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ABSTRACT

We describe a novel system, GRIFFIN (G-protein and
Receptor Interaction Feature Finding INstrument),
that predicts G-protein coupled receptor (GPCR) and
G-protein coupling selectivity based on a support
vector machine (SVM) and a hidden Markov model
(HMM) with high sensitivity and specificity. Based on
our assumption that whole structural segments of
ligands, GPCRs and G-proteins are essential to deter-
mineGPCRandG-protein coupling, various quantitat-
ive features were selected for ligands, GPCRs and
G-protein complex structures, and those parameters
that are the most effective in selecting G-protein type
were used as feature vectors in the SVM. The main
part of GRIFFIN includes a hierarchical SVM classifier
using the feature vectors, which is useful for Class A
GPCRs, the major family. For the opsins and olfac-
tory subfamilies of Class A and other minor families
(Classes B, C, frizzled and smoothened), the bind-
ing G-protein is predicted with high accuracy using
the HMM. Applying this system to known GPCR
sequences, each binding G-protein is predicted with
high sensitivity and specificity (.85% on average).
GRIFFIN (http://griffin.cbrc.jp/) is freely available and
allows users to easily execute this reliable prediction
of G-proteins.

INTRODUCTION

G-protein coupled receptors (GPCRs) with seven transmem-
brane helices are the major membrane proteins that play the

important interface role for signaling to the inner cell. An
external ligand stimulus to a GPCR induces the coupling
with G-proteins (Gi/o, Gq/11, Gs and G12/13) followed by dif-
ferent kinds of signal transduction. Since about half (1) of all
drugs distributed throughout the world are designed to control
these mechanisms, GPCRs are important targets in the devel-
opment of effective drugs.

From the viewpoint of drug design, it will be of utmost
importance to screen a drug for its ability to effectively control
the activation of a specific G-protein, by monitoring the stimu-
lation by different ligands. In general, it is quite difficult
to develop such a high-throughput experimental system;
however, G-protein activity prediction made using bioinform-
atics techniques contributes to the design of an effective
experimental system. Therefore, our purpose is to develop a
program to predict GPCR–G-protein binding selectivity
when both the GPCR sequence and ligand information are
submitted.

The established way to predict protein function is to classify
proteins into functional groups whose members are linked by
sequence similarity using a conventional sequence search
method such as BLAST (2) and FASTA (3). However, in
the case of GPCRs, the function-similarity relationship is
unclear. For example, (i) some homologous GPCR pairs
with the same ligands bind to different kinds of G-protein;
(ii) those pairs that bind to the same type of G-protein bind to
a different ligand; and furthermore (iii) some GPCR pairs bind
to both the same ligand and the same G-protein even though
they show sequence similarity of <25% (4). Given this situ-
ation, various computational methods have been developed to
understand the GPCR signaling mechanisms using not simple
sequence searches but more powerful methods such as hidden
Markov models (HMMs), support vector machines (SVMs)
and statistical analysis. These methods are divided into two

*To whom correspondence should be addressed. Tel: +81 3 3599 8051; Fax: +81 3 3599 8081; Email: m-suwa@aist.go.jp

� The Author 2005. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press
are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but
only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oupjournals.org

W148–W153 Nucleic Acids Research, 2005, Vol. 33, Web Server issue
doi:10.1093/nar/gki495

http://griffin.cbrc.jp/


main branches: classification of GPCRs by ligand type
(5–10) and classification of GPCRs by G-protein type
(11–13). As a result, classification cannot be determined by
the relationship between the external ligand and the G-protein
type.

Compared with previous work, our work is unique because
we intend to develop a program for predicting GPCR–
G-protein coupling specificity from the ligand information
as well as the GPCR sequence. To develop this program,
we assume that the ligand, GPCR and G-protein form a com-
plex, and therefore that structural information about the ligand,
extracellular loops, intracellular loops and the transmembrane
domain of GPCRs is essential for describing the binding of
G-proteins. Since the SVM algorithm has been verified to be a
high-performance classifier, especially for discriminating mul-
tidimensional parameters (5), we have used the SVM method
in this work. We collected the combination of existing
ligand, GPCR and G-protein, picked up various characteristic
quantitative features as feature vector elements in the SVM
from their structural information and, from these quantities,
determined G-protein type. The predicting system includes a
hierarchical SVM classifier using the feature vectors, which is
useful for the Class A GPCR group. For opsins and olfactory
receptors belonging to Classes A, B, C, frizzled and smooth-
ened families, we apply an HMM classification, since these
subfamilies can be directly assigned to a G-protein type. Thus
we constructed the hierarchical system including the HMM
and SVM components. Applying this system to known GPCR
sequences, each binding G-protein is predicted with high sens-
itivity and specificity (>85% on average). Based on this study,
we developed a GRIFFIN web server (http://griffin.cbrc.jp/)
that can predict G-protein coupling specificity using the SVM
and HMM methods.

METHODS

In order to predict GPCR–G-protein coupling selectivity,
GRIFFIN implements two processes, SVM and HMM. The
SVM process is suitable for predicting G-protein coupling
selectivity for the Class A GPCR family. It is well known
that the Class A GPCR family is huge, as it is the major family,
and its large-scale diversity makes it difficult to predict its
coupling G-proteins using only sequence similarity informa-
tion. Therefore, we first applied the SVM method using char-
acteristic quantities extracted from the ligand information and
GPCR structure.

The HMM method is suitable for predicting the coupling
selectivity of G-proteins with GPCRs belonging to opsins and
olfactory receptors (in Class A), Class B, C, frizzled and
smoothened families. Although it is still unclear what kind
of G-protein binds to frizzled and smoothened GPCRs, these
two families can be used as a filter to classify other GPCRs.
For these families, the G-protein prediction is easier because
sequence similarity information (described in terms of the
HMM) directly correlates with functional annotation of the
binding G-protein type.

The SVM and HMM calculations were performed using
the LIBSVM (14) and HMMER (15) software packages,
respectively. The detailed parameters and thresholds used
are described below.

Training dataset

For Class A GPCRs, amino acid sequences were obtained from
the SwissProt and TrEMBL databases. These GPCR
sequences include both ligand and G-protein information
written in TiPS (16) and GPCRDB (17). The number of
Class A GPCR sequences selected as training data for SVM
classification is 132 (Gi/o binding type: 61 sequences; Gq/11

binding type: 47 sequences; Gs binding type: 24 sequences).
And in this work, GPCRs which are coupled with multiple
G-proteins and the G12/13 G-protein family are not considered
because there are not sufficient data to construct a prediction
system.

The redundancy of these sequences was evaluated by
analyzing clusters formed under sequence similarity set to
decrease from 100% to 30% in steps of 1% using BLAST-
CLUST from the BLAST software package (2). One cluster
consisted of two GPCRs (SwissProt IDs PKR1_HUMAN and
PKR2_HUMAN) and appeared at 87% sequence identity, and
the other clusters were not detected until the sequence identity
reached 68%. This result shows that most GPCRs do not have
strong similarities with each other. Though PKR1_HUMAN
and PKR2_HUMAN show strong sequence similarity, as
described above, they bind to different ligands and, therefore,
both sequences should be used as training datasets. For this
reason, 132 sequences are used in this work without a process
of elimination of redundancy.

For opsins and olfactory receptors, Classes B, C, frizzled
and smoothened families, sequences were obtained from the
SwissProt and TrEMBL databases as well as the above-
mentioned 132 Class A GPCRs. Class C GPCR sequences
can be classified into two types, Gi/o binding type and Gq/11

binding type; therefore, this family is separately collected into
two groups. The numbers of GPCRs are 170, 394, 34, 20, 9, 40
and 5 for opsins, olfactory receptors, Class B, Class C for Gi/o

specific, Class C for Gq/11 specific, frizzled and smoothened
families, respectively.

Determination of characteristic quantities used in SVM

To develop the program, we assumed that the ligand, GPCR
and G-protein form a complex, and that therefore the inter-
actions among this complex are all essential factors for
activating G-protein bindings. From this viewpoint, struct-
ural characteristics should be extracted comprehensively
from the ligand, extracellular loops, intracellular loops and
transmembrane domain of GPCRs, although the tertiary
positions of some characteristics are distant from the G-protein
binding site.

To calculate these parameters, the boundaries of the trans-
membrane helix and loop regions of GPCR sequences were
determined from multiple alignments of known Class A fam-
ilies with bovine rhodopsin as a three-dimensional structure
template (PDB ID: 1f88) using CLUSTAL W (18).

In addition to the above parameters, two bit scores are
calculated from GPCR sequences. One is obtained when a
query GPCR sequence is searched against the HMM profile
(peptide profile) constructed from multiple alignments of
GPCR groups binding to a peptide ligand. The other is cal-
culated by the HMM profile (amine profile) of a GPCR group
which is bound to a small amine ligand. Each GPCR in these
two groups was obtained from SwissProt: 439 and 243 for the
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peptide ligand type and the small amine ligand type,
respectively. Detailed parameter information is listed in
Table 1. A Class A GPCR can be plotted to multidimensional
space using a vector composed of these multiple parameters.

SVM classifies these vector representations (feature vectors)
of GPCRs using a multidimensional hyperplane called the
kernel function. Since the SVM is a classifier used to divide
data into two groups, classifications such as (Gs binding type
and others), (Gq/11 binding type and others) and (Gi/o binding
type and others) are performed.

In order to calculate the accuracy in discriminating each
G-protein type (Gi/o, Gq/11 and Gs for the training dataset
containing Gi/o, Gq/11 and Gs binding GPCRs), SVM training
was performed by changing the combination of the feature
vector elements, kernel functions (linear, polynomial, RBF
and sigmoid formula) with parameters C and g , which deter-
mine the shape of kernel function. A cross-validation test is
performed for each combination of parameter sets. The vari-
able ranges of the parameters C, g and cross-validation fold are
from 2�5 to 215, from 2�13 to 23, and from 2 to 5, respectively.

The best combination of feature vector elements and
kernel functions is determined when the product of sensitivity
and specificity shows the highest value of accuracy for evalu-
ating G-protein coupling prediction. As indicated in Table 2,
the discrimination of the Gs binding type is the most success-
ful, with the following five feature vector elements: (i) the
third intracellular loop length, (ii) the C-terminal loop length,
(iii) the total number of arginines and lysines in the C-terminal

region of the intracellular loop, (iv) the existence of proline at
the position corresponding to the 170th residue on rhodopsin,
and (v) the bit score of the amine profile. However, under the
same condition, Gi/o and Gq/11 types cannot be classified with
high accuracy. Thus, in order to predict Gi/o or Gq/11 from the
two proteins with high accuracy, SVM training was performed
again. The best performance results for Gi/o and Gq/11 classi-
fications are shown in Table 3. The highest sensitivity and
specificity for classifying as Gi/o type or Gq/11 type were
achieved when five parameters [(i), (ii), (v) and two additional
parameters: (vi) the bit score of the peptide profile and (vii) the
ligand molecular weight] were used.

Making HMM profiles

HMM profiles were made from each member of the opsins,
olfactory receptors, Classes B, C, frizzled and smoothened
families using the HMMER program (15) (Class C HMM
profiles were made separately from two groups which bind
to Gi/o or Gq/11). To verify the reliability of each profile used
for prediction, all GPCRs were first picked up from GPCRDB
to add as false data for each family. Each family was divided
into four subgroups and 4-fold cross-validation tests were
executed to verify the reliability of HMM profiles (that is,
three-fourths of the subgroups are used as training datasets
and the remaining fourth are used as test data). As a result, for
each HMM profile, we determined the safe threshold score to
discriminate subfamilies with the highest sensitivity and spe-
cificity (Table 4). As shown in Table 4, most families can be
predicted with 100% sensitivity and specificity at each thresh-
old. These results suggest that for each family, sequence
information (described in terms of the HMM) corresponds to

Table 1. Feature quantities used in SVM training as feature vector elements

Feature quantities from structural information of ligands and GPCRs

1. Length of N-terminal loop
2. Length of the first intracellular loop between TMH1 and TMH2
3. Length of the first extracellular loop between TMH2 and TMH3
4. Length of the second intracellular loop between TMH3 and TMH4
5. Length of the second extracellular loop between TMH4 and TMH5
6. Length of the third intracellular loop between TMH5 and TMH6
7. Length of the third extracellular loop between TMH6 and TMH7
8. Length of the C-terminal loop
9. Averaged hydrophobicity of TMH1
10. Averaged hydrophobicity of TMH2
11. Averaged hydrophobicity of TMH3
12. Averaged hydrophobicity of TMH4
13. Averaged hydrophobicity of TMH5
14. Averaged hydrophobicity of TMH6
15. Averaged hydrophobicity of TMH7
16. Bit score calculated when a query is searched against a profile which is

made from sequences of amine binding GPCRs
17. Bit score calculated when a query is searched against a profile which is

made from sequences of peptide binding GPCRs
18. Existence of Pro on the position corresponding to the 170th residue on

BOVIN rhodopsin
19. Existence of Lys or Arg on the position corresponding to 148th residue on

BOVIN rhodopsin
20. Molecular weight of the ligand
21. Number of Lys or Arg corresponding to the 244th, 247th, 248th and 251st

residues on the third intracellular loop of BOVIN rhodopsin
22. Number of Lys or Arg corresponding to the 243rd, 244th, 247th, 248th and

251st residues on the third intracellular loop of BOVIN rhodopsin
23. Number of Phe, His, Tyr or Trp that exist in the C-terminal residue of the

third intracellular loop to the 9th residue in the N-terminal residue of
this loop

24. Number of Asp or Glu that exist in the third intracellular loop

TMH: transmembrane helix.

Table 2. The prediction accuracy of SVM part performed with 132 GPCRs

G-protein
type

n Sensitivity
(%)

Specificity
(%)

Number of
cross-validations

Best kernel
function

Gi/o 61 77.0 78.3 4 RBF
Gq/11 47 68.1 72.7 4 RBF
Gs 24 83.3 95.2 4 RBF

Table 3. The prediction accuracy of SVM part performed with 108 GPCRs

G-protein
type

n Sensitivity
(%)

Specificity
(%)

Fold number
of cross-validation

Best kernel
function

Gi/o 61 91.8 94.9 4 Polynomial
Gq/11 47 93.6 89.8 4 Polynomial

Table 4. The prediction accuracy of HMM part performed with 4-fold cross-

validation

Family G-protein
type

Sensitivity
(%)

Specificity
(%)

Threshold of
bit score

Opsin Gt 99.7 100.0 153.9
Olfactory Golf 100.0 100.0 151.2
Class B Gs 100.0 100.0 68.0
Class C Gi/o 93.5 100.0 1054.6

Gq/11 100.0 100.0 1325.3
Frizzled Unclear 100.0 100.0 168.7
Smoothened Unclear 100.0 100.0 627.6
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specific G-protein type: opsins bind to Gt, olfactory receptors
bind to Golf, most of the Class B family binds to Gs, and the
Class C family binds to Gi/o or Gq/11. The type of G-protein
binding to the frizzled and smoothened families is still unclear;
therefore, these GPCRs can be classified as ‘unknown
G-protein type’. Thus, an HMM profile search can directly
link the G-protein information, and these profiles are useful
filters in the classification of the Class A GPCRs and others.

The integrated system for predicting GPCR–G-protein
coupling selectivity

The integrated system for predicting GPCR–G-protein coup-
ling selectivity is shown as the flowchart in Figure 1. As input
data, this system requires the sequence of query GPCR and
ligand molecular weight, which are converted to feature vector
elements. At the first stage, a query sequence is searched
against the HMM profiles of the opsins and olfactory receptor
subfamilies, Classes B, C, frizzled and smoothened families by

the HMMER program (15) with high accuracy, as shown in
Table 4. If the computed HMM profile score is larger than the
threshold of a certain subfamily (see Table 4), the query
sequence can immediately link to the G-protein information,
and GRIFFIN stops the prediction process.

However, if the query does not meet the above conditions
(i.e. all profile scores are less than each corresponding family
threshold), GRIFFIN continues the processing to the second
stage, which uses the SVM with feature vectors which are
converted from sequence and ligand molecular weight.
Since the prediction of Gs from other G-proteins and Gi/o

or Gq/11 in these two proteins requires different parameter
sets and conditions to achieve the best performance, we con-
structed the following hierarchical system. First, this system
determines whether the query sequence is binding to Gs by
using five parameters and the RBF function. If the query is
predicted to be of the Gs binding type (with 95.2% specificity
and 83.3% sensitivity, Table 2), this result is displayed and
GRIFFIN stops the prediction process. If it is predicted not to

Query sequenceQuery sequence

Display prediction 
result
Display prediction 
result

YesYes

HMMHMM

opsin, olfactory, Classes B, C, 
frizzled or smoothened families?
opsin, olfactory, Classes B, C, 
frizzled or smoothened families?

Gs coupling ?Gs coupling ? GsGs

YesYes

NoNo

SVM SVM 

NoNo

SVMSVM

Gi/o coupling ?Gi/o coupling ?

YesYes

NoNo

•(Five parameters and 
RBF function.)

•(Five parameters and 
polynomial function.)

Gi/oGi/o

Gq/11Gq/11

End

End

End

End

Figure 1. A flowchart of the integrated system for predicting GPCR–G-protein coupling selectivity.
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be of the Gs binding type, GRIFFIN changes the process to
predict Gi/o or Gq/11 coupling selectivity by using the other five
parameters and the polynomial function, with high sensitivity
and specificity as shown in Table 3. After applying this hier-
archical system to known sequences through 10 000 rounds of
4-fold cross-validation, the average discrimination sensitivit-
ies and specificities were 87% and 88% for Gi/o, 85% and 84%
for Gq/11, and 85% and 89% for Gs, respectively. In previous
studies, three methods (11–13) were developed in order to
predict G-protein binding selectivity. The method of Cao

et al. is based on the naive Bayes model and it predicted
the G-protein with 72% sensitivity from 55 GPCRs (11).
Möller et al. indicated >90% specificity with 30–40% sens-
itivity using pattern extraction (12). Sreekumar et al.
succeeded in reducing the error rate of prediction to <1%
(13) using HMM classification. Our method shows better
accuracy than Cao et al. and Möller et al. since it can
predict G-proteins with both high sensitivity and specificity
of >85%. HMM profiles by Sreekumar et al. indicated higher
performance of prediction compared with our method.

(a)

(b)

Figure 2. (a) The top of the GRIFFINwebsite, where theGPCR sequence and ligandmolecular weight can be entered. (b) The result page of a GRIFFIN calculation,
where the predicted G-proteins of the user-defined sequence are indicated together with physicochemical parameters used in the SVM or HMM calculation.
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However, it is difficult to compare their performance with our
method because the GPCR sequences used in their dataset and
their evaluation methodology are different from ours. Most
importantly, our method is the first one to predict G-protein
types by inputting both ligand molecular weight and GPCR
sequence, and this prediction processing is available on the
useful web server GRIFFIN.

THE WEB SERVER: GRIFFIN

Figure 2a shows the home page of the GRIFFIN website
(http://griffin.cbrc.jp/). On this home page, there are small
and large text boxes for entering a sequence name and an
amino acid sequence, respectively. The three small text
boxes at the bottom of the page are for entering the range
of ligand molecular weight (onset, termination and differential
values) from left to right. With this function, by changing the
range of ligand molecular weight, the user can perform the
computational experiment to monitor G-protein binding for
orphan receptors whose ligands are still unknown. Of course,
the user can also predict the type of G-protein by entering only
one value for ligand molecular weight. If ‘Molecular weight
calculator’ is clicked, it navigates to a page where the user can
calculate the molecular weight of a chemical compound when
the chemical equation is entered in the text box and the ‘sub-
mit’ button is clicked. To calculate the molecular weight of the
peptide ligand, this page is linked to the PeptideMass website
(19). The PubChem website, which contains chemical
compound information, is also available via a link at the top
of the page.

When the ‘Predict’ button is clicked, the GRIFFIN system
navigates to the results page (Figure 2b). When the user enters
a range of ligand molecular weight, and if this range matches a
certain G-protein type, the results are displayed with each line
representing a predicted G-protein type. For example,
Figure 2b shows the result when a wide molecular range
(from 100 to 30 000 in steps of 100) is entered; this query
sequence changes between the coupling G-proteins Gi/o and
Gq/11. The query sequence and user-defined name are dis-
played in the FASTA format, with transmembrane regions
colored in red, when the query GPCR belongs to the Class
A family. In addition, feature vector elements and their scores,
which are calculated in the process of prediction, are displayed
in a table.

We believe that GRIFFIN will contribute to the research
into functional assignment of orphan GPCRs and to the design
of experimental systems for screening effective drugs.

ACKNOWLEDGEMENTS

We would like to thank Dr Taisin Kin for useful discussions
pertaining to SVMs. Funding to pay the Open Access

publication charges for this article was provided by the
grant-in-aid for AIST and Mitsubishi Kagaku collaboration.

Conflict of interest statement. None declared.

REFERENCES

1. Drews,J. (1996) Genomic sciences and the medicine of tomorrow.
Nat. Biotechnol., 14, 1516–1518.

2. Altschul,S.F., Adden,T.L., Schaffer,A.A., Zhang,Z., Miller,W. and
Lipman,D.J. (1997) Gapped Blast and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res., 25, 3389–3402.

3. Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological
sequence comparison. Proc. Natl Acad. Sci. USA, 85, 2444–2448.

4. Gaulton,A. and Attwood,T.K. (2003) Bioinformatics approaches for
the classification of G-protein-coupled receptors. Curr. Opin.
Pharmacol., 3, 114–120.

5. Karchin,R., Karplus,K. and Haussler,D. (2002) Classifying G-protein
coupled receptors with support vector machines. Bioinformatics, 18,
147–159.

6. Bhasin,M. and Raghava,G.P.S. (2004) GPCRpred: an SVM-based
method for prediction of families and subfamilies of G-protein coupled
receptors. Nucleic Acids Res., 32, 383–389.

7. Lapnish,M., Gutcaits,A., Prusis,P., Post,C., Lundstedt,T. and
Wikberg,J.E.S. (2002) Classification of G-protein coupled receptors by
alignment-independent extraction of principle chemical properties of
primary amino acid sequences. Protein Sci., 11, 795–805.

8. Huang,Y., Cai,J., Ji,L. and Li,Y. (2004) Classifying G-protein coupled
receptors with bagging classification tree. Comput. Biol. Chem., 28,
275–280.

9. Qian,B., Soyer,O.S., Neubig,R.R. and Goldstein,R.A. (2003) Depicting a
protein’s two faces: GPCR classification by phylogenetic tree-based
HMMs. FEBS Lett., 554, 95–99.

10. Attwood,T.K., Croning,M.D.R. and Gaulton,A. (2001) Deriving
structural and functional insights from a ligand-based hierarchical
classification of G-protein-coupled receptors. Protein Eng., 15, 7–12.

11. Cao,J., Panetta,R., Yue,S., Steyaert,A., Young-Bellido,M. and Ahmad,S.
(2003) A naive Bayes model to predict coupling between seven
transmembrane domain receptors and G-proteins. Bioinformatics, 19,
234–240.
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