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Abstract: Herein, a 3D hierarchical structure is constructed by growing NiCo2O4 nanowires on few-
layer Ti3C2 nanosheets using Ni foam (NF) as substrate via simple vacuum filtration and solvothermal
treatment. Ti3C2 nanosheets are directly anchored on NF surface without binders or surfactants, and
NiCo2O4 nanowires composed of about 15 nm nanoparticles uniformly grow on Ti3C2/NF skeleton,
which can provide abundant active sites and ion diffusion pathways for enhancing electrochemical
performance. Benefiting from the unique structure feature and the synergistic effects of active
materials, NiCo2O4/Ti3C2 exhibits a high specific capacitance of 2468 F g−1 at a current density
of 0.5 A g−1 and a good rate performance. Based on this, an asymmetric supercapacitor (ASC)
based on NiCo2O4/Ti3C2 as positive electrode and activated carbon (AC)/NF as negative electrode
is assembled. The ASC achieves a high specific capacitance of 253 F g−1 at 1 A g−1 along with
91.5% retention over 10,000 cycles at 15 A g−1. Furthermore, the ACS presents an outstanding
energy density of 90 Wh kg−1 at the power density of 2880 W kg−1. This work provides promising
guidance for the fabrication of binder-free, free-standing and hierarchical composites for energy
storage application.

Keywords: Ti3C2 nanosheets; NiCo2O4 nanowires; composites; asymmetric supercapacitor; energy density

1. Introduction

With climate change and fossil energy depletion of the world, the development of
high-performance energy conversion and storage devices is urgently demanded [1,2]. Su-
percapacitors (SCs) are considered as a new type of promising candidate devices and have
been extensively developed due to their high power density, fast charging/discharging rate
and long cycling life compared with batteries [3,4]. However, the relatively lower energy
density of SCs restricts their development and actual application. It is well known that the
energy density (E) is related to working potential range (∆V) and specific capacitance (C)
according to the formula of E = C (∆V)2/2 and the electrochemical behavior of electrode
materials plays an important role in performance of SCs [5,6]. Thus, exploring suitable
electrode material is promising for improving the energy density and performance of SCs.

MXene (Ti3C2), a recently novel emerging 2D material, has been widely studied in
SCs by virtue of its unique properties, such as high conductivity, unique layered structure,
excellent theoretical capacitance energy (1500 F cm−3), good mechanical stability and envi-
ronmentally friendly characteristics [7–9]. Moreover, recent researches have proven that
MXene shows much promise over other supercapacitor electrode materials and is one of
the prospective candidates [10]. Particularly, few-layer Ti3C2 nanosheets can facilitate the
full exposure of O-functionalized surface, which will expedite the accessibility of ions and
promote the sufficiently utilization of their functional surfaces [11,12]. However, the MXene
materials usually exist in powdery form and must be mixed with conductive carbon and a
polymeric binder, followed by painting and pressing on a current collector, when they are
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used to assemble SCs. The use of binder will significantly deteriorate the electrical conduc-
tivity of the active materials and increase the mass of electrode, which is not beneficial to
the electrochemical performance [13,14]. Thus, developing free-standing and binder-free
electrodes is an effective strategy to avoid the limitations. Recently, Guo et al. [15] reported
a composite electrode comprised of 2D delaminated Ti3C2 sheets (d-Ti3C2) and 3D Ni foam
(NF) by electrostatic self-assembly, and it exhibits a specific capacitance up to 654 F g−1 at
1 A g−1 and a good cycling stability. Similarly, Hu et al. [16] fabricated the CSC@Ti3C2Tx
electrode via dropping the Ti3C2Tx colloidal suspension with a pipette on the carbonized
silk cloth (CSC) strip that was placed on a hot plate kept at 50 ◦C, and it possesses an area
capacitance of 362 mF cm−2 with an excellent cyclability and flexibility. However, the above
fabrication processes are complicate and time-consuming, such as they need surfactant
modification and heating treatment, respectively. Inspired by the advantages of MXene
and 3D scaffold, the MXene/NF was synthesized by simple vacuum filtration treatment in
this work. Furthermore, the capacitance performance of MXene/NF is still needed to be
enhanced for further practical application. At present, the general strategy to solve this
problem is to develop suitable synthetic approach to modify MXene with pseudocapaci-
tance electrode materials (such as conducting polymer, layered double hydroxide (LDH)
and transition-metal oxides/sulfides) [17], which generally possess higher energy density
and specific capacitance than pure carbon materials [18,19].

As the representative of metal oxide, NiCo2O4 is one of the most successful pseudoca-
pacitive materials used in supercapacitors due to its low cost, various morphologies and
structures, environmental benignity and simple preparation [20]. Importantly, NiCo2O4
can also exhibit extremely higher theoretical specific capacitance in alkaline electrolyte
owing to the redox reactions originating from two groups of active centers on Ni ions and
Co ions [21,22]. Moreover, the nanostructured NiCo2O4 is conducive to providing large
specific surface area, higher storage site utilization and short ion diffusion path. However,
the low electronic conductivity and serious agglomeration hinder its electrochemical per-
formance [23]. A popular approach to avoid the limitation is to develop effective synthetic
strategies and design composite materials by combining them with other high conductivity
materials. Recently, some researches about the combination of MXene with binary metal
hydroxides/sulfides to form composites to improve the capacitance of SCs, in which their
integration indeed improves the capacitive performance compared with individual metal
hydroxides/sulfides and MXene. Thus, it can be inferred that MXene as a favorable con-
ductive substrate to integrate with NiCo2O4 for constructing composites is a potential route
to enhancing the capacitance of SCs. Furthermore, morphology factor plays an important
role in SCs, and the 3D structure not only contributes to enhance ion diffusion kinetics,
but avoid the existence of polymer binder, which is conducive to improve performance
of electrodes [21,22]. Based on this, if nanostructured NiCo2O4 is directly combined with
3D MXene materials, the resulting composite materials not only improve the conductivity
and more effectively prevent the agglomeration of nanostructured NiCo2O4, but also will
exhibit considerable electrochemical performance by combing the above two advantages,
which has profound meaning. As far as is known, the research about NiCo2O4/Ti3C2
composites is scant, and they usually exist in powdery form. For instance, Wang at
al. reported that the NiCo2O4/Ti3C2 powder without self-standing substrate shows a
low specific capacitance of 714 F g−1 and insufficient capacity retention of 87.8% upon
5000 cycles [24]. However, coupling nanostructured NiCo2O4 with MXene to form a 3D
structure as an electrode for high performance supercapacitors has not been reported, to
our knowledge.

Herein, a free-standing and binder-free electrode based on NiCo2O4/Ti3C2 nanocom-
posite using Ni foam as substrate was constructed by a two-step approach including
vacuum filtration and solvothermal treatment. The fabrication process is fast and easily
operated. The ions and electron transfer will be accelerated and the interfacial resistance
in NiCo2O4/Ti3C2 will be reduced due to the direct contact of active materials. Benefiting
from the unique structure, the specific capacitance of NiCo2O4/Ti3C2 can reach up to 2468 F g−1
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at the current density of 0.5 A g−1. Moreover, the electrode exhibits a moderate rate per-
formance. In addition, the assembled NiCo2O4/Ti3C2//AC asymmetrical supercapacitor
(ASC) exhibits a specific capacitance of 253 F g−1 at 1 A g−1 and 135 F g−1 at 10 A g−1

along with 91.5% retention for 10,000 cycles. Surprisingly, the ACS achieves an outstanding
energy density of 90 Wh kg−1 at a power density of 2880 W kg−1, which indicates its huge
potential in the field of SCs.

2. Experimental Section
2.1. Materials

Ti3AlC2 was sourced from Laizhou Kai Kai Ceramic Materials Co., Ltd., Laizhou,
China. Ni foam (NF) was obtained from Guangdong Canrd New Energy Technology
Co., Ltd., Dongguan, China. The other reagents, including deionized water, nickel nitrate
hexahydrate, cobalt nitrate hexahydrate, urea, acetone, hydrochloride, ethanol, potassium
hydrate, N-dimethylmethacrylamide, were bought from Shanghai Macklin Biochemical
Co., Ltd., Shanghai, China. Activated carbon (AC) were achieved from Fuzhou Yihuan
Carbon Co., Ltd., Fuzhou, China. Polyvinylidene fluoride (PVDF) binder and acetylene
black were gained from Beijing Chemical Co., Ltd., Beijing, China. All chemicals used were
of analytical grade. Deionized water was used throughout the work.

2.2. Synthesis of NiCo2O4/Ti3C2 Heterostructure

Figure 1 shows the synthesis process of the NiCo2O4/Ti3C2 composite. (1) The con-
struction of Ti3C2/NF 3D structure via vacuum filtration. Firstly, 1 g Ti3AlC2 (Figure S1a,
Supplementary Materials) was etched by using 30 mL HF (40 wt%) under magnetic stirring
at 50 ◦C for 36 h. The resultant sediments were washed with deionized water and ethanol
several times via centrifugation until pH reached neutrality and dried at 60 ◦C in an oven.
The obtained accordion-like Ti3C2 powders (Figure S1b) were dispersed in 20 mL deionized
water followed by sonicating for 20 min at ice-bath ambient and centrifuged at 3500 rpm
for 1 h to gain the supernatant of few-layer Ti3C2 nanosheets. Then, Ni foams (NFs,
1 × 1.5 cm2) were cleaned in acetone, 6 M HCl, deionized water and ethanol for ultrasonic
cleaning for 15 min, respectively, to remove the stains and oxides on their surface and
dried for further use. Afterwards, few-layer Ti3C2 nanosheet supernatant was dropped
on the pretreated NF with the assist of vacuum filtration to gain Ti3C2/NF 3D network
skeleton structure. (2) The growth of NiCo2O4 on the surface of Ti3C2/NF was realized
via a solvothermal process. 0.05 M Ni(NO3)2·6H2O, 0.1 M Co(NO3)2·6H2O and 0.42 M
CH4N2O were dissolved in the solution consisted of 20 mL deionized water and 20 mL
ethanol followed by magnetic stirring for 20 min to form a clear pink solution. Subse-
quently, the above obtained Ti3C2/NF was immersed into the solution, which was put in a
Teflon-lined stainless-steel autoclave. The autoclave was heated at 150 ◦C for 4 h to grow
Ni−Co precursor nanowires on Ti3C2/NF surface. Finally, the NiCo2O4/Ti3C2 composite
was obtained after annealing at 350 ◦C for 2 h in N2 at a heating rate of 1 ◦C min−1 with
the transform from precursor to NiCo2O4. The active material on NF in NiCo2O4/Ti3C2
is about 1.5 mg. Noteworthily, the abundant functional terminal groups (-F, -OH, -O, etc.)
on the few-layer Ti3C2 surface will provide a large number of nucleation sites for in situ
growth of NiCo2O4 nanowires as a result of electrostatic interaction between Co and Ni
cations and negatively charged MXene [12]. For comparison, the NiCo2O4/NF and pure
NiCo2O4 powders were synthesized by the same method.
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Figure 1. Schematic illustration of the synthesis process of NiCo2O4/Ti3C2 composite.

2.3. Instruments and Characterization

The structures and morphologies of electrodes were characterized by field emission
scanning electron microscope (FE-SEM, FEI, Quanta 650 FEG, New York, America), and the
detailed microstructure was further observed by transmission electron microscopy (TEM,
JEOL, JEM-2100Plus, Osaka, Japan) at 200 KV. The elemental compositions were tested by
energy dispersive X-ray spectroscopy (EDS). X-ray diffraction (XRD, Rigaku, Ultima IV,
Osaka, Japan) was performed to investigate phase compositions using Cu Kα radiation
(λ = 0.15418 nm). Surface valences were analyzed by X-ray photoelectron spectroscopy
(XPS, Thermo Scientific, K-Alpha, New, York, NY, USA) with Al Kα radiation. Specific
surface and pore information were measured by nitrogen adsorption–desorption isotherms
(Micromeritics, ASAP 2460, Norcross, GA, USA) at 77 K. The specific surface area was
calculated by the Brunauer–Emmett–Teller (BET) formula, and the pore size distribution
was obtained by the Barret–Joyner–Halenda (BJH) method.

2.4. Fabrication of the NiCo2O4/Ti3C2//AC Asymmetrical Supercapacitor (ASC)

The AC/NF negative electrode was prepared by painting the uniform mixtures of
activated carbon (AC), polyvinylidene fluoride (PVDF) binder and acetylene black conduc-
tive agent with the mass ratio of 8:1:1 on the pretreated NF. The ASC was assembled in a
coin cell (CR2032) with the order of positive case, NiCo2O4/Ti3C2, electrolyte (6 M KOH),
separator (Celgard 3501), electrolyte, AC/NF, spacer, spring, negative case, respectively.

2.5. Electrochemical Measurements

The electrochemical performance of the NiCo2O4/Ti3C2 electrode and the asym-
metrical supercapacitor (ASC) was tested on an electrochemical workstation (CHI660E).
For NiCo2O4/Ti3C2 electrode, the cyclic voltammetry (CV, 0–0.6 V), galvanostatic charge-
discharge (GCD, 0–0.5 V) and electrochemical impedance spectroscopy (EIS, 5 mV,
100 KHz–0.01 Hz) curves were investigated by a three-electrode system consisting of
platinum foil counter electrode, double salt bridge Hg/HgO reference electrode and
NiCo2O4/Ti3C2 working electrode. For ACS, the electrochemical performance was mea-
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sured by the electrode clamp connected to the electrochemical workstation. The CV (0–
1.6 V) and GCD (0–1.6 V) curves were recorded at various scan rates of 10–100 mV s−1

and current densities of 1–10 A g−1, respectively. In addition, the specific capacitance of
NiCo2O4/Ti3C2 in a three-electrode system and ACS was calculated from the GCD curves
by Equations (1)–(3) [25–27]:

Cm = I∆t/m∆V (1)

where Cm (F g−1), I (A), ∆t (s), m (g), ∆V (V) are the gravimetric specific capacitance, load
current, discharge time, the mass of active material on NF and working potential range of
NiCo2O4/Ti3C2 electrode, respectively.

The volumetric specific capacitance was calculated using the Equation (2):

Cv = I∆t/v∆V (2)

where Cv (F cm−3), I (A), ∆t (s), v (cm−3), ∆V (V) are the volumetric specific capacitance,
load current, discharge time, the mass of active material on NF and working potential
range of NiCo2O4/Ti3C2 electrode, respectively. The thickness of NiCo2O4/Ti3C2 is 1 mm.
The volume of the NiCo2O4/Ti3C2 is 0.15 cm−3.

CA = I∆t/m∆V (3)

where CA (F g−1), I (A), ∆t (s), m (g), ∆V (V) represent for the specific capacitance, load
current, discharge time, total mass of active materials in NiCo2O4/Ti3C2 positive and
AC/NF negative electrodes and working potential range of the ACS, respectively.

The specific capacitance of NiCo2O4/Ti3C2 and AC/NF based on CV curves at 10 mV s−1

was gained according to Equation (4) [26]. The mass ratio between NiCo2O4/Ti3C2 positive
and AC/NF negative electrodes was determined using the Equation (5) [26] for optimizing
the ACS:

Cp = A/ms∆V (4)

m+/m− = (Cp
− × ∆V−)/(Cp

+ × ∆V+) (5)

where Cp (F g−1), A, m (g), s (mV s−1), ∆V (V) represent for specific capacitance, the
integrated area in CV curves, the mass of active material, scan rate and working potential
range of the positive and negative electrodes, respectively. The mass of active material on
NiCo2O4/Ti3C2 and AC/NF was 1.5 mg and 0.85 mg initially and was well adjusted to be
about 1:1 (1.5 mg:1.5 mg) ultimately in this work.

The energy density (E, Wh kg−1) and power density (P, W kg−1) of ACS were obtained
according to the Equations (6) and (7) [25,26]:

E = 0.5 × CA × (∆ V)2/3.6 (6)

P = E × 3600/∆t (7)

where CA (F g−1), ∆V (V), ∆t (s) represent for specific capacitance, working potential range,
discharge time of ACS.

3. Results and Discussion
3.1. Structural and Morphological Characterization

XRD patterns were performed to analyze the phase compositions of the samples.
Figure S2 (Supplementary Materials) shows the XRD patterns of Ti3AlC2 and the etched
accordion-like Ti3C2 powders. The disappearance of characteristic peak of (104) plane in
Ti3AlC2 indicates the removal of Al layer after HF etching. Meanwhile, the (002) plane
located at 8.6◦ in Ti3C2 is obviously broadened and shifts to a low angle compared with
Ti3AlC2, implying a larger interlayer distance [28]. In Figure 2, besides the three strong
peaks of NF, there are no diffraction peaks of Ti3C2 that can be observed in Ti3C2/NF, which
is different from Ti3C2 powders due to the poor crystallinity of Ti3C2 [29]. The diffraction
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peaks located at 31.16◦, 36.7◦, 59.06◦ and 64.94◦ in NiCo2O4/NF are well assigned to the
(220), (311), (511) and (440) planes of NiCo2O4 (JCPDS No. 20-0781) [30], respectively. As
for NiCo2O4/Ti3C2, only the diffraction peaks of NiCo2O4 can be observed and no obvious
peaks of Ti3C2 can be found due to the poor crystallinity of Ti3C2 or maybe the blocking
effect of NiCo2O4 resulted from the full decoration of Ti3C2/NF by NiCo2O4.
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The NiCo2O4/Ti3C2 and Ti3C2/NF samples were characterized by SEM in Figure 3.
As observed in Figure 3a, graphene-like Ti3C2 nanosheets are successfully attached on NF
surface, due to the strong physical adsorption between Ti3C2 and NF caused by vacuum
filtration. The powerful vacuum filtration also contributes for the close connection between
NF and Ti3C2, which is conducive to the electron transport and lower resistance in elec-
trode [31]. From Figure 3b,c, it can be seen that the surface of Ti3C2/NF becomes rough
when Ti3C2/NF is used as substrate to grow NiCo2O4, and Ti3C2 can hardly be found
owing to the dense needle-like NiCo2O4 nanowires covering on its surface. However, it
can still be deduced from the uneven surface that Ti3C2 nanosheets exist in the compos-
ite. The cross-section of NiCo2O4/Ti3C2 in Figure S3 further shows NiCo2O4 nanowires
with a length of up to several micrometers vertically grow on Ti3C2/NF, while the pure
NiCo2O4 powders possess an urchin-like microsphere structure as shown in Figure S4. The
phenomenon indicates that the separately and uniformly dispersed NiCo2O4 nanowires on
Ti3C2/NF will provide large specific surface area and abundant active sites for improving
electrochemical performance. The element mapping (Figure 3d) clearly shows the exis-
tence and uniform distribution of Ti, C, O, Ni and Co elements in as-prepared composite
electrode, which further reveals the successful synthesis of NiCo2O4/Ti3C2 nanostructure.

The active material of NiCo2O4/Ti3C2 was peeled from NF under ultrasound in a
vacuum to further characterize the microstructure, as shown in Figure 3e–h. The peeling
took a long time, indicating the strong contact of active material components, which is
beneficial to the electron transport and structural stability of NiCo2O4/Ti3C2 and synergistic
effects among components. As observed in Figure 3e, the broken NiCo2O4 nanowires are
distributed around the few-layer Ti3C2 nanosheet. In Figure 3f, needle-like NiCo2O4
nanowires are composed of numerous nanoparticles, similar to the previous work [32],
with a diameter of about 15 nm. Massive channels existing in nanoparticles will provide
large surface area, which is beneficial to the sufficient contact between electrolyte and
electrode material, and promote the rapid ions transport and pseudocapacitance reactions.
As observed in Figure 3g, the interplanar spacings of 0.27 nm and 0.10 nm can be indexed to
the (311) and (731) planes of NiCo2O4, respectively. In addition, SADE pattern in Figure 3h
displays many diffraction rings with different diameters, which can be ascribed to the (400),
(511), (531), (711) planes of NiCo2O4 showing the polycrystalline structure.
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Figure 3. (a) SEM image of Ti3C2/NF, (b,c) SEM images and (d) elemental mapping of NiCo2O4/
Ti3C2, (e–g) TEM images and (h) SADE pattern of NiCo2O4/Ti3C2.

The surface chemical states and elemental compositions of prepared materials were
examined by XPS, as shown in Figure 4. In Figure 4a, the XPS survey spectra indicate Ni,
Ti, C and O elements are presented in Ti3C2/NF, and a new peak with the binding energy
of 782.1 eV corresponding to Co element appears in NiCo2O4/Ti3C2 except for the same
elements as Ti3C2/NF, confirming that the NiCo2O4 has been loaded on the Ti3C2/NF
surface. Moreover, Ti element peak in NiCo2O4/Ti3C2 is weakened, resulting from the
complete coverage of NiCo2O4 on Ti3C2/NF, which is in agreement with the XRD. Fine
XPS spectra of C 1s, Ti 2p, Co 2p, Ni 2p, and O 1s for NiCo2O4/Ti3C2 are presented in
Figure 4b–f. The typical fitted C 1s spectrum in Figure 4b shows that the peaks located at
282.9 eV, 284.8 eV, 285.7 eV and 287.7 eV are assigned to C−Ti, C−C, C−O and O−C=O,
respectively, which prove the presence of functional groups on Ti3C2 [33]. Ti 2p spectrum
(Figure 4c) exhibits the peaks at 455.1 eV and 461.2 eV and these are attributed to Ti−C and
Ti−O, respectively, and the peaks at 456.6/463.1 eV, 457.4/465.3 eV and 458.8/467.7 eV can
be indexed to Ti2+, Ti3+ and Ti4+, showing the mixed valences of Ti3C2 [34,35]. In Co 2p
spectrum (Figure 4d), the peaks at 779.6/795.8 eV and 783.2/799.8 eV can be indexed to
Co2+ and Co3+ [36]. Similar to Co 2p, the Ni 2p spectrum (Figure 4e) possesses a typical
doublet of Ni 2p3/2 (854.48 eV) and Ni 2p1/2 (872.58 eV) and broad shakeup satellites [36].
The multivalent valences of Ni and Co will make contributions to high specific capacitance
in SCs. The spectrum of O 1s is shown in Figure 4f. The peaks at 529.7 eV, 530.7 eV and
533.4 eV correspond well to the Co−O or Ni−O, C=O and OH−, respectively [21,33].
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Figure 4. (a) XPS survey spectra of NiCo2O4/Ti3C2 and Ti3C2/NF, (b–f) typical fitted high-resolution
spectra of C 1s, Ti 2p, Co 2p, Ni 2p and O 1s of NiCo2O4/Ti3C2.

N2 adsorption–desorption isotherms were conducted to demonstrate the specific surface
area and pore diameter distributions of the NiCo2O4/Ti3C2 and Ti3C2/NF. NiCo2O4/Ti3C2
displays a distinct type IV hysteresis loop in Figure 5a, indicating the presence of meso-
porous structure and a higher calculated specific surface area (35.2 m2 g−1) compared to
Ti3C2/NF (20.7 m2 g−1). Moreover, the pores size values in Figure 5b analyzed by the BJH
method further show that the pore volume of NiCo2O4/Ti3C2 is higher than Ti3C2/NF,
which can be mainly attributed to the massive mesoporous structure of NiCo2O4. Porous
structure and large active surface in NiCo2O4/Ti3C2 both promote ions or electron transport
and penetration of electrolyte, optimizing the electrochemical performance [37].
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3.2. Electrochemical Performances of Samples

The electrochemical performance of the as-prepared samples was investigated using
a three-electrode system in 6 M KOH as illustrated in Figure 6. Firstly, the performance
comparison of NF, Ti3C2/NF, NiCo2O4/NF and NiCo2O4/Ti3C2 is carried out to exclude
the effect of NF as substrate on capacitance, as shown in Figure 6a,b. It is well known
that the larger integrated area of CV curves and longer charge–discharge time of GCD
reflect higher specific capacitance. Thus, it can be deduced from Figure 6a,b that the
contribution of NF to capacitance of electrodes is very little. Furthermore, it can be seen that
the introductions of Ti3C2 and NiCo2O4 into NF result in higher current signal and specific
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capacitance mainly due to their mutually synergistic effects, compared with Ti3C2/NF and
NiCo2O4/NF.
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(c) CV curves and (d) GCD curves of NiCo2O4/Ti3C2, (e) specific capacitance and (f) Nyquist plots
of NiCo2O4/Ti3C2 and Ti3C2/NF.

The electrochemical performance of NiCo2O4/Ti3C2 is studied in detail, as observed
in Figure 6c–f. Figure 6c shows the CV curves at different scan rates from 10 mV s−1 to
100 mV s−1. Each curve possesses a pair of redox peaks, which can be attributed to the
faradaic reactions of M−O/M−O−OH (M = Co, Ni) [38]. With the increase of scan rate,
the approximately same CV shape indicates the good rate performance of NiCo2O4/Ti3C2.
The oxidation peak and reduction peak shift to the positive range and negative range of
values, respectively, which may result from the polarization effect of electrode material [39].
The GCD curves at various current densities of NiCo2O4/Ti3C2 ranging from 0.5 A g−1 to
10 A g−1 are shown in Figure 6d. It can be seen that the discharge time at 0.5 A g−1 can even
up to 2500 s, which is almost longest among previous reports. The approximately triangular
and symmetrical charge–discharge curves can still be kept even at 10 A g−1, indicating
the rapid I−V response and high charge-discharge reversibility of NiCo2O4/Ti3C2 [40].
Moreover, the corresponding gravimetric specific capacitances (Cm) and volumetric specific
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capacitances (Cp) are calculated by Equations (1) and (2) in Figure 6e. The gravimetric
specific capacitance of 2468 F g−1 and volumetric specific capacitances of 24.7 F cm−3 at
0.5 A g−1 are gained, and 1782 F g−1 (Cm) and 17.8 F cm−3 (Cp) are obtained at 10 A g−1,
both with a high capacitance retention of 72%, demonstrating the good rate performance of
composite.

Nyquist plots of EIS spectrum will provide the information about the electrochemical
reaction kinetics of electrode. A semicircle in high frequency region and a straight line
in low frequency region are comprised in a Nyquist plot. The diameter of semicircle is
related to the charge transfer resistance value (Rct), the straight line is interpreted as the
Warburg resistance (Zw), reflecting the ions diffusion resistance in the electrode, and the
intercept with the real axis represents the equivalent series resistance (Rs) [41,42]. As shown
in Figure 6f, the Rs of NiCo2O4/Ti3C2 (0.69 Ω) is lower than that of Ti3C2/NF (0.81 Ω) on
the basis of equivalent circuit [43], which mainly results from quick electrolyte penetration
into massive channels of NiCo2O4. Simultaneously, these channels and the top sharp ends
of nanowires can easily capture ions, decreasing the ions’ diffusion resistance, as explained
by a more vertical line.

The storage mechanism of NiCo2O4/Ti3C2 electrode is explored based on the CV
curves. The contributions of surface capacitive process and diffusion-controlled process are
analyzed according to the b value in formula i = avb [44,45], where i represents peak current,
v signifies scan rate. “b = 1” declares a surface capacitive process and “b = 0.5” describes
a diffusion-controlled process. As shown in Figure 7a,b, values in charge and discharge
process of NiCo2O4/Ti3C2 are 0.629 and 0.568, respectively, indicating that the energy
storage is determined by both capacitive process and diffusion-controlled process. The
quantitative contributions of surface capacitive process and diffusion-controlled process
at different scan rates are analyzed based on formula i(V) = k1v + k2v1/2 [46], where k1v
and k2v1/2 represent the currents from surface capacitive process and diffusion-controlled
process, respectively. Figure 7b shows that the contribution of surface capacitive process
at 10 mV s−1 is approximately 22%. Moreover, the contribution proportions of surface
capacitive process (Figure 7c) show a constant rising tendency with the increase of scan
rate because of the diffusion delay of electrolyte ions to internal electrode, leading to the
decrease of the contribution of the diffusion-controlled process [47].

NiCo2O4 nanowires composed with massive nanoparticles vertically grow on 3D
Ti3C2/NF skeleton in NiCo2O4/Ti3C2. The excellent electrochemical performance of
NiCo2O4/Ti3C2 can be attributed to its unique structure feature. The excellent capacitance
performance of NiCo2O4/Ti3C2 in a three-electrode system is compared with other carbon-
based electrodes and metal oxides/sulfides-based electrodes in previous works [48–55] and
electrodes with similar morphology (Gd/CeOx nanoflowers/porous carbon [56], Co3O4
nanosheets/carbon foam [57]). The comparison results are listed in Table S1 [48–57]. It is
worth emphasizing that the results in our work are in a high level overall, especially the
specific capacitance (2468 F g−1 at 0.5 A g−1, 2226 F g−1 at 1 A g−1) is even superior to
other works. Firstly, the direct contact without binders among components and amounts
of micropores of NiCo2O4 effectively reduce the interface resistance, and promote ions
and electron transport. Moreover, Ti3C2 nanosheets can make up for the conductivity of
NiCo2O4 by a close contact leading to a continuous electron pathway. Electron transport
in the internal electrode is accelerated. Thirdly, NiCo2O4 nanowires vertically grow on
the Ti3C2/NF substrate rather than the agglomerated urchin behavior, which will reduce
the “dead volume” and further improve electrochemical performance. What is more, the
situ-growth of NiCo2O4 on Ti3C2/NF incites a robust heterostructure, improving the cycle
performance of NiCo2O4/NF.
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3.3. Electrochemical Performances of the ASC

With the destination of investigating the electrochemical performance of NiCo2O4/Ti3C2
electrode applied in supercapacitors, an NiCo2O4/Ti3C2//AC ASC was established. Ini-
tially, the CV curves of AC/NF negative electrode (Figure S5a) were conducted in a three-
electrode system to detect the appropriate potential window. It can be seen that AC/NF
shows polarization in CV curves of −1.1–0 V and −1.2–0 V. Moreover, an approximate
rectangle without polarization can be observed at −1–0 V, indicating the double-electric-
layer energy storage of AC, which also can be proved by the triangle shapes in GCD curves
(Figure S5b). The high rate performance and brilliant kinetics behavior of AC/NF were
evaluated by CV curves at various scan rates (10–100 mV s−1) and GCD curves at various
current densities (0.5–40 A g−1) at −1–0 V (Figure S5c,d) to ensure its superiority and
eliminate its negative effects to ASC.

The CV curves of NiCo2O4/Ti3C2 (0–0.6 V vs. Hg/HgO) and AC/NF (−1–0 V vs.
Ag/AgCl) at 10 mV s−1 in a three-electrode system are displayed in Figure 8a. The
pseudocapacitance characteristics of NiCo2O4/Ti3C2 with redox peaks and the electrical
double-layer characteristics of AC/NF with quasi-rectangle are coupled with each other
and displays an irregular shape, as shown in Figure 8b, suggesting the mutual contribution
of EDLC- and battery-type electrodes to the total capacitance [41]. To our knowledge,
extensive potential window will not only improve the energy density but also increase
the output potential of supercapacitors, which will push them towards a more practical
use. For further determining and optimizing the potential window of ACS, the CV curves
(0–1 V to 0–1.9 V) and the GCD curves (0–1 V, 0–1.2 V, 0–1.4 V, 0–1.6 V with 0.2 V steps
increasing) were tested (Figure S6a,b). It can be observed that the phenomenon of polar-
ization becomes obvious with the increase in potential window from Figure S6a, and the
optimal potential window is considered to be 0–1.6 V. Moreover, the GCD curves further
confirm the accessibility of 0–1.6 V (Figure S6b), which is ultimately certified as the working
potential window of ACS for further study.



Molecules 2022, 27, 6452 12 of 16Molecules 2022, 27, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 8. (a) CV curves of NiCo2O4/Ti3C2 and AC/NF in a three-electrode system, (b) CV curves, (c) 

GCD curves and (d) specific capacitance at various current densities of ACS, (e) cyclic stability of 

ACS at 15 A g−1 for 10,000 cycles, (f) the Ragone plots of the Ti3C2 and Ni−Co based supercapacitors 

in previous works (inset is the Ragone plot of ACS in our work). 

The cyclic life is a critical factor for the device and was evaluated at 15 A g−1 for 10,000 

cycles, as depicted in Figure 8e. The capacitance increases slightly at first due to the acti-

vation progress of the electrode [3], and tends to be steady over 700 cycles, and ultimately 

retains as high as 91.5% of its initial value, revealing an excellent cyclic stability. The ex-

cellent cyclic performance is on account of the close contact among active materials in 

NiCo2O4/Ti3C2 and the robust Ti3C2/NF substrate, holding an interlaced network structure 

with outstanding structural stability, which can support the NiCo2O4 nanowires and 

avoid their collapse and agglomeration in the cycling process. SEM images of 

NiCo2O4/Ti3C2 before and after cycles are displayed in Figure S7. By comparison, no sig-

nificant change is found over 10,000 cycles, and the nanowires structure can be maintained 

well but only some white knots generating on the top of NiCo2O4 nanowires, leading to 

the decrease in the active surface and little loss of capacitance (about 8.5%). Energy density 

and power density are further calculated and plotted to evaluate the device performance 

for practical applications. From the inset of Figure 8f, the ultra-high energy densities up 

to 90, 74.84, 67.67, 59, 51.38, 48 Wh kg−1 can be achieved, when the power densities are 

2880, 5760, 8640, 14,400, 23,119.2, 28,800 W kg−1 at 1, 2, 3, 5, 8, 10 A g−1, respectively. The 

Figure 8. (a) CV curves of NiCo2O4/Ti3C2 and AC/NF in a three-electrode system, (b) CV curves,
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ACS at 15 A g−1 for 10,000 cycles, (f) the Ragone plots of the Ti3C2 and Ni−Co based supercapacitors
in previous works (inset is the Ragone plot of ACS in our work).

Figure 8b presents the CV curves of the ACS device at various scan rates from
10 mV s−1 to 100 mV s−1. The similar shape and the increased area of the CV curves
can be found with the scan rate increasing, suggesting the fast transport of ions and elec-
tron at the electrode/electrolyte interfaces and the good high-current charge/discharge
performance within the device [58]. The GCD curves ranging from 1 A g−1 to 10 A g−1

at a high potential of 0–1.6 V show approximately triangular-like and symmetrical shape
and the negligible IR drop (Figure 8c), manifesting the ideal capacitive behavior [59], the
high coulombic efficiency [60] and the low IR of the device [61]. The corresponding specific
capacitances as a function of current densities are calculated by Equation (3), as shown in
Figure 8d. The specific capacitance can reach up to 253 F g−1 at 1 A g−1, and it decreases
with current density increasing due to the delay of ions diffusion. The specific capacitance
is 135 F g−1 with a retention of 53% at a high current density of 10 A g−1.

The cyclic life is a critical factor for the device and was evaluated at 15 A g−1 for
10,000 cycles, as depicted in Figure 8e. The capacitance increases slightly at first due to
the activation progress of the electrode [3], and tends to be steady over 700 cycles, and
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ultimately retains as high as 91.5% of its initial value, revealing an excellent cyclic sta-
bility. The excellent cyclic performance is on account of the close contact among active
materials in NiCo2O4/Ti3C2 and the robust Ti3C2/NF substrate, holding an interlaced
network structure with outstanding structural stability, which can support the NiCo2O4
nanowires and avoid their collapse and agglomeration in the cycling process. SEM images
of NiCo2O4/Ti3C2 before and after cycles are displayed in Figure S7. By comparison, no sig-
nificant change is found over 10,000 cycles, and the nanowires structure can be maintained
well but only some white knots generating on the top of NiCo2O4 nanowires, leading to
the decrease in the active surface and little loss of capacitance (about 8.5%). Energy density
and power density are further calculated and plotted to evaluate the device performance
for practical applications. From the inset of Figure 8f, the ultra-high energy densities up
to 90, 74.84, 67.67, 59, 51.38, 48 Wh kg−1 can be achieved, when the power densities are
2880, 5760, 8640, 14,400, 23,119.2, 28,800 W kg−1 at 1, 2, 3, 5, 8, 10 A g−1, respectively. The
presented energy density is compared with other reported ASCs based on Ti3C2 and Ni−Co
materials in previous works (Figure 8f), such as Ti3C2Tx/NiS//C/AC (17.688 Wh kg−1

at 750 W kg−1) [62], NiCo2S4/MXene//AC (68.7 Wh kg−1 at 850 W kg−1) [63], MX-
ene/NiCoZDH//AC (34 Wh kg−1 at 748.6 W kg−1) [64], NiCo2O4@Au//AC/NF (19.56 Wh
kg−1 at 782.59 W kg−1) [65], NiCo2O4/rGO/CNT//AC (34.5 Wh kg−1 at 799 W kg−1) [66],
NiCo2O4/Ni wire//Fe3O4/Ni wire (32.6 Wh kg−1 at 846 W kg−1) [67], NiCo2S4//AC
(38.1 Wh kg−1 at 700 W kg−1) [68]. By comparison, the ACS in our work exhibits relatively
high and comparable energy density and power density simultaneously, which manifests
the NiCo2O4/Ti3C2 great potential in the construction of ASCs.

4. Conclusions

The NiCo2O4/Ti3C2 composite was constructed by the two-step method of vacuum
filtration and solvothermal treatment using NF as substrate. The close and direct contact
among vertical hierarchical layers is in favor of the electron transport, and the porous
structure of the obtained NiCo2O4/Ti3C2 provides abundant conductive channels and
active areas, which can reduce ions diffusion resistance and improve kinetic condition. Due
to the synergistic effects of hierarchical components, the NiCo2O4/Ti3C2 possesses a high
specific capability (2468 F g−1 at 0.5 A g−1 and 1782 F g−1 at 10 A g−1) and a good rate
capability. Based on this, a high-performance ACS device based on NiCo2O4/Ti3C2 positive
and AC/NF negative electrodes was assembled. The ACS device exhibits a competitive
capacitance of 253 F g−1 at 1 A g−1 and 135 F g−1 at 10 A g−1 with a relatively high retention
of 53%. Moreover, only 8.5% capacitance loss is discovered after 10,000 cycles at 15 A g−1.
More importantly, the brilliant energy density of 90, 74.84, 67.67, 59, 51.38, 48 Wh kg−1

are achieved at the power density of 2880, 5760, 8640, 14,400, 23,119.2, 28,800 W kg−1,
respectively. This work provides an approach for the design and development of binder-
free electrode in high performance energy storage application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196452/s1, Figure S1: SEM images of (a) Ti3AlC2,
(b) accordion-like Ti3C2; Figure S2: XRD patterns of Ti3AlC2 and Ti3C2; Figure S3: (a,b) SEM
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