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Many neurodegenerative diseases have been associated with defects in primary cilia,
which are cellular organelles involved in diverse cellular processes and homeostasis.
Several types of glial cells in both the central and peripheral nervous systems not
only support the development and function of neurons but also play significant
roles in the mechanisms of neurological disease. Nevertheless, most studies have
focused on investigating the role of primary cilia in neurons. Accordingly, the interest
of recent studies has expanded to elucidate the role of primary cilia in glial cells.
Correspondingly, several reports have added to the growing evidence that most glial
cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases.
In this review, we aimed to understand the regulatory mechanisms of cilia formation
and the disease-related functions of cilia, which are common or specific to each glial
cell. Moreover, we have paid close attention to the signal transduction and pathological
mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally,
we expect that this field of research will clarify the mechanisms involved in the formation
and function of glial cilia to provide novel insights and ideas for the treatment of
neurodegenerative diseases in the future.
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INTRODUCTION

Since the identification of primary cilium, a cellular organelle composed of microtubules, in a
variety of cells, including rabbit kidney tubular epithelial cells, human pancreatic ductal epithelial
cells, seminal vesicle epithelial cells, uterine fundus epithelial cells, and thyroid gland epithelial
cells, about a century ago (Bloodgood, 2009), extensive research continues to elucidate its functional
significance. Based on previous findings, primary cilia are believed to serve as major hubs of various
signaling pathways such as Wnt, Shh, Notch, PDGF, and mTOR in most cells (Wheway et al., 2018).
Given that these signal transductions are involved in pivotal developmental processes, including

Frontiers in Neuroscience | www.frontiersin.org 1 September 2021 | Volume 15 | Article 736888

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.736888
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.736888
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.736888&domain=pdf&date_stamp=2021-09-30
https://www.frontiersin.org/articles/10.3389/fnins.2021.736888/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-736888 September 25, 2021 Time: 16:50 # 2

Ki et al. Role of Glial Primary Cilia

cell proliferation, migration, and differentiation (Wong et al.,
2001; Basson, 2012; Duronio and Xiong, 2013), impairment of
primary cilia is closely associated with many diseases (Wheway
et al., 2018). In particular, several neurodevelopmental diseases,
such as Joubert syndrome, Bardet–Biedl syndrome, and Meckel–
Gruber syndrome are representative ciliopathies (Rooryck et al.,
2007; Giordano et al., 2009; Hildebrandt et al., 2009).

The tight link between the primary cilia and nervous
system-related diseases has prompted researchers to investigate
the role of cilia in neurons. It is noteworthy that several
previous reports have suggested that primary cilia of neurons
are important for Shh signaling-mediated cell proliferation in
postnatal development of the hippocampus and the cerebellum
(Breunig et al., 2008; Han et al., 2008; Spassky et al., 2008).
However, most studies have been limited to adult neuronal cilia
in the central nervous system (CNS) (Kirschen and Xiong, 2017;
Park S.M. et al., 2019). Indeed, it has long been observed that
primary cilia are present not only in mature neurons but also
in several kinds of cells, including neural crest cells, neural
progenitor cells, and glial cells (Etchevers et al., 2019; Park S.M.
et al., 2019; Yusifov et al., 2021). Moreover, primary cilia are
organelles that undergo assembly and disassembly depending
on the type of cell or developmental processes. Therefore,
intensive studies on non-neuronal cilia have been emphasized
to comprehensively understand the function of primary cilia in
the nervous system.

Glial cells are the main components of the nervous system;
they are roughly equal to the number of neurons and play
important functional and structural roles in supporting neurons
during development and regeneration. There are several types of
glial cells both in the CNS and the peripheral nervous system
(PNS): astrocytes, oligodendrocytes (OLGs), and microglial cells
in the CNS and Schwann cells, satellite glial cells, enteric glial
cells, and olfactory ensheathing cells in the PNS (Compston
et al., 1997; Jessen and Mirsky, 2005; Domingues et al., 2016).
Indeed, the presence of primary cilia has already been observed
in astrocytes and OLGs of the CNS and in Schwann cells of the
PNS, although studies on the role of glia cilia are in elementary
stages (Bishop et al., 2007; Kasahara et al., 2014; Falcon-Urrutia
et al., 2015).

Several neuropathies with defective axonal regeneration result
from glial cell dysfunction (Lehmann and Hoke, 2010; Gritsch
et al., 2014; Li et al., 2019), and glial impairment due to
nerve injury leads to inflammatory neuropathy, which affects
myelination (Willison and Yuki, 2002). Many studies have
attempted to treat demyelination-associated diseases in a variety
of ways, including immune suppression using steroids (Rahmlow
and Kantarci, 2013; Klein et al., 2019; Gwathmey and Grogan,
2020); however, there have been no targeted therapies developed
till date. Recent studies have reported that OLGs progenitor
cells (OPCs) derived from neural stem cells are effective in
regenerating damaged axons through myelination activation
(Murphy and Franklin, 2017) and that astrocytes derived from
embryonic stem cells are effective in protecting neurons from
neurotoxicity and death (Barbeito, 2018). This suggests that
therapies focusing on the function of glial cells could be an
alternative treatment for neuropathy. Accordingly, in this review,

we will address some recent findings regarding the importance
of targeting glial cells, especially primary cilia of glia, for the
treatment of developmental and degenerative diseases of the
nervous system (Table 1).

PRIMARY CILIUM IN ASTROCYTES:
A KEY MODULATOR OF NEURONAL
SIGNALING IN THE CENTRAL NERVOUS
SYSTEM

Astrocytes, the most abundant glial cells in the CNS, are
important for the formation and maintenance of the blood-
brain barrier to secrete a variety of neurotrophic factors during
synaptogenesis, neuronal differentiation, and neuronal survival
(Carson et al., 2006; Fakhoury, 2018). In neurodegenerative
diseases, astrocytes elevate the production of cytotoxic molecules,
including reactive oxygen species (ROS), and inflammatory
mediators, including COX2, IL-1β, TNF-α, and IL-6 (Akiyama
et al., 2000; McGeer and McGeer, 2002). Moreover, in
inflammatory conditions, astrocytes affect surrounding cells in
response to pro-inflammatory cytokines/chemokines and nitric
oxide secreted by immune cells present in the CNS (Rothhammer
and Quintana, 2015; Sofroniew, 2015). For example, the
pro-inflammatory factors, whose production is increased by
astrocytes, induce apoptosis of neighboring neurons (Simi et al.,
2007; McCoy and Tansey, 2008), and this leads to several
CNS neurodegenerative diseases, such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), and Huntington’s disease (HD)
(Habib et al., 2020).

Observations of primary cilia in astrocytes (Bishop et al.,
2007; Danilov et al., 2009; Yoshimura et al., 2011; Kasahara
et al., 2014) and the identification of Shh signaling molecules
such as smoothened (SMO) and patched 1 receptor (PTCH1)
in the cilia of astrocytes (Yoshimura et al., 2011) have led to an
understanding of the role of astrocyte cilia in CNS development
and diseases (Figure 1). Several previous studies have suggested
that astrocyte cilia may play an important role in Shh signaling to
control cellular biological processes in inflammatory conditions
(Amankulor et al., 2009; Jin et al., 2015; Allahyari et al., 2019);
however, only little direct evidence related to this finding has
been reported. In order to explain recent insights related to the
role of astrocyte cilia in inflammatory CNS diseases, we cover
several experimental results that suggest a direct involvement
of astrocyte cilia in some representative neurodegenerative
diseases in this review.

Alzheimer’s Disease
Alzheimer’s disease is clinically characterized by impaired
memory and cognitive function due to a gradual loss of neurons.
The pathological hallmark of AD is the extracellular plaque
deposition of insoluble amyloid-beta (Aβ) peptide, a flame-
shaped neurofibrillary tangle (NFT) of the microtubule-binding
protein TAU, which induces neuroinflammation in the brain
(Fakhoury, 2018). Recent findings have suggested that astrocytes
play a role in promoting neurodegenerative processes in AD by
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TABLE 1 | Role of glial primary cilia in the pathogenesis of neurodegenerative diseases.

Glial cells Diseases Key molecules Role in primary cilia References

Astrocyte Alzheimer’s disease (AD) GPR37L1, PTCH1 • Accumulated Aβ shortens
primary cilia and inhibits cilia
assembly
• Impaired primary cilia
suppress Shh activation

Vorobyeva and Saunders,
2018; La Sala et al., 2020

Parkinson’s disease (PD) LRRK2, RAB10, CP110,
RILPL1

• Mutated LRRK2 inhibits
primary cilia assembly by
interfering with a removal of
CP110 from the ciliary base
• Mutated LRRK2 induces an
interaction of RILPL1 and
RAB10 and disrupts Shh
signaling by inhibiting cilia
assembly

Steger et al., 2017; Dhekne
et al., 2018; Sobu et al., 2021

Huntington’s disease (HD) HTT, HAP1, PCM1 • Mutated HTT induces
accumulation of PCM1 in the
ciliary base, leading to
abnormal elongation of cilia
• The abnormally elongated
cilia activates Wnt signaling

Keryer et al., 2011; Lancaster
et al., 2011

Oligodendrocyte
progenitor cell
(OPC)/Oligodendrocyte
(OLG)

Multiple sclerosis SMO, GLI1 • Primary cilia-mediated Shh
activation increases expression
of Gli1 and Smo, which are
associated with remyelination

Ferent et al., 2013; Ortega
et al., 2013

Leukodystrophy TUBB4A • Mutated TUBB4A inhibits
cilia assembly and Shh signal
transduction by affecting
microtubule dynamics

Simons et al., 2013; Curiel
et al., 2017

Schwann cell Amyotrophic Lateral Sclerosis
(ALS)

SOD1, ACIII, ACTIN, WNT3A,
β-catenin

• Mutated SOD1 reduces
primary cilia in neurons and
Schwann cells with increased
Actin and Wnt genes

Ma et al., 2011; Tawk et al.,
2011; de Oliveira et al., 2013;
Yu et al., 2013; Lee, 2020

Charcot Marie Tooth disease
(CMT)

PMP22, MPZ, EGR2, ACIII,
cAMP, SMO, PTCH1, WNT1,
WNT3A, WNT5A, β-catenin,
YAP/TAZ

• Down-regulation of cAMP in
neuronal primary cilia can
cause demyelination
• In addition to cAMP
signaling factors, key molecules
of Shh, Wnt, and Hippo
signaling are present in
Schwann cell cilia
• These signaling pathways
are involved in ciliogenesis and
(re)myelination after nerve injury

LeBlanc et al., 1992; Hattori
et al., 2003; Morgello et al.,
2004; Vandevelde and
Zurbriggen, 2005; Wang et al.,
2011; Yoshimura and Takeda,
2012; G et al., 2014; Lempp
et al., 2014; Qiu et al., 2016

Human Immunodeficiency
Virus-associated distal sensory
polyneuropathy (HIV-SN)

Canine distemper virus
demyelinating leukoencephalitis
(CDV-DL)

Diabetic neuropathy IP3, IP3R, P2Y2, P2RY2, • Ca2+ signaling regulators
are associated with ciliogenesis
of Schwann cells
• Diabetic stress inhibits
Ca2+ signaling and leads to
dysfunction of Schwann cells

Hatayama et al., 2011; Wann
et al., 2012; Weisman et al.,
2012; Ino et al., 2015;
Goncalves et al., 2018

Lewy body pathology PSA, NCAM, α–synuclein • PSA-NCAM complex exists
in glia cilia and its decrease is
associated with ciliary defects
• Decrease of the
PSA-NCAM complex causes
aggregation of α–synuclein,
leading to Lewy body pathology

Han et al., 2008; Iqbal et al.,
2020; Matsumoto et al., 2019;
Papastefanaki et al., 2007;
Sorrentino et al., 2019
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FIGURE 1 | Signaling through the primary cilia in astrocytes is associated with neurodegenerative diseases. (A) Diagram showing the primary cilia of astrocytes
associated with diseases occurring in the cerebral cortex. (B) Neuroinflammation affects Shh signal transduction through the primary cilia in astrocytes. (C) Examples
of neurodegenerative diseases involved in impairments of primary cilia in astrocytes. Elevated Aβ attenuates Shh signaling in astrocyte cilia, leading to Alzheimer’s
disease. Defects in LRRK2 cause Parkinson’s disease by inhibiting astrocyte cilia formation by preventing the removal of CP110 from the ciliary base or by inducing a
complex of RILPL1 and RAB10. Huntington’s disease results from mutated HTT-induced PCM1 accumulation at the ciliary base of astrocytes.

increasing neurotoxicity via secretion of inflammatory cytokines
under activation of Aβ (De Strooper and Karran, 2016; Liao
et al., 2016; Keren-Shaul et al., 2017). Notably, increased Aβ

deposition affects the assembly and length control of primary
cilia in astrocytes, thereby inhibiting the activation of the Shh
signaling pathway and eventually disrupting neuronal survival
(Vorobyeva and Saunders, 2018).

The G protein-coupled receptor 37-like 1 (GPR37L1)
is expressed in cerebellar Bergmann glia (BG) astrocytes
specifically, and it is involved in the proliferation and
differentiation of cerebellar granule neurons and the maturation
of Purkinje neurons (Valdenaire et al., 1998; Meyer et al., 2013).
Previous studies have reported that murine Gpr37l1 physically
interacts with Ptch1 in the periciliary membrane of BG cells
(Marazziti et al., 2013). Moreover, a recent study found that
GPR37L1 binds to PTCH1 to regulate Shh signal transduction by
inducing the ciliary translocation of SMO in cerebellar astrocytes
(La Sala et al., 2020; Figure 1C and Table 1).

In mice AD models, particularly, serotonin receptors of type
6 (5-HT6) regulates neuronal cilia length, morphology, and
composition that are related to cognition (Brodsky et al., 2017;
Hu et al., 2017). 5-HT6 is also expressed in astrocytes and
localized in the primary cilia (Hirst et al., 1997; Jiang et al.,
2019; Barbeito et al., 2021). The binding of serotonin to 5-
HT6 activates the Shh pathway by stimulating GPCR-dependent
cAMP signaling (Jiang et al., 2019).

Astrocytes from mice with nervous system injury exhibited
a disturbance of Shh signaling in the vicinity of the lesion
site in a study (Allahyari et al., 2019). Intriguingly, activation
of Shh signaling also affects the proliferation of reactive
astrocytes under chronic injury conditions (Sirko et al., 2013).
Additionally, activated Shh signaling inhibits inflammation by
limiting leukocyte invasion under injury conditions (Allahyari
et al., 2019). It is notable that astrocytes responding to Shh
signals affect not only themselves but also neurons as they reduce
the expression of GFAP in neurons to promote neuroprotection
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(Sirko et al., 2013; Ugbode et al., 2017). Furthermore, Shh
signaling activated in neurons acts as a physiological cue for
astrocytes (Amankulor et al., 2009; Farmer et al., 2016). Thus,
these findings suggest the importance of Shh signal transduction
in communication between neurons and astrocytes in the CNS,
particularly in injury-induced neurotoxic inflammatory states.
Taken together, these studies suggest that primary cilia in
astrocytes are pivotal in regulating Shh signaling to facilitate
proliferation and maturation of neural stem and progenitor cells
to repair the damaged CNS, including AD.

Parkinson’s Disease
Parkinson’s disease is a neurodegenerative disease characterized
by the degeneration of ventral midbrain dopaminergic (DA)
neurons and the accumulation of α-synuclein-positive
cytoplasmic inclusions in neurons (Dauer and Przedborski,
2003; Surmeier, 2018). Although PD has been largely regarded
as a DA neuronal disease, recent studies have indicated the
involvement of astrocytes; in particular, some PD-related genes
appear to play important roles in several astrocyte functions, such
as the control of inflammation, autophagy, calcium signaling,
and neuroprotection (Hernandez et al., 2016; Booth et al., 2017).
For instance, mutations in leucine-rich repeat kinase 2 (LRRK2),
the most frequent causative gene identified in PD (Zimprich
et al., 2004; Trinh et al., 2014), result in dysfunction of astrocytes
in the clearance of α-synuclein, thereby decreasing the number
of DA neurons (Greggio et al., 2006). LRRK2 is a multifunctional
protein comprising several domains at its C-terminus, including
a leucine-rich domain (LRR), a GTPase domain, the carboxy-
terminal region of the Ras domain, a kinase domain, and a WD40
domain (Zimprich et al., 2004; Greggio and Cookson, 2009).
LRRK2 is constitutively expressed in most of cells in the nervous
system, including neurons, astrocytes, microglia, and OLGs
(Miklossy et al., 2006). However, most LRRK2-related studies on
PD pathogenesis have been limited in neurons. Loss of LRRK2
in cortical neurons causes mitochondrial dysfunction due to
decreased Ca2+ extrusion of Na+/Ca2+/Li+ exchanger (NCLX)
efflux (Ludtmann et al., 2019) and reduction in glutamatergic
transmission and synaptic protein expression (Beccano-Kelly
et al., 2014). In addition, in PD, LRRK2 mutations induce cell
death by activating kinase activity (Greggio et al., 2006) or
microtubule-associated neurotoxicity and neurodegeneration
by oligomerizing LRRK2 (Kett et al., 2012; Dhekne et al., 2018;
Watanabe et al., 2020).

Based on the function of LRRK in controlling microtubule
dynamics through direct interaction with microtubules
(Gillardon, 2009; Kett et al., 2012), a potential role for LRRK2
in ciliary biogenesis has been suggested. Several studies have
reported the key roles of LRRK2 in ciliogenesis: LRRK2 is
involved in the removal of CP110 and the recruitment of
TTBK2 at the mother centriole (the base of cilium) (Sobu et al.,
2021). It is also involved in the phosphorylation of RAB10 on
binding to RILPL1 (Steger et al., 2017; Dhekne et al., 2018;
Figure 1C and Table 1). In addition, the data that LRRK2
interacts with microtubule components, such as TUBB, and
affects microtubule acetylation (Law et al., 2014) suggest that
LRRK2 may be involved in axonemal tubulin acetylation for

cilia assembly. Thus, these previous findings, including that
inhibition of Shh leads to neuronal damage by interfering
with neuroprotection against neurotoxicity (Patel et al., 2017),
collectively suggest that mechanisms regulating primary cilia
generation in astrocytes may be a target for the treatment of
neurodegenerative diseases such as PD.

Huntington’s Disease
Huntington’s disease, the most common autosomal dominant
neurodegenerative disease, presents with pathological features
such as neuronal dysfunction associated with excessive
movement and cognitive impairment. It is well known that
CAG triplet repeat expansion, encoding polyglutamine, within
huntingtin (HTT) leads to the production of mutant HTT
(mHTT) fragments, which is a major cause of HD (Finkbeiner,
2011). Previous study findings, including that mHTT is
specifically expressed in astrocytes in a mouse model of HD
(Bradford et al., 2009), have suggested that astrocytes are
critically involved in the pathological mechanism of HD
(Diaz-Castro et al., 2019; Gray, 2019). Remarkably, a recent
study reported that a reduction of mHTT in astrocytes in an
HD mouse model resulted in recovery of neuron functions,
including neuroprotection (Wood et al., 2019). However, the
molecular mechanisms underlying the pathology of HD in
astrocytes remain poorly understood. The interaction of HTT
with microtubules regulates microtubule-dependent transport
for cilia formation by binding to huntingtin-associated protein
1 (HAP1) and pericentriolar material 1 (PCM1) proteins
(Keryer et al., 2011; Table 1). Accordingly, mHTT induces the
accumulation of PCM1 around the centrosomes, leading to the
formation of abnormally long cilia that might be involved in
inhibiting neuroprotection (Keryer et al., 2011; Figure 1C).

Previous studies have shown that HAP1 interacts with Abelson
helper integration site 1, which plays a role in primary cilia-
mediated Wnt signal transduction (Sheng et al., 2008; Lancaster
et al., 2011), and that mHTT induces the accumulation of
cytoplasmic β-catenin (Godin et al., 2010; Ghatak and Raha,
2018). In addition, in the process of ciliogenesis, mHTT affects
membrane trafficking by interfering with the activity of small
GTPases, such as RAB8 and RAB11 (Li et al., 2009, 2010; Knodler
et al., 2010). Taken together, these data suggest that HTT may be
essential for neuroprotection-related Wnt signaling by regulating
primary cilia assembly through activation of RAB8 and RAB11 in
astrocytes, and they also suggest that abnormalities of astrocyte
cilia may be closely associated with HD pathogenesis.

Potential Role of Astrocyte Cilia in NF-κB
Signaling
The role of primary cilia in astrocytes, which are glial
cells involved in various processes such as neuronal support,
homeostasis maintenance, and neuronal transmission, remains
unclear in neurodegenerative diseases. However, the findings
that astrocytes have primary cilia and multiple neurological
disease mechanisms are associated with ciliary functions have
generated immense interest in the role of astrocyte cilia.
Several inflammation-related signaling pathways, including the
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Shh, Wnt, and NF-κB signaling pathways, are controlled by
primary cilia (Wann and Knight, 2012; Baek et al., 2017).
Thus, previous studies have reported an involvement of primary
cilia in many inflammatory diseases such as obesity, polycystic
kidney disease, and osteoarthritis (Song et al., 2017; Ritter
et al., 2018; Sheffield et al., 2018). Although the role of primary
cilia in inflammatory signaling-related neurological diseases
has not been much investigated, it has been reported that
the induction of inflammation by lipopolysaccharide treatment
shortens the length of primary cilia in hippocampal neurons
(Baek et al., 2017).

Persistent activation of NF-κB, which is considered a master
regulator of inflammation (Hayden and Ghosh, 2012), is
associated with several neurodegenerative diseases including
AD, PD, and ALS (Ju Hwang et al., 2019; Singh et al.,
2020; Kallstig et al., 2021). Based on the important role of
astrocytes in the regulation of neuroinflammation (Colombo and
Farina, 2016), studies on the mechanism of NF-κB signaling
regulation in astrocytes have gained interest. Previous studies
have revealed that inactivation of NF-κB in astrocytes reduces
the expression of chemokines in mice with spinal cord injury
(Brambilla et al., 2005) and decreases demyelination in mice with
vascular dementia (Saggu et al., 2016). These findings suggest the
importance of the inhibitory regulation of NF-κB signaling in
astrocytes to prevent neurodegenerative diseases.

Notably, in a mouse model, activation of NF-κB signaling
specific for astrocytes not only induced the secretion of several
chemokines but also impaired ependymal ciliary formation
(Lattke et al., 2012). Further studies have revealed that primary
cilia of fibroblasts and chondrocytes in response to inflammation
are involved in NF-κB signaling through IKK activity (Wann
and Knight, 2012; Wann et al., 2014). However, direct evidence
for the effect of NF-κB signaling regulation on ciliary formation
in astrocytes is lacking. Nevertheless, previous findings suggest
the importance of primary cilia of astrocytes in regulating
NF-κB signaling to prevent or treat inflammation-associated
neurodegenerative diseases.

PRIMARY CILIUM IN
OLIGODENDROCYTES: A KEY
MEDIATOR FOR MYELINATION IN THE
CENTRAL NERVOUS SYSTEM

OLGs differentiated from OPCs are involved in CNS myelination,
a process that wraps around nerve axons by producing multiple
layers of myelin that extend from the cell membrane (Nave,
2010; Stadelmann et al., 2019). These cells are susceptible to
cytotoxicity/excitotoxicity, and defects in OLGs result in several
neurological diseases, including AD, multiple sclerosis (MS),
and schizophrenia (Kuhn et al., 2019). Impairment of the
OLG differentiation process is associated with aging and the
pathogenesis of MS (Tiane et al., 2019). The role of primary cilia
in the pathological mechanisms of demyelinating diseases has
not been investigated much, but recent studies have reported
that major ciliary molecules, such as kinesin family member

3A (KIF3A) and intraflagellar transport 81, and Shh signaling
components, such as SMO and PTCH1, are expressed in mouse
cortical OPCs (Cahoy et al., 2008; Zhang et al., 2014; Figure 2A).
It was further found that primary cilia of OPCs were disassembled
during differentiation into OLGs (Falcon-Urrutia et al., 2015).
Notably, in a mouse model, depletion of KIF3A in OPCs
inhibited OLG proliferation and differentiation by affecting cilia-
dependent Shh signaling and subsequently induced motor defects
due to a decrease in myelinated axons (Cullen et al., 2021).
Interestingly, the abnormal length of primary cilia in OPCs led
to impairment of OLG differentiation (Dugas et al., 2010; Hudish
et al., 2016). Therefore, control of ciliary biogenesis, including
assembly and disassembly, during OLG differentiation could be
a potential target for the treatment of demyelinating disorders.

Multiple Sclerosis
Multiple sclerosis is a chronic inflammation-induced
demyelinating disease that results in progressive neurological
impairment in the CNS. As the CNS is damaged, the OPCs in
the injured regions differentiate into OLGs. If this mechanism is
disturbed, less OLGs are produced, resulting in MS (Dulamea,
2017; Kuhn et al., 2019). Hence, previous studies have suggested
that the control of remyelination by differentiated OLGs during
neuronal protection/regeneration is pivotal in the treatment of
MS (Stangel et al., 2017; Baldassari et al., 2019). Accordingly,
several therapeutic candidate targets, which are mainly involved
in the development or myelination of OLGs via Shh, Wnt, and
LINGO1 signaling, have been proposed (Fancy et al., 2009; Cole
et al., 2017; Ineichen et al., 2017).

In particular, attention has been paid to Shh signal
transduction since it is a key trigger for regulating the
differentiation and remyelination by OLGs (Thomas et al.,
2014; Traiffort et al., 2016; Sanchez and Armstrong, 2018). In
the process of remyelination, the expression of Shh signaling-
associated molecules, including SMO and GLI1, is increased, and
Shh treatment induces the generation of OPCs and OLGs (Ferent
et al., 2013; Table 1). Furthermore, it has been demonstrated that
treatment with Shh at injury sites increased axonal myelination
by inducing OPC recruitment into the damaged area (Thomas
et al., 2014). It is notable that in a chronically demyelinated
corpus callosum, a subpopulation of neural stem cells responding
to Shh is able to generate OPCs and, thus, induce remyelination
(Sanchez et al., 2018). However, the molecular mechanisms
involved in OPC development and OLG remyelination by Shh
signaling remain elusive. Thus, further studies to elucidate the
principal molecular axes may accelerate the development of
potential therapies for MS. Based on the requirement of primary
cilia for Shh signal transduction essential for tissue development
and homeostasis (Briscoe and Therond, 2013; Anvarian et al.,
2019), we assume that primary cilia of OPCs are likely to play
a key role during differentiation into OLGs (Figure 2B).

Leukodystrophies
Leukodystrophies, which refer to disorders with wasting
(dystrophy) and white matter (leuko) in the brain, are
heterogeneous neurodegenerative diseases that primarily affect
myelination in the CNS (Vanderver et al., 2015). Defects in
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FIGURE 2 | Shh signaling through the primary cilia in OPCs is essential for the development of oligodendrocytes. (A) Diagram showing the primary cilia of
oligodendrocyte progenitor cells (OPCs) associated with functions in the lateral ventricles. (B) Shh signaling is activated by binding of the Shh ligand to the Ptch1
receptor, leading to the release of SMO from Ptch1 and its translocation into the primary ciliary axoneme. GliA, the activator form of Gli, then induces transcription of
Shh target genes, which are involved in differentiation of OPCs to oligodendrocytes (OLGs) and in (re)myelination of OLGs.

the development and myelination of OLGs are closely related
to the pathogenesis of leukodystrophies (Raymond, 2017).
A recent study that performed high-content screening using
small molecules with mouse samples suggested that the Shh
signaling pathway may be a potential therapeutic target for
leukodystrophies (Atzmon et al., 2018). The mechanism by
which the compounds work is probably associated with the Shh-
dependent myelination of OLGs. In addition, there is a possibility
that primary cilia of OLGs are involved in Shh signaling for the
regulation of myelination (Figure 2B).

The identification of mutations in tubulin beta class IVA
(TUBB4A) in hypomyelination with atrophy of the basal ganglia
and cerebellum, a type of leukodystrophy, prompted us to
elucidate the role of TUBB4A in OLGs (van der Knaap et al.,
2002). Recent studies using cell type-specific RNA-sequencing
analyses have shown that TUBB4A is highly expressed in OLGs
compared to that in neurons, astrocytes, and microglia in the
CNS (Zhang et al., 2014). Corresponding to the involvement

of TUBB4A, an isoform of β-tubulin, in microtubule assembly
(Simons et al., 2013), mutations in TUBB4A lead to disruption
of microtubule stability and polymerization in OLGs (Curiel
et al., 2017; Table 1). In addition, mice with mutations
in TUBB4A develop severe perturbation of myelin due to
microtubule abnormalities in OLGs, resulting hypomyelination
and demyelination (Duncan et al., 2017). Although the essential
roles of microtubules in various cellular functions, including
the development of OLGs, are well known (Lunn et al., 1997;
Song et al., 2001; Zuchero et al., 2015), the TUBB4A-mediated
mechanism of myelination remains unclear. Given the role of
TUBB4A in microtubule assembly (Tischfield et al., 2011; Simons
et al., 2013; Duncan et al., 2017), however, it is possible to
speculate that TUBB4A may be involved in the assembly of
primary cilia in OLGs. Indeed, other tubulin proteins, such
as TUBB4 and TUBB4B act as key regulators by interacting
with KIF11 in cilia assembly (van Dam et al., 2019; Janke and
Magiera, 2020; Zalenski et al., 2020). Taken together, in the
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absence of treatments for demyelinating diseases in the CNS,
studies investigating the role of primary cilia in microtubule-
associated myelination processes will help better understand the
disease mechanisms.

PRIMARY CILIUM IN SCHWANN CELLS:
A KEY SIGNALING MODULATOR IN THE
PERIPHERAL NERVOUS SYSTEM

In the PNS, Schwann cells are counterparts of OLGs in the CNS.
There are two types of Schwann cells, myelinating and non-
myelinating, both of which interact with axons to regulate the
function of surrounding cells, including neurons and muscle
cells (Campana, 2007; Barton et al., 2017; Boerboom et al.,
2017). While myelinating Schwann cells induce myelination
progression in response to several signaling pathways, such as
the PI3K/Akt/mTOR, Wnt, and Nrg1/ErbB signaling (Norrmen
and Suter, 2013; Boerboom et al., 2017; Torii et al., 2019),
non-myelinating Schwann cells primarily respond to ErbB
signaling to regulate axonal, muscle, and neuromuscular junction
development (Carroll et al., 1997; Garratt et al., 2000; Newbern
and Birchmeier, 2010). Damage to Schwann cells thus leads
to either demyelinating diseases or neurotrophic diseases along
with axonal defects (Boerboom et al., 2017; Park H.T. et al.,
2019). In response to nerve injury, Schwann cells participate
in nerve regeneration by activation of their features for de-
differentiation and reprogramming (Chen et al., 2007; Martini
et al., 2008; Jessen and Mirsky, 2016). Moreover, during the repair
process of injured nerves, an increase in cytokines induces an
immune response through the activation of C-Jun in Schwann
cells (Arthur-Farraj et al., 2012).

Since the first identification of primary cilia in the autonomic
nerves and ganglia of adult rats in the PNS (Grillo and Palay,
1963), only a few studies on the role of glia cilia have been
reported. Although Schwann cells have emerged as a pivotal
therapeutic target for PNS disorders (Lehmann and Hoke,
2010; Barton et al., 2017), direct evidence for the role of
cilia in Schwann cells in disease-related mechanisms is very
limited. The Shh signal pathway is involved in proliferation
and myelination during the development of Schwann cells,
and more importantly, it is activated to promote nerve
regeneration after injury (Hashimoto et al., 2008; Yoshimura
and Takeda, 2012). Hence, the findings of studies focusing
on the role of primary cilia of Schwann cells in myelination,
particularly on their role in related signaling such as Shh,
are noteworthy (Yoshimura and Takeda, 2012; Figure 3).
In the following sections, we discuss the involvement of
Schwann cell cilia in the regulation of nerve regeneration and
mechanisms of neurodegenerative diseases and highlight the
importance of investigating the functions of Schwann cell cilia
in PNS disorders.

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS), characterized by progressive
muscle weakness and ultimately fatal loss of muscle function,
is a well-known peripheral neurodegenerative disease. It is

alternatively called motor neuron disease and is generally
diagnosed using nerve conduction studies, electromyography,
and muscle function evaluation (Daube, 2000). Several causative
genes, such as ALS2, DCTN1, VAPB, ANG, TDP-43, FUS,
and SOD1, have been identified from patients with ALS.
Mutations in the representative gene SOD1 are involved in
demyelination, motor neuronal degeneration, and decreased
regeneration (McCord, 1994; Andrus et al., 1998; Beers et al.,
2006; Yamanaka et al., 2008; Lobsiger et al., 2009). Although
the role of SOD1 in motor neurons has been relatively actively
studied, little research has been conducted on the role of SOD1
in glial cells. Indeed, overexpression of SOD1 induces oxidative
stress and lipid peroxidation in both motor neurons and glial
cells, including Schwann cells (Rosen, 1993; Pasinelli and Brown,
2006).

Previously, it was reported that mice with non-myelinating
Schwann cells expressing a point mutation form of SOD1
(SOD1 G93A) showed severe motor neuronal degeneration,
reduced neuronal regeneration, and accelerated ALS disease
pathologies (Lobsiger et al., 2009). Although the relationship
between primary cilia in Schwann cells and ALS pathological
mechanisms has not yet been elucidated, studies using a mouse
model harboring an SOD1 (G93A) mutation have suggested
the involvement of primary cilia in motor neuronal functions
(Ma et al., 2011; Osking et al., 2019). Notably, mutated SOD1
(G93A) increases the expression of ACTIN cytoskeleton genes
(Perrin et al., 2005; de Oliveira et al., 2013). In addition,
SOD1 (G93A) mutant mice showed increased expression of
several Wnt signaling-related genes, including both canonical
and non-canonical Wnts in the spinal cord (Yu et al., 2013;
Table 1). ACTIN-mediated cellular dynamics is important not
only for neuronal function but also for ciliary formation and
function (Smith et al., 2020), and Wnt signaling is important
for initiating myelination (Tawk et al., 2011) and controlling
ciliary formation and function (Lee, 2020). Accordingly, studies
determining whether primary cilia in Schwann cells are
involved in the pathological mechanism of ALS through the
regulation of Wnt signaling or ACTIN-mediated cellular function
would be of interest.

Charcot Marie Tooth Disease
Charcot Marie Tooth disease (CMT) is a common hereditary
neurological disorder of the PNS, in which the muscles of the
hands and feet are gradually lost, making movement difficult
(Pareyson and Marchesi, 2009). Among the subtypes of CMT,
type 1 is mainly caused by impairment of Schwann cells that
play a role in myelination, and the mutations identified in CMT
type 1 are found in genes coding for myelination regulators such
as PMP22, MPZ, and EGR2 (Hattori et al., 2003). These myelin
proteins are expressed in myelinating Schwann cells and are
involved in responding to signals that control myelination. For
instance, in the process of myelination, MPZ in Schwann cells is
essential for responding to cAMP signals derived from neuronal
axons (LeBlanc et al., 1992). cAMP signaling plays a critical
role in the process of Schwann cell development, including
proliferation and myelination (Morgan et al., 1991). Of note,
primary cilia are involved in cAMP signaling through adenylate
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FIGURE 3 | Schwann cells regulate various cellular processes through the primary cilia. Primary cilia generated in non-myelinating Schwann cells are involved in
cellular events through dynamic biogenesis of assembly and disassembly. In the immune response state, the primary cilia of Schwann cells induce clearance of axon
debris by macrophages through activation of inflammatory cytokines. In PNS injury, Schwann cells play a role in axonal regeneration by inducing remyelination
through the disassembly of primary cilia, which is dependent on several signal transductions such as Shh, Wnt, and Hippo.

cyclase type III, a representative cilia protein in the nervous
system (Wang et al., 2011; Sterpka and Chen, 2018; Table 1).
These data suggest that studies investigating the role of primary
cilia in myelination-related signal transduction in Schwann cells
will help to better understand the mechanisms of demyelinating
diseases, such as CMT.

As studies related to the repair mechanism of Schwann cell
myelination for the treatment of peripheral degenerative diseases
have gained traction, the investigation of the role of Schwann
cell cilia in nerve regeneration has also attracted attention (Jessen
and Mirsky, 2016). Several recent studies have suggested that
primary cilia in Schwann cells are involved in myelination-related
signal transduction, such as Shh, Wnt, and Hippo signaling (Tawk
et al., 2011; Yoshimura and Takeda, 2012; Morton et al., 2013;
Grove et al., 2017; Jiang et al., 2019; Mc Fie et al., 2020; Figure 3
and Table 1). In mouse primary Schwann cells, major Shh
components such as SMO and PTCH1 are localized at the base of
primary cilia, and these activate Shh signal transduction (Wilson
and Stainier, 2010; Yoshimura and Takeda, 2012). Treatment

with Shh or SMO agonist results in an increase in myelin
segments, suggesting the potential involvement of Schwann cell
cilia in regulating myelination (Parmantier et al., 1999; Wilson
and Stainier, 2010).

In the MSC80 mouse Schwann cell line, key molecules of
canonical Wnt signaling, such as WNT1, LRP6, DSH, GSK3β,
β-catenin, and TCF/LEF1, are expressed prior to activation of
the myelination regulators PMP22 and MPZ (Tawk et al., 2011).
Given that canonical Wnt signaling regulates cilia assembly
through WNT3A or cilia disassembly through WNT5A (Lee
et al., 2012; Kyun et al., 2020), it is possible to speculate that
primary cilia in Schwann cells may be involved in Wnt-mediated
myelination. Yes-associated protein (YAP) and transcriptional
coactivator with PDZ-binding motif (TAZ), are Hippo signaling
regulators, have a key role in the cytoplasm of ciliated cells, but
these translocate into the nucleus and induce cell proliferation
in the context of ciliogenesis suppression (Rausch and Hansen,
2020). Notably, both YAP and TAZ are expressed in myelinating
Schwann cells, but not in non-myelinating Schwann cells
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(Grove et al., 2017; Jeanette et al., 2021). Thus, this suggests
a potential role for primary cilia-mediated Hippo signaling
in myelination. More intriguingly, YAP and TAZ play a role
in remyelination during Schwann cells-mediated regeneration
induced by nerve injury (Grove et al., 2020; Jeanette et al., 2021).
Taken together, these data suggest that primary cilia in Schwann
cells may be essential in myelination involving several signaling
pathways; thus, control of Schwann cell ciliogenesis could be a
potential target for the treatment of PNS demyelinating disorders.

Functional Potential of Schwann Cell
Cilia in Nerve Regeneration–Related
Signaling
Calcium Signaling
Given that the primary cilia in chondrocytes are essential for
mechanotransduction via ATP-induced Ca2+ signaling, it can
be speculated that primary cilia in Schwann cells may regulate
mitochondrial mechanotransduction through Ca2+ signaling
molecules, such as inositol 1.4.5-triphosphate (IP3) (Powell et al.,
2003; Wann et al., 2012; Phua et al., 2015); IP3 and its receptor
are also present in Schwann cells, and they play an important role
in regulating mitochondrial Ca2+ signaling during myelination
(Powell et al., 2003; Ino et al., 2015). It is noteworthy that
in a Xenopus model, primary cilia are reduced when IP3
signaling is inhibited, suggesting that IP3 signaling is involved
in ciliogenesis (Hatayama et al., 2011). Particularly, in Schwann
cells, P2Y2 and P2RY2, which produce IP3 and increase the level
of mitochondrial Ca2+, appear to be associated with ciliogenesis
(Weisman et al., 2012; Table 1).

Cell Adhesion Molecule-Mediated Signaling
Another notable molecule associated with ciliogenesis of
Schwann cells is Polysialic acid (PSA), a homopolymer of α2,
8-linked sialic acid expressed in the nervous systems. PSA
is involved in axon guidance and activation of neuronal cell
adhesion molecules (NCAMs) (Tang et al., 1994; Lavdas et al.,
2006; Papastefanaki et al., 2007). Recent reports have revealed
that the PSA-NCAM complex is decreased in the brains of
diseased humans and rodents (Varea et al., 2005; Murray
et al., 2016), and modified PSA-NCAM complexes can be seen
in several neurodegenerative diseases such as AD and PD
(Murray et al., 2016). In the PNS, NCAMs are expressed in
the membranes of Schwann cells, and these regulate injury-
induced remyelination by making a complex with PSA (Angata
and Fukuda, 2003; Lavdas et al., 2006; Papastefanaki et al.,
2007). Studies using zebrafish models have reported that PSA
and NCAMs exist in primary cilia of the CNS; however, this has
not yet been investigated in the PNS (Matsumoto et al., 2019).
Furthermore, the number of cells expressing NCAMs and PSA
was reduced when primary cilia formation was inhibited in the
mouse brain (neural stem cells), suggesting an important role
of cilia in NCAM-PSA complex-mediated cell proliferation in
the CNS (Han et al., 2008; Table 1). Based on these studies
conducted in the CNS, we assume that the NCAM-PSA complex
present in Schwann cells may also be associated with primary
cilia in the PNS.

Several cell adhesion molecules (CAMs), including NCAM,
myelin-associated glycoprotein, neuregulin1, neural adhesion
molecules (L1), integrin β1, and N-cadherin, are essential for
Schwann cell development as well as for cell-cell connection
in the PNS (Quarles, 2002; Spiegel and Peles, 2002; Bartsch,
2003; Poliak and Peles, 2003; Michailov et al., 2004; Feltri and
Wrabetz, 2005; Taveggia et al., 2005). In particular, CAMs are
secreted as autocrine factors from Schwann cells activated by Shh
signals during myelination (Parmantier et al., 1999; Hashimoto
et al., 2008). Given the important roles of primary cilia for Shh
signaling in the control of myelination by glial cells (Yoshimura
and Takeda, 2012; Falcon-Urrutia et al., 2015), it is likely that
primary cilia in Schwann cells are involved in the secretion of
CAMs, including NCAM, to prevent neurodegeneration or to
induce nerve regeneration.

Neuromuscular Junction-Involved Signaling
Many neurodegenerative diseases of the PNS have features of
muscle defects such as muscle weakness, cramps, numbness,
and tingling in the hands and feet (Burakgazi and Hoke, 2010;
No authors listed, 2010; van Sloten et al., 2011). Typically,
these muscle-related symptoms result from impaired innervation
at the neuromuscular junction (NMJ), which is regulated not
only by muscle cells but also by neurons and Schwann cells
(Gordon, 2020). Thus, the sophisticated regulation of cellular
communication between these cells is closely related to disease
mechanisms in the PNS. In cellular communication, Schwann
cells are involved in NMJ formation through TGFβ signaling
and signal transmission in the NMJ via Ca2+ (Robitaille, 1998;
Castonguay and Robitaille, 2001; Sugiura and Lin, 2011; Fuentes-
Medel et al., 2012; Kerr et al., 2014; Barik et al., 2016).
Under a condition of nerve injury, Schwann cells communicate
with neurons by releasing several molecules, such as cytokines,
chemokines, and growth factors, to activate neuronal function
(Ydens et al., 2013; Wei et al., 2019). These molecules are also
involved in the immune responses of Schwann cells that protect
neurons from nerve damages and control neurotrophic factors-
mediated signaling for nerve regeneration (Agthong et al., 2009;
Kidd et al., 2013; Ydens et al., 2013).

Neurotrophic Factor-Mediated Signaling
Neurotrophic factors, including brain-derived neurotrophic
factor and glial cell line-derived neurotrophic factor, are essential
throughout Schwann cell development process, including the
migration, proliferation, and (re)myelination stages (Yamauchi
et al., 2004; Iwase et al., 2005; Madduri and Gander, 2010).
Thus, misregulation of neurotrophic factor-mediated signaling
in Schwann cells results in neuronal cell death and defects
in axonal regeneration, which in turn leads to the failure of
neuronal repair and muscle innervation (Arthur-Farraj et al.,
2012; Glat et al., 2016; Guy et al., 2019). Based on the findings
that primary cilia are associated with several signal transductions,
previous studies have suggested the involvement of primary
cilia in neurotrophic factors-dependent signaling in Schwann
cells (Yamauchi et al., 2004; Yoshimura and Takeda, 2012).
It is noteworthy that Rho GTPases, regulators of ciliogenesis
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(Kakiuchi et al., 2019), play a key role in neurotrophic factor-
mediated signaling in Schwann cells (Yamauchi et al., 2004),
and Schwann cells involved in regeneration have primary cilia
(Yoshimura and Takeda, 2012). In conclusion, these findings
suggest that primary cilia in Schwann cells are essential for
signaling to control nerve regeneration (Figure 3). Moreover, the
regulatory mechanisms for Schwann cell ciliogenesis could be a
potential target for PNS regeneration therapy.

CONCLUSION AND PERSPECTIVE

Primary cilia play a variety of essential roles in the
development of the nervous system and are implicated in
several neurological diseases. Many studies focusing on the
function of neuronal primary cilia have provided insights
into the importance of targeting cilia-mediated signaling
for the treatment of neurological diseases (Kirschen and
Xiong, 2017). However, as these studies were focused on
neurons, our understanding of the mechanisms of neurological
diseases associated with damage to other types of cells,
such as glial cells, is limited. There is growing evidence
that primary cilia-mediated signaling in glial cells may be
closely linked to the pathogenesis of several neurological
diseases (Sterpka and Chen, 2018). In this review, we have
presented the latest findings related to glial primary cilia
to facilitate understanding of the cilia-mediated function in
each glial cell type. In particular, we sought to understand
the relationship between the signaling pathways regulated by
disease-causing genes and primary cilia in glial cells in each
neurodegenerative disease.

Inhibition of the progression of chronic systemic
inflammation has been proposed as an approach for the
treatment of neurodegenerative diseases (Norden et al., 2015).
From this perspective, NF-κB is considered a major target, and
Aβ peptide, a major causative molecule in AD, is implicated
in the regulation of inflammatory responses through NF-
κB activation (Liu et al., 2014). In addition, several related
studies have reported that inhibition of NF-κB signaling
reduces Aβ-induced neurotoxicity in neuron and glial cells
(Yan et al., 2020; Zamani et al., 2020). It is also notable that
Aβ peptide induces aberrant cilia formation by interfering
with Shh signaling (Vorobyeva and Saunders, 2018). Moreover,
LRRK2, a causative molecule in PD, plays an important role
in ciliogenesis by activating ciliary regulators, such as RAB8A
and RAB10 (Steger et al., 2016, 2017; Alessi and Sammler,
2018), and in inflammatory responses by regulating NF-κB
signaling (Kim et al., 2012; Lopez de Maturana et al., 2016).
Therefore, the regulatory mechanism of cilia formation may
be a novel target for treating neurodegenerative diseases by
controlling NF-κB-mediated inflammation. In conclusion,
the potential role of astrocyte cilia in the regulation of
inflammation in the nervous system implies that the regulatory
mechanisms for ciliogenesis in astrocytes could be a novel
target for the treatment of neurodegenerative diseases such as
AD, PD, and HD. Moreover, screening of anti-inflammatory
drugs and small molecules targeting the primary cilia will

help discover and develop therapeutic agents for these
diseases in the future.

It has been previously suggested that regulation of
microtubule dynamics is essential for the development of
glial cells, such as OLGs and Schwann cells in the CNS
and PNS, respectively (Richter-Landsberg, 2008; Bauer et al.,
2009; Yokota et al., 2009; Eom et al., 2011). In particular,
OLGs that undergo morphological changes from OPCs during
differentiation/maturation for myelination (Miller, 2002)
require adequate microtubule dynamics. The regulation of
microtubule (de)polymerization and stabilization is critical for
interactions of OLGs with neuronal axons (Fu et al., 2019;
Lee and Hur, 2020), and the assembled microtubules are
important for intracellular transportation of myelin-related
proteins, including MBP (Smith, 2004). Histone deacetylases,
including SIRT2 and HDAC6, are well known ciliary proteins
that modulate cilia disassembly (Pugacheva et al., 2007;
Zhou et al., 2014; Lim et al., 2020), and recently, they have
been shown to be involved in the microtubules-mediated
remodeling of OLGs (Hubbert et al., 2002; Southwood et al.,
2007; Noack et al., 2014). In addition, a study has revealed
that stathmin, a negative regulator of microtubule dynamics
(Ozon et al., 2002), interferes with OLG differentiation, leading
to demyelinating diseases such as MS (Liu et al., 2005). In
Schwann cells, microtubule-associated protein 1 B binds to α1-
syntrophin (Fuhrmann-Stroissnigg et al., 2012), a member of
the adaptors acting on signal transduction, or microtubules
(Togel et al., 1998) and regulates microtubule dynamics for
Schwann cell migration (Bouquet et al., 2007). Although
studies demonstrating a direct association of misregulation of
microtubule dynamics in Schwann cells with neurodegenerative
diseases are lacking, these previous findings suggest that
adequate control of primary cilia-involved microtubule
dynamics in glial cells can be a target for the treatment of
demyelinating diseases.

Since impairment of autophagy mechanism has been
frequently reported as a major cause in neurodegenerative
disorders (Ravikumar et al., 2005; Lee et al., 2010; Nixon
and Yang, 2011; Gomez-Suaga et al., 2012; MacLeod et al.,
2013), autophagy regulation may be a target for the treatment
of neurological diseases involving glial cells. Mutations
in PRESENILIN 1, a major genetic factor in AD, disrupt
autolysosomal proteolysis and accelerate the onset and
severity of AD (Lee et al., 2010; Nixon and Yang, 2011).
Mutations in LRRK2 leading to endosomal-lysosomal trafficking,
lysosomal pH and calcium regulation are implicated in PD
pathogenesis (Gomez-Suaga et al., 2012; MacLeod et al.,
2013). Autophagosomal accumulation induced by the mutated
dynein complex increases aggregation-prone proteins in ALS
(Ravikumar et al., 2005). Similar to that in other types of
cells, autophagy is critical for the developmental processes of
OLG and Schwann cells, including for myelination (Jang et al.,
2015; Bankston et al., 2019). Indeed, disruption of autophagy-
related regulators or signaling affects myelin regulators, such
as MBP, resulting in impaired myelination (Dello Russo
et al., 2013). Additionally, proper autophagy is essential for
removing myelin debris derived from injury to Schwann
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cells (Gomez-Sanchez et al., 2015; Jang et al., 2015). During
ciliogenesis, the reciprocal interactions between ciliary proteins
and autophagy molecules are tightly controlled (Pampliega
et al., 2013; Tang et al., 2013; Orhon et al., 2015). Hence,
these studies suggest that primary cilia of glial cells are
involved in the regulation of autophagy during the process of
myelination and that the cilia-mediated autophagy mechanism
may be a novel target for the treatment of myelination-
related diseases. Taken together, studies on the regulatory
mechanisms and functions of primary cilia in glial cells will pave
a new path for the development of novel paradigm therapies
as well as provide a comprehensive understanding of the
pathological mechanisms of neurodegenerative diseases in both
the CNS and PNS.
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