations of entropy, the raw HRV and DPV series without 
evenly resampling were used. The threshold value r is usually recommended to choose 
between 0.1 ×  sd and 0.25 ×  sd [32] (sd indicates the standard deviation of the under-
analysed series), and Costa chose 0.15 × sd in analysis of biological signals by multiscale 

Figure 1  Construction of RR and DP intervals from simultaneously recorded ECG and PPG signals. The upper 
waveform represents the ECG signal, with the R-wave peaks marked by dots. The bottom one shows PPG 
signal, with the dicrotic notches and systolic feet marked by triangles.
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entropy [33]. Here, the r value for all three entropy measures was set at 0.15 ×  sd. The 
embedding dimension m was set at 2 [20].

Statistical analysis

Normal distribution of the corresponding time-domain and nonlinear features of HRV or 
DPV was confirmed by the Kolmogorov–Smirnov test. Then the aforementioned indices 
were compared between healthy volunteers and patients with coronary artery stenosis by 
the student t test. Frequency-domain indices (LF and HF) in this study did not follow a 
normal distribution, which were thus compared between groups by the nonparametric 
Mann–Whitney U test. A statistical significance was accepted at p < 0.05. All statistical 
analyses were performed with SPSS (Ver. 20, IBM, USA).

Results
Simulation results

Stability

Figure 2 shows the SampEn, FuzzyEn, and rFuzzyEn as functions of data length N. In general, 
all three measures performed well when the length N > 1,000 points. For the 1/f 2 and 1/f  noise 
models, the standard deviations of SampEn and FuzzyEn were larger than those of rFuzzyEn. 
And for the 1/f 0 noise, larger standard deviations were observed in N < 1,000 for SampEn, 
and in N < 500 for FuzzyEn, indicated by the gradually enlarged error bars in Figure 2. The 
SampEn of 1/f 0 overlapped that of 1/f  when N was no more than 500, and the FuzzyEn of 1/f 0 

Figure 2  SampEn, FuzzyEn, and rFuzzyEn results of simulated 1/f α models with different data length. Gray 
bar indicates the lengths that cannot support good performance of SampEn and FuzzyEn, but can still for 
rFuzzyEn. The abscissa is in logarithmic scale for better visualization.
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overlapped that of 1/f  when N was around 200. Invalid values were found in the SampEn of 
1/f 0 once the data length dropped to less than 200. By contrast, the rFuzzyEn showed excellent 
performance not only for large data set, but for short series, its performance was still accept-
able (see the range marked by gray bar in Figure 2). Besides, the rFuzzyEn was still available to 
differentiate between the 1/f 0 and 1/f  models even if N reduced to as small as 100 data points.

Robustness against additive noise

Figure 3 shows the SampEn, FuzzyEn, and rFuzzyEn as functions of additive noise percent-
age. All three measures performed well when the percentage of additive noise equals to 10 
and 15%. SampEn of the Logistic attractors with µ = 4.0 overlapped that of µ = 3.5 when 
the noise percentage increased to 20%. The results showed a better performance with Fuzz-
yEn than with SampEn. But neither FuzzEn nor SampEn was capable of differentiating the 
Logistic attractors with µ = 4.0 from those with µ = 3.5, once the percentage of additive 
noise was greater than 35%. However, the rFuzzyEn showed very small standard deviations 
(see the range marked by gray bar in Figure 3). It could well differentiate between the two 
Logistic attractors even when the percentage of additive noise increased to 60%.

Experimental results
Table  2 shows the linear (time- and frequency- domain) and nonlinear indices of HRV, 
and the corresponding DPV results are shown in Table 3. Statistical analyses showed that 

Figure 3  SampEn, FuzzyEn, and rFuzzyEn results of simulated Logistic attractors with different percentage of 
additive noise. Gray bar indicates the percentage of the additive noise that cannot support good perfor-
mance of FuzzyEn, but can still for rFuzzyEn.
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all HRV indices, including the rFuzzyEn measure, did not have significant differences 
between patients with coronary artery stenosis and healthy volunteers (all p > 0.1). Neither 
the linear (SD, LF, HF) nor the nonlinear SampEn indices of DPV showed significant dif-
ference between the two groups (all p > 0.1). The FuzzyEn increased in patients with coro-
nary artery stenosis but the difference was less statistically significant (p = 0.05) compared 
with the healthy volunteers. However, results showed a statistically significant increase in 
the rFuzzyEn for patients with coronary artery stenosis (p < 0.01). To further illustrate the 
performance of rFuzzyEn in analysing the DPV, we show its Bland–Altman plot in Fig-
ure 4. The mean rFuzzyEn increased from 1.09 in healthy volunteers to 1.20 in patients 
with coronary artery stenosis.

Discussion
In this study, we developed a refined fuzzy entropy (rFuzzyEn) measure by substituting a 
piecewise fuzzy membership function for the Gaussian function in the traditional Fuzz-
yEn measure. Its stability and robustness against the additive noise were examined by two 
well-studied synthetic models—the 1/f α noise and Logistic attractors, in comparison with 
the SampEn and FuzzyEn measures. Simulation results indicated that the rFuzzyEn out-
performed the traditional SampEn and FuzzyEn measures in terms of both stability and 
robustness against additive noise, particularly with small data set. Results from the simu-
lation tests suggest that the rFuzzyEn is more suited for analysing short-term series than 
traditional SampEn and FuzzyEn measures.

Table 2  The time/frequency domain and entropy features of HRV

SD standard deviation, LF power of low-frequency band, HF power of high-frequency band, SampEn sample entropy, 
FuzzyEn fuzzy entropy, rFuzzyEn refined fuzzy entropy. Data are expressed as mean ± standard deviation (SD) or median 
[25% 75%].

Variables Healthy volunteers Patients with coronary artery stenosis p

SD (ms) 28.00 ± 12.91 25.81 ± 8.64 0.45

LF (ms2) 97.51 [66.71 185.33] 77.74 [50.93 127.13] 0.10

HF (ms2) 114.72 [52.76 169.30] 114.55 [51.64 170.06] 0.98

SampEn 1.92 ± 0.33 1.95 ± 0.35 0.79

FuzzyEn 1.49 ± 0.22 1.53 ± 0.20 0.44

rFuzzyEn 1.21 ± 0.14 1.25 ± 0.11 0.21

Table 3  The time/frequency domain and entropy features of DPV

SD standard deviation, LF power of low-frequency band, HF power of high-frequency band, SampEn sample entropy, 
FuzzyEn fuzzy entropy, rFuzzyEn refined fuzzy entropy. Data are expressed as mean ± standard deviation (SD) or median 
[25% 75%].

Variables Healthy volunteers Patients with coronary artery stenosis p

SD (ms) 29.86 ± 13.46 26.32 ± 8.94 0.25

LF (ms2) 121.04 [86.20 213.86] 91.09 [59.53 188.22] 0.14

HF (ms2) 86.42 [37.86 131.04] 53.87 [29.89 128.03] 0.19

SampEn 1.93 ± 0.44 2.08 ± 0.41 0.14

FuzzyEn 1.42 ± 0.27 1.54 ± 0.23 0.05

rFuzzyEn 1.09 ± 0.16 1.20 ± 0.13 <0.01
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The rFuzzyEn has subsequently been applied to analyse clinical short-term HRV 
and DPV series recorded from the patients with coronary artery stenosis and healthy 
volunteers. No significant difference was found between the two groups in time/fre-
quency-domain indices of both HRV and DPV, which again suggests that those linear 
time-invariant approaches are not suited for short-term physiological series analyses. In 
addition, experimental results also showed that none of the three measures (SampEn, 
FuzzyEn, and rFuzzyEn) could detect an effect of coronary artery stenosis on the HRV, 
which, however, differs from previous findings [2, 11]. Since Carney et al. reported that 
certain psychological conditions in patients with coronary artery stenosis, such as the 
major depression, had great influence on their HRV [34], the mentioned difference 
might be partly due to that we did not take those psychological conditions into consider-
ation. Data sets might be another factor, that accounts for this discrepancy. The current 
study focused on the short-term HRV series, which should be different from the long-
term HRV series analysed in the previous studies [11]. For the DPV analysis, however, 
even without significant difference being found between the two groups in SampEn, a 
mild increase of FuzzyEn and a more remarkable increase of rFuzzyEn were observed 
in patients with coronary artery stenosis. Since DPV contributes most to HRV physi-
ologically, whereas the beat-to-beat systolic intervals varies less so as to support a rela-
tively stable stroke volume, cardiac output, and steady-going blood supplies [13, 14], the 
increased FuzzyEn and rFuzzyEn of DPV might suggest abnormal beat-to-beat systolic 

Figure 4  The Bland–Altman plot of rFuzzyEn of DPV for all subjects in the two groups. The black solid line 
indicates the mean and the green dotted line indicates the upper and lower bounds of the mean ± 2 SD, 
respectively.



Page 11 of 13Ji et al. BioMed Eng OnLine  (2015) 14:64 

intervals fluctuations in patients with coronary artery stenosis which leads to irregular-
ity in the DPV series. The short-term DPV analysis may thus provide valuable informa-
tion in addition to HRV.

The Bland–Altman plot in Figure  4 further suggested that although the difference 
in rFuzzyEn was statistically significant, it was likely to be of minor clinical meaning 
because the difference was in fact very tiny (from 1.09 increased to 1.20). The sensitiv-
ity and specificity in discriminating the two groups by only rFuzzyEn would not be large 
enough to be accepted clinically. However, it should be promising to work as an input 
feature for specific classification task.

In addition, only one test among all the 19 statistical tests (Tables 1, 2, 3) showed sta-
tistically significant. This might happen by chance. We thus used the Bonferroni correc-
tion method to make further examination (considering all the DPV parameters as one 
family and the statistical level reduced to be 0.05 divided by 6, that is around 0.008) [35]. 
The rFuzzyEn of DPV in patients with coronary artery stenosis still showed a statistically 
significant increase (p = 0.006).

Moreover, according to both the simulation and experimental results, it still leaves 
room for improvement of rFuzzyEn. For example, although rFuzzyEn could distin-
guish the Logistic attractor with µ = 3.5 from that with µ = 4.0 (Figure 3), the differ-
ence between the two rFuzzyEn results was tiny. Recently, Li et al. have proved that the 
thresholding process in the calculation framework of traditional SampEn-based meas-
ures accounts most for the poor performances in short-term series analysis. They have 
developed a new measure—distribution entropy—by removing the thresholding process, 
and have shown its advantages in analysis of extremely small data set over the SampEn 
and FuzzyEn [36]. The distribution entropy has a potential in short-term HRV and DPV 
analysis. We will investigate its performance in our future studies.

Conclusions
A piecewise fuzzy membership function-based rFuzzyEn measure has been developed in 
this study. It showed improved stability and robustness against additive noise in the simu-
lation tests. Its performance was subsequently validated by clinical short-term HRV and 
DPV series. The experimental results further suggested that the patients with coronary 
artery stenosis exhibit a significantly elevation in the rFuzzyEn of short-term DPV series, 
whereas no statistically significant difference was found in the rFuzzyEn of HRV series. 
Improved performance in recognition of those patients through DPV analysis should also 
be expected. Studies on the non-invasive evaluation of coronary artery stenosis may ben-
efit from the above results.
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