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Background: Interaction of the programmed death receptor 1 (PD-1) and its ligand,

PD-L1, suppresses T cell activity and permits tumors to evade T cell-mediated immune

surveillance. We have recently demonstrated that antigen-specific CD8+ T cells

transducedwith a PD1-CD28 fusion protein are protected fromPD-1-mediated inhibition.

We have now investigated the potential of PD1-CD28 fusion protein-transduced CD4+ T

cells alone or in combination with CD8+ T cells for immunotherapy of pancreatic cancer

and non-Hodgkin lymphoma.

Methods: OVA-specific CD4+ and CD8+ were retrovirally transduced with the

PD1-CD28 fusion protein. Cytokine release, proliferation, cytotoxic activity, and

phenotype of transduced T cells were assessed in the context of Panc02-OVA (murine

pancreatic cancer model) and E.G7-PD-L1 (murine T cell lymphoma model) cells.

Results: Stimulation of PD1-CD28 fusion protein-transduced CD4+ T cells with

anti-CD3 and recombinant PD-L1 induced specific T cell activation, as measured

by IFN-y release and T cell proliferation. Coculture with Panc02-OVA or E.G7-PD-L1

tumor cells also led to specific activation of CD4+ T cells. Cytokine release and

T cell proliferation was most effective when tumor cells simultaneously encountered

genetically engineered CD4+ and CD8+ T cells. Synergy between both cell

populations was also observed for specific tumor cell lysis. T cell cytotoxicity was

mediated via granzyme B release and mediated enhanced tumor control in vivo.

Transduced CD4+ and CD8+ T cells in co-culture with tumor cells developed

a predominant central memory phenotype over time. Different ratios of CD4+

and CD8+ transduced T cells led to a significant increase of IFN-y and IL-2

secretion positively correlating with CD4+ T cell numbers used. Mechanistically, IL-2

and MHC-I were central to the synergistic activity of CD4+ and CD8+ T cells,

since neutralization of IL-2 prevented the crosstalk between these cell populations.
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Conclusion: PD1-CD28 fusion protein-transduced CD4+ T cells significantly improved

anti-tumoral effect of fusion protein-transduced CD8+ T cells. Thus, our results indicate

that PD1-CD28 fusion protein-transduced CD4+ T cells have the potential to overcome

the PD-1-PD-L1 immunosuppressive axis in pancreatic cancer and non-Hodgkin

lymphoma.

Keywords: adoptive T cell transfer, cancer immunotherapy, costimulation, PD-1-CD28 fusion protein, CD4+ T cells

INTRODUCTION

Cytotoxic T cells specifically recognize tumor antigens presented
on major histocompatibility complex-1 (MHC-I). After binding
to the tumor antigen in the context of MHC, T cells are activated,
which results in the secretion of cytotoxic factors and target cell
lysis (1, 2). This concept is utilized therapeutically for adoptive
T cell therapy (ACT). Patient-derived, tumor-specific T cells
are expanded ex vivo or, to further enhance tumor-specificity,
are genetically modified. T cell engineering usually follows two
main approaches; either by introducing a T cell receptor specific
for a given tumor-associated antigen or by equipping T cells
with chimeric antigen receptors (CAR), which are synthetic
receptors enabling tumor recognition. Following expansion, T
cells are infused back to the patient in therapeutic intention (3).
Pioneering work for ACT utilized tumor-infiltrating lymphocytes
(TIL) for melanoma treatment yielding consistent durable
response rates in subsets of patients. The challenges to generate
these cells from tumor tissue of individual patients or even across
entities has so far refrained this strategy from large scale clinical
testing (4). Based on compelling preclinical and clinical data in
hematological malignancies, ACT holds great promise for cancer
immunotherapy. In 2017, the Food and Drug Administration
(FDA) approved the first cellular therapy for refractory B-cell
acute lymphoblastic leukemia (B-ALL) and diffuse large B cell
lymphoma. Anti-CD19-CAR T cells are now part of the standard
of care in the US, based on unparalleled remission rates and
prolonged overall survival for patients with an otherwise very
poor prognosis (5). In addition, ACT is under investigation for
the treatment of other hematologic as well as more frequent non-
hematological malignancies. Typically, ACT is performed with a
mixture of CD4+ and CD8+ T cells, which is dictated by the
patient’s own peripheral blood T cell ratio and the differential
expansion status in cell culture. Some protocols also adjust for
defined ratios, based on own evidence that this might be more
beneficial (6–8). When being transduced for tumor specificity
both cell types are being modified and in the case of CAR T
cells, both cell populations are thought to be therapeutically
relevant (9).

However, CD8+ T cells are generally considered more potent

and more central for ACT efficacy. CD4+ T cells have a distinct

functional and secretory phenotype from CD8+ T cells which is
neither redundant nor overlapping. Importantly, CD4+ T cell-

derived cytokines play an important role in anti- but also in pro-
tumoral immunity (10, 11). While it is established that CD4+

T cells can be cytotoxic on their own, a major function lays
in regulating trafficking, activation, proliferation, differentiation,

and persistence of tumor-infiltrating cytotoxic CD8+ T cells (12–
15). Several studies have confirmed the helper function of tumor-
specific CD4+ T cells and showed that the anti-tumor activity
of combined treatment with CD4+ and CD8+ T cells is more
pronounced than that seen when using individual cell types.
The exact mechanism of this synergy remains to be elucidated
(16–18).

Despite the clinical success of ACT in defined indications,
ACT is inherently limited by antigen-loss variants of tumor
cells, side effects resulting from on- and off-target expression
of the chosen antigen and low T cell infiltration into the
tumor tissue. ACT failure is often associated with an increased
expression of the programmed death-1 receptor (PD-1), a marker
protein for T cell anergy, on previously activated T cells (19,
20). PD-1 signaling mediates T cell suppression that prevents
autoimmunity under physiological conditions and is therefore a
key immune checkpoint on CD4+ and CD8+ T cells (21, 22).
PD-L1, one of the two known ligands for PD-1, is broadly
expressed on epithelial as well as hematological cells and shields
these cells from T cell overactivation (23). Along these lines,
tumors usurp this mechanism to evade anti-tumor immune
responses (24). It is thereby not surprising, that undulating
PD-L1 expression is found in most if not all human cancers
at different levels and its expression is associated with dismal
prognosis in the pre-immunotherapy era (25). Paradoxically,
recognition of tumor cells by T cells transferred for ACT will
result in T cell activation, upregulation of PD-1 on the said T
cell, but also of PD-L1 on the tumor cell. This will ultimately
end in abrogation of T cell activity and thereby ACT failure
(26). Clinical evidence that this state of anergy might be reverted
when antagonizing the PD-1-PD-L1 axis has been shown in
several phase III clinical trials testing anti-PD-1 or anti-PD-L1
antibodies in melanoma or non-small cell lung cancer (27–31).
Based on these studies, it seems likely that a similar approach
might also be of value for ACT. As both checkpoint blockade and
ACT have severe side effects on their own, it might be advisable to
develop more targeted strategies to overcome T cell anergy than
systemically blocking important immune checkpoints.

To overcome PD-1 suppression selectively and to improve
ACT, we have developed a therapeutic concept that converts
tumor-associated immunosuppression via the PD-1-PD-L1 axis
into stimulation of tumor-specific T cells (32). We created a
fusion receptor consisting of the extracellular domain of the PD-
1 receptor fused to the intracellular, T cell-activating domain
of CD28. In the tumor tissue, PD-1-CD28 fusion protein-
expressing CD8+ T cells recognize tumor-derived PD-L1 and get
locally activated. This results in tumor cell lysis and therapeutic
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benefit. It, however, remained unclear if the benefit is specific
to CD8+ T cells, and particularly if adding this fusion protein
to CD4+ T cells would further accelerate therapeutic activity.
We hypothesized that our PD-1-CD28 fusion protein is not
only functional in antigen-specific CD4+ T cells but also that
simultaneous introduction in CD8+ T cells would further
enhance T cell function. Here, we demonstrate that primary
murine CD4+ T cells, expressing PD1-CD28 fusion protein,
overcome PD-L1-induced T cell anergy in murine models
of pancreatic cancer and non-Hodgkin lymphoma. Coculture
experiments demonstrate a synergism of gene-modified CD4+
and CD8+ T cells for anti-tumor activity, which was dependent
on IL-2 secretion from CD4+ T cells. Our results indicate the
potential of PD1-CD28 fusion protein-transduced CD4+ T cells
to further improve ACT.

MATERIALS AND METHODS

Cell Lines
Panc02-OVA, a murine pancreatic cancer cell line and E.G7-
OVA, a murine T cell lymphoma cell line, were previously
described (32, 33). Panc02-OVA-PD-L1 and E.G7-OVA-PD-L1
were generated by transduction of Panc02-OVA or E.G7-OVA
cells with pMXs-puro or pMXs (a generous gift from Toshio
Kitamura,M.D., PhD, the Institute ofMedical Science, University
of Tokyo, Japan) encoding the full-length murine PD-L1 (Swiss-
Prot accession number Q9EP73). Panc02-OVA-PD-L1 cells were
selected based on puromycin resistance. E.G7-OVA-PD-L1 cells
were obtained by fluorescence activated cell sorting. Panc02-OVA
and Panc02-OVA-PD-L1 were cultured in DMEM3+ (DMEM
with 10 % fetal bovine serum [FBS, Life Technologies, USA), 100
U/ml penicillin and streptomycin (PS), and 2mM L-glutamine
(all from PAA, Germany)]. E.G7-OVA-PD-L1 were cultured in
RPMI 1,640 supplemented with 10% FBS, 100 U/ml PS and
2mM L-glutamine, 1mM sodium pyruvate (PAA, Germany),
and 1mM HEPES (Sigma Aldrich, Germany).The retroviral
ecotrophic packaging cell line Platinum-E was purchased
from Cell biolabs (USA). DMEM3+ medium for Platinum-E
cells additionally contained 10µg/ml puromycin and 1µg/ml
blasticidin (both from Sigma, Germany). Primary murine T cells
were cultured in RPMI 1640 supplemented with 10% FBS, 100
U/ml PS and 2mM L-glutamine, 1mM sodium pyruvate (PAA,
Germany), 1mM HEPES (Sigma Aldrich, Germany), and 50µM
β-mercaptoethanol.

Mice
Mice transgenic for a T cell receptor specific for ovalbumine
(OT-1 or OT-2) were obtained from the Jackson laboratory (Bar
Harbor, ME) (stock number 003831 for OT-1 and 004194 for OT-
2) and were bred in our animal facility under SPF conditions.
Both mouse strains served as T cell donors for primary murine
T cell transduction.

Animal Experiments
For in vivo studies wild type C57/Bl6 mice were purchased from
Charles River. Tumors were induced by subcutaneous injection
of 4 x 105 E-G7-OVA-PD-L1 tumor cells. Mice were randomized

with regard to tumor size and treated via serial transfer of
PTM-transduced or untransduced T cells: First, CD8+ T cells
were injected i.v. 48 h later, CD4+ T cells were injected i.v.
Tumor growth was assessed every other day in a blinded fashion
and tumor volume was estimated according to the following
formula: 4/3 x π x L21 x L2 (with L1 defined as maximal diameter
and L2 as the diameter perpendicular to L1). All experiments
were approved by the local regulatory agency (Regierung von
Oberbayern).

T Cell Transduction
The PD1-CD28 fusion protein was described previously
(32). The retroviral vector pMP71 (kindly provided by
Christopher Baum, M.D., Institute of Experimental Hematology,
Medizinische Hochschule Hannover, Germany) was utilized
for all transduction experiments. Detailed protocols for murine
T cell transduction have been published (34–37). In brief,
pMP71 PD1-CD28 vector was transfected into Platinum-E
cells and retrovirus-containing supernatants were collected
for transduction of murine T cells. Primary murine T cells
were first stimulated with anti-CD3e and anti-CD28 antibody
(eBioscience, clones 145-2C11 and 37.51, respectively) and
recombinant IL-2 (Novartis, Switzerland). Priot to transduction,
anti-CD3- and anti-CD28 beads (Life technologies, USA) were
added. Recombinant IL-15 (Peprotech, Germany) was used for
T cell expansion. The CD4+ T cell fraction was purified on the
day of spleen extraction by magnetic activated cell sorting using
a CD4+ T cell isolation kit (Miltenyi Biotec, Germany).

Flow Cytometry
For multi-color flow cytometry, a BD FACS Canto II (BD
bioscience, Germany) together with the following antibody
panels was used. For purity testing and analysis of transduction
efficiencies, anti-PD-1 (APC, clone RMP-30, BioLegend, USA),
anti-CD8 (Pacific BlueTM, clone 53-6.7, BioLegend, USA) and
anti-CD4 (Pacific BlueTM e, clone GK1.5, BioLegend, USA)
were used. For analysis of MHC I-, MHCII-, and PD-L1-
expression, tumor cells were stained with anti-MHCI (PE,
clone M1/42.3.9.8, Elabscience, USA), anti-MHCII (APC, clone
M5/114.15.2, eBioscience, USA) and anti-CD274 (PE/Cy7, clone
10F.9G2, BioLegend, USA). Rat IgG2a– (PE, clone #54447, R&D
Systems, USA), Rat IgG2b kappa—(APC, clone eB149/10H5,
eBioscience, USA) and Rat IgG2b kappa—antibodies (PE/Cy7,
clone RTK4530, BioLegend, USA) were applied as isotype
control. For proliferation analysis in antibody-stimulation assays,
T cells were stained with anti-PD-1 (APC, clone RMP-30,
BioLegend, USA), anti-CD28 (APC, clone 37.51, BioLegend,
USA), anti-CD4 (Pacific BlueTM, clone GK1.5, BioLegend,
USA), and Zombie aqua fixable viability dye (BioLegend, USA)
prior to fixation and permeabilization with FoxP3/Transcription
Factor Staining Buffer Set (eBioscience, USA). For staining of
intracellular proteins, anti-Ki67 (PE, clone 16A8, BioLegend,
USA) and anti-EOMES (PE/Cy7, clone DAN11mag, eBioscience,
USA) were added. Cells were washed and resuspended in PBS
(Lonza, Switzerland) containing count bright absolute counting
beads (Life technologies, USA). For proliferation analysis in
cocultures of T cells and tumor cells, T cells were stained
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with anti-PD-1 (APC, clone RMP-30, BioLegend, USA), anti-
CD4 (Pacific BlueTM, clone GK1.5, BioLegend, USA), anti-
CD8 (APC/Cy7, clone 53-6.7, BioLegend, USA), and Zombie
aqua fixable viability dye (BioLegend, USA). Equal amounts of
counting beads (Life technologies, USA) were added to each
sample. The antibody panel for T cell phenotyping consisted of
anti-PD-1 (FITC, clone 29F.1a12, BioLegend, USA), anti-CD8
(APC/Cy7, clone 53-6.7, BioLegend, USA), anti-CD4 (PE/Cy7,
clone RM4-5, BioLegend, USA), anti-CD62L (Pacific BlueTM,
clone MEL-14, BioLegend, USA), anti-CCR7 (PerCP/Cy5.5,
clone 4B12, BioLegend, USA), and Zombie aqua fixable viability
dye (BioLegend, USA).

MHC I-, MHC II-, and PD-L1-Profiling of
Tumor Cells
For the analysis of MHC I-, MHC II-, and PD-L1-expression on
Panc02-OVA and E.G7-OVA-PD-L1, 5 × 104 tumor cells were
stimulated for 48 h with recombinant murine IFN-γ (Peprotech,
USA) at increasing concentrations of 2, 20, or 100 ng/ml
respectively and analyzed by flow cytometry as described above.

Antibody-Stimulation Assays
For antibody-stimulation assays, T cells were stimulated with
anti-CD3 antibody (100 ng/ml, clone 145-2C11, eBioscience),
anti-CD3 antibody and recombinant PD-L1-Fc chimera protein
(5µg/ml, R&D Systems) or anti-CD3 antibody and anti-CD28
antibody (2µg/ml, clone 37.51, eBioscience) for 48 h. Mitotic
activity and CD28 surface expression was analyzed by flow
cytometry. Cells were stained as indicated and cell numbers were
normalized with counting beads (Life Technologies, Germany).
Cytokine release was quantified by ELISA (IL-2 and IFN-γ,
both BD).

Cocultures of T Cells and Tumor Cells
For T cell-tumor cell cocultures, CD8+ and CD4+ T cells
(in a 3:1, 1:1, or 1:3 cell ratio) were prestimulated with anti-
CD3 antibody (100 ng/ml, clone 145-2C11, eBioscience) and
recombinant PD-L1-Fc chimera protein (5µg/ml, R&D Systems)
for 24 h, as described above. T cells were then cocultured
for 16 h with either E.G7-OVA-PD-L1, Panc02-OVA, or Panc-
OVA-PD-L1 tumor cells in a 10:1 effector to target cell ratio.
Cytokine release was quantified by ELISA (IL-2 and IFN-
γ). For cytotoxicity assays, tumor cell-derived LDH release
was quantified after 16 h using CytoTox 96 R© Non-Radioactive
Cytotoxicity Assay (Promega, USA). Granzyme B secretion was
determined using Mouse Granzyme B DuoSet R© ELISA (R&D
systems, USA). For T cell phenotyping and proliferation assays,
T cells were cocultured with Panc-OVA-PD-L1 for 36 h, as
described above. T cell phenotype and proliferation was analyzed
by flow cytometry as described above.

MHC I, MHC II, and IL-2 Neutralization
Assays
ForMHC I, MHC II, and IL-2 neutralization experiments, CD8+
and CD4+ T cells (in a 1:1 ratio) were prestimulated with anti-
CD3 antibody and recombinant PD-L1-Fc chimera for 24 h.
Subsequently, T cells and Panc02-OVA cells were cocultured at a

10:1 effector to target cell ratio. Anti-mouseMHC class I antibody
(10µg/ml, clone M1/42.3.9.8, InVivoMAb), anti-mouse MHC
class II antibody (10µg/ml, clone M5/114.15.2, eBioscience)
and LEAF purified anti-mouse IL-2 antibody (10µg/ml, clone
JES6-1A12, BioLegend) were added during prestimulation and
co-culture. Supernatants were analyzed for IFN-γ by ELISA.

Statistical Analysis
For statistical analysis, GraphPad Prism software version 7.04
was used. Reported values are continuous. Differences between
experimental conditions were analyzed using the unpaired two-
sided Student’s t-test. P-values < 0.05 were considered as
significant. Data shown are mean values ± SEM of at least
three biological replicates representative for three independent
experiments as indicated.

RESULTS

Functional Analysis of PD1-CD28 Fusion
Protein (PTM) in CD4+ T Cells
To characterize the functionality of PTM in CD4+ T cells, we
transduced PTM into primary murine CD4+ T cells. PTM-
transduced and untransduced T cells were then stimulated with
anti-CD3 antibody, anti-CD3 antibody and recombinant PD-
L1 or anti-CD3 antibody and anti-CD28 antibody for 48 h.
CD4+ PTM-transduced T cells showed significantly higher IFN-
γ release as compared to untransduced T cells (Figure 1A).
T cell activation was paralleled by an increase in T cell
viability and T cell proliferation (Figures 1B,C). Untransduced
CD4+ T cells were more strongly stimulated by anti-CD3 than
PTM-transduced CD4+ T cells, while combination with anti-
CD28 antibodies brought PTM-transduced T cells to a similar
level of stimulation as untransduced T cells in this control
condition. Similarly, expression of the mitogenic marker Ki67
was higher in PTM-transduced T cells than in untransduced T
cells (Figure 1D). Expression of Eomesodermin (EOMES), a T
cell differentiation marker, was highest for anti-CD3 and PD-L1-
stimulated, transduced T cells compared to untransduced cells
(Figure 1E). Together, these results demonstrate that PTM is
functional in CD4+ T cells and enhances their functionality.

Functional Analysis of PTM-Transduced T
Cells Cocultured With Tumor Cells
To assess the therapeutic potential of PTM-transduced CD4+
T cells in vitro, we prestimulated antigen-specific CD4+ or
CD8+ PTM-transduced or untransduced T cells at a ratio
of 1:1 with anti-CD3 antibody and recombinant PD-L1 for
24 h. Prestimulation was performed to mimic primary antigen
contact and to induce partial anergy of the cells, as expected
in the tumor environment. CD4+ or CD8+, untransduced, or
transduced T cells were then cocultured alone or in different
combinations with either Panc02-OVA cells or E.G7-PD-L1 cells.
PTM-transduced CD4+ andCD8+T cells producedmore IFN-γ
in contact with either cell line compared to untransduced T
cells (Figure 2A). Highest IFN-γ secretion was measured for
both tumor cell lines when PTM-transduced CD4+ and PTM-
transduced CD8+ were combined. The same effect was observed
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FIGURE 1 | In vitro characterization of PD1-CD28 fusion protein (PTM)-transduced CD4+ T cells. PTM-transduced or untransduced primary murine CD4+ T cells

were either stimulated with anti-CD3 antibody, anti-CD3 antibody, and recombinant PD-L1 or anti-CD3 antibody and anti-CD28 antibody. (A) Interferon-γ (IFN-γ)

secretion was measured by enzyme linked immunosorbent assay (ELISA). (B) T cell number was analyzed by flow cytometry and normalized to standardized counting

beads. (C) Viability of T cells was assessed by flow cytometry. (D) After 48 h of stimulation T cells were intracellularly stained for Ki67, a mitosis marker or (E) for the

differentiation marker eomesodermin (EOMES). Experiments (A–E) are representative of three independent experiments each performed in triplicates. Bars represent

SEM and P values from Student’s t-test are shown. All tests are two-sided.
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for IL-2 release (Figure 2B). T cell activation was followed
by a similar effect on T cell-mediated cytotoxicity. CD4+
and CD8+ PTM-transduced T cells, prestimulated individually,
induced significant lysis of Panc02-OVA and E.G7-PD-L1 cells
as compared to untransduced T cells (Figure 2C). Similar to
cytokine production, cytotoxic activity was highest, when CD4+
and CD8+ PTM-transduced T cells were cocultured with tumor
cells as compared to control conditions. Mechanistically, T
cell cytotoxicity correlated with granzyme B release indicating
that T cell degranulation is the mode of action, which is
boosted by PTM transduction (Figure 2D). T cell cytotoxicity
was accompanied by an increase in the number of CD8+ T cells
in coculture with CD4+ T cells and Panc02-OVA (Figure 2E).
PTM-transduced CD4+ T cells in coculture with Panc02-
OVA-PD-L1 cells developed a predominant central memory
phenotype, defined by CCR7+ and CD62L+ expression, over
time (Supplementary Figure 1A). The effect on CD4+ T cells
was strongest in the presence of untransduced or PTM-
transduced CD8+ T cells. However, PTM-expression on CD8+
T cells alone, did not have an influence on the CD4+ T
cell phenotype. CD8+ T cells, in contrast, differentiated into
central memory T cells within the same experimental setting
(Supplementary Figure 1B). In these cocultures, the amount of
effector memory T cells was reduced in both, CD4+ and CD8+
T cells transduced with PTM (Supplementary Figures 1C,D).
Our results suggest that CD4+ PTM-transduced T cells have
therapeutic activity in vitro and point toward a synergistic
collaboration of CD4+ and CD8+ T cells. Of note, this effect
was highest when PTM was expressed by both T cell subsets. In
vivo, combined treatment of OT1-PTM with OT2-PTM T cells
mediated enhanced tumor control over PTM-transduced OT1T
cells, OT1 plus OT2T cells and OT1 plus PTM-OT2T cells in
the EG7-PD-L1 model (Figure 2F). These results indicate the
potential value of the strategy in vivo.

CD4+ to CD8+ T Cell Ratio Positively
Influence the Activity of PTM-Transduced T
Cells via IL-2 in Coculture With Tumor Cells
To test the CD4+ to CD8+ T cell ratio with the highest
synergistic potential, we prestimulated antigen-specific,
untransduced, or PTM-transduced CD8+ T cells and increasing
numbers of antigen-specific, untransduced, or PTM-transduced
CD4+ T cells with anti-CD3 antibody plus recombinant PD-L1.
CD4+- or CD8+-, untransduced or transduced T cells were
then cocultured alone or in different combinations with either
Panc02-OVA or E.G7-PD-L1. In both tumor models, IFN-γ
secretion, as indicator for T cell activation, was highest when
PTM+ CD4+ and PTM+ CD8+ T cells were combined
(Figures 3A,B). IFN-γ level positively correlated with the
number of CD4+ T cells present in the coculture, accompanied
by comparable IL-2 levels (Figures 3C,D). IL-2 levels were
highest when PTM+ CD4+ and PTM+ CD8+ were cocultured
with target cells. IL-2 production was tightly correlated with
the number of CD4+ cells, pointing toward a potential role
of IL-2 in their collaborative activity. To test this hypothesis,
T cells were prestimulated and incubated with Panc02-OVA

cells in the presence of anti-IL-2 neutralizing antibody. T cell
activation, measured by IFN-y release, was almost abrogated
through neutralization of IL-2 (Figure 3E). Similarly, synergy
in T cell cytotoxicity was also blocked by anti-IL-2 neutralizing
antibody in cocultures of Panc02-OVA cells with PTM+ CD4+
and PTM+ CD8+ T cells (Supplementary Figure 2). Taken
together, our results demonstrate that the synergistic effect of
transduced CD4+ and CD8+ T cells is dose-dependent and is
mediated by IL-2.

Synergistic Activity Is Dependent on PD-L1
and MHC I but Not on MHC II Expression
To further delineate the synergistic action of OT1-PTM and
OT2-PTM T cells, we addressed the expression of potential
components of the system on the tumor cell side. We therefore
analyzed MHC I for OT1T cell recognition, PD-L1 for PTM-
T cell activation and MHC II for OT2T cell activation. In
both models—Panc02-OVA and EG7-PD-L1—we found strong
expression of MHC I but not of MHC II (Figures 4A,B). Not
surprisingly, PD-L1 was constitutively overexpressed on EG7-
PD-L1 and could be induced on Panc02-OVA upon IFN-γ
stimulation (Figures 4A,B). Functionally, the observed synergy
on EG7-PD-L1 of OT1-PTM and OT2-PTM T cells (Figure 4C)
was entirely abrogated on OVA negative EL4T cells (Figure 4D).
Importantly this was not due to lack of MHC I or PD-L1
expression (not shown). Identical results were found when EG7-
PD-L1 were pretreated with MHC I-blocking antibodies. As
in the absence of OVA, T cell activity was entirely abrogated
(Figure 4E). In contrast, MHC II-blockade did not impact on T
cell recognition by combined OT1-PTM and OT2-PTM T cells
(Figure 4F). These results indicate that both PD-L1 and MHC
I but not MHC II are essential for the activity of our proposed
strategy.

DISCUSSION

ACT, especially for solid tumors, is often limited by the
immunosuppressive tumor milieu. Tumor cells evade
an efficient tumor immune response especially via the
PD-1-PD-L1 axis. Here, we report that CD4+ T cells,
expressing a PD1-CD28 fusion receptor, have the potential
to overcome PD-L1-mediated T cell suppression. We
hypothesized that PTM-transduced CD4+ T cells might
further boost the efficacy of CD8+ T cells in vitro,
pointing toward potential avenues for translation of the
approach.

Inhibitory receptors, such as PD-1 and CTLA-4, are
important checkpoint molecules that prevent autoimmunity
under physiological conditions. However, when expressed by
tumor-infiltrating T cells these molecules strongly prevent an
effective anti-tumor response. Following a similar strategy, a
costimulatory CTLA-4–CD28 fusion receptor was shown to
induce large amounts of IL-2 and high proliferation of CD4+
T cells when introduced in the latter, strengthening the idea
of such fusion proteins to support CD4+ T cell activity
(38). We previously described a PD1-CD28 fusion protein
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FIGURE 2 | In vitro and in vivo assessment of anti-tumor efficacy of PD1-CD28 fusion receptor (PTM receptor)-transduced CD4+ and CD8+ T cells. (A)

PTM-transduced, untransduced primary murine OT-1, PTM-transduced, untransduced primary murine OT-2 T cells, or OT-1 together with OT-2 T cells were

prestimulated for 24 h with anti-CD3 antibody plus recombinant PD-L1. T cells were then cocultured with Panc02-OVA or E.G7-PD-L1 cells. Interferon-γ (IFN-γ)

secretion was measured by enzyme linked immunosorbent assay (ELISA). (B) Interleukin-2 (IL-2) release was measured by ELISA. (C) PTM-transduced, untransduced

primary murine OT-1, PTM-transduced, untransduced primary murine OT-2 T cells, or OT-1 together with OT-2 T cells were prestimulated for 24 h with anti-CD3

antibody and recombinant PD-L1. In the meantime, Panc02-OVA or E.G7-PD-L1 cells were seeded and grown prior to the addition of T cells. LDH release

measurement from lysed tumor cells was performed after 16 h of coculture. (D) Granzyme B secretion by T cells cocultured with E.G7-PD-L1 cells for 16 h measured

by ELISA. (E) PTM-transduced, untransduced primary murine OT-1, PTM-transduced, untransduced primary murine OT-2 T cells or OT-1 together with OT-2 T cells

were prestimulated for 24 h with anti-CD3 antibody plus recombinant PD-L1 and then cocultured with Panc02-OVA cells. T cell numbers were analyzed by flow

cytometry and normalized to standardized counting beads. (F) 30 mice were subcutaneously injected with E.G7-OVA-PD-L1 tumor cells in two independent

experiments. As soon as all tumors were established, the mice were randomized, assigned to five different treatment groups and treated with either PTM-transduced

(n = 6) or untransduced primary murine OT1T cells (n = 7) or with PTM-transduced (n = 4) or untransduced (n = 4) primary OT2T cells in combination with OT1T

cells or PTM-transduced OT-1 T cells (n = 9). Tumor growth was assessed every other day in a blinded fashion and tumor volume was calculated as indicated. Pooled

data from two independent experiments is shown here. Curves are censored by the time the first mice had to be taken out of the experiment either due to tumor size

or ulceration (day 10). Experiments (A–E) are representative of three independent experiments each performed in triplicates. Experiment (F) represents pooled data of

two independent experiments. Bars represent SEM and P values from Student’s t-test are shown. All tests are two-sided.
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FIGURE 3 | In vitro characterization of PD1-CD28 fusion protein (PTM)-transduced CD4+ and CD8+ T cells in T cell-tumor cell cocultures at different CD4+ to CD8+

T cell ratios in the presence or absence of a neutralizing anti-IL-2-antibody. (A,B) PTM-transduced or untransduced primary murine OT-1, PTM-transduced or

untransduced primary murine OT-2 T cells or combinations of these were prestimulated for 24 h with anti-CD3 antibodies plus recombinant PD-L1. Three different

ratios of CD4+ to CD8+ T cells were applied (i.e., 3:1, 1:1, or 1:3 CD4+ to CD8+ T cell ratio). After prestimulation, the T cells were cocultured with Panc02-OVA or

E.G7-PD-L1 cells for a further 48 h. The resulting Interferon-γ (IFN-γ) release was measured by enzyme linked immunosorbent assay (ELISA). (C,D) The concentration

of interleukin-2 (IL-2) in the supernatants was measured by ELISA. (E) PTM-transduced or untransduced primary murine OT-1, PTM-transduced or untransduced

primary murine OT-2 T cells or combinations of these were prestimulated for 24 h with anti-CD3 antibodies plus recombinant PD-L1. T cells were then cocultured with

Panc02-OVA. In the blocking condition, a neutralizing anti-IL-2 antibody was present during the period of prestimulation and coculture. The resulting IFN-γ release

was measured by ELISA. Experiments (A–E) are representative of three independent experiments each performed at least in triplicates. Bars represent SEM and P

values from Student’s t-test are shown. All tests are two-sided.

that rendered antigen-specific CD8+ T cells resistant to PD-
1-PD-L1-mediated anergy. Thus, we wondered if this would
also apply to CD4+ T cells in a similar fashion (32). In
the present manuscript, we could indeed transfer the activity
of PTM to CD4+ T cells boosting T cell proliferation and
cytokine production in the presence of cancer cells, which further
underlines underpinning previous data using a CTLA-4-CD28
fusion receptor.

CD4+ T cells exert potent anti-tumoral effects on their
own right (10, 15). This can be mediated either through direct
recognition of MHC II+ tumor cells or indirectly through
secretion of IFN-γ and activation of bystander myeloid cells
(15). In addition, CD4+ T cells can support and contribute
to CD8+ T cell function (39–42). If transferred adoptively,
CD4+ T cells can even rescue anergic tumor infiltrating CD8+
T cells by T cell help (43). As our fusion protein essentially
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FIGURE 4 | In vitro characterization of the MHC I, MHC II, and PD-L1 expression on tumor cells and its effect on interferon-γ (IFN-γ) release by PD1-CD28 fusion

protein (PTM)- transduced CD4+ and CD8+ T cells in T cell-tumor cell cocultures. (A) Panc02-OVA or (B) E.G7-OVA-PD-L1 cells were stimulated with increasing

concentrations of recombinant murine IFN-γ (2, 20, 100 ng/ml) during a 48 h period. MHC I, MHC II, and PD-L1 expression was assessed by flow cytometry. (C–F)

PTM-transduced or untransduced primary murine OT-1, PTM-transduced or untransduced primary murine OT2T cells or OT1 plus OT-2 T cells were prestimulated for

24 h with anti-CD3 antibody plus recombinant PD-L1. T cells were then cocultured with EL4 (D) or with E.G7-OVA-PDL-1 in the absence (C) or presence of

neutralizing anti-MHC. I antibody (E) or of neutralizing anti-MHCII-antibody (F). The resulting interferon-γ (IFN-γ) release was measured by enzyme-linked

immunosorbent assay (ELISA). Experiments (A–F) were performed in triplicates. Experiments (C–F) are representative of two independent experiments. Bars

represent SEM and P values from Student’s t-test are shown. All tests are two-sided.

seems to further boost the function of the cell subsets either
alone or in combination, we indeed observed that also the
collaboration between CD4+ and CD8+ T cells was enhanced
through introduction of PTM in both cell types. Interestingly,
this effect was dependent on an optimal CD4+ to CD8+ T cell
ratio, which is also in line with clinical observations observed
with CAR T cells (7, 8). This is further confirmed in multiple
studies dealing with mixtures of CD4+ and CD8+ T cells
for ACT (16–18). Notwithstanding the role of PD-1-mediated
anergy, we argue and show that this brake is released by our
PD1-CD28 fusion protein. Similar observations were reported

with CTLA-4-CD28-expressing CD4+ and CD8+ T cells (38).
Mechanistically, IL-2 derived from CD4+ T cells seems to
mediate the synergistic effect of PD1-CD28 fusion receptor-
transduced CD4+ and CD8+ T cells. As IL-2 improves CD8+
T cell activation, proliferation, and persistence one could assume
that the additional transfer of CD4+ T cells would allow a
lower dose of CD8+ T cells per patient. This would come
with the additional advantage, that systemic IL-2 administration
which often accompanies ACT protocols and causes significant
side effects, could be prevented (44, 45). CD4+ T cells are
also important for long-term protective anti-tumoral immunity
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(46, 47). In our hands, transduced CD4+ and CD8+ T cells
predominantly developed a central memory phenotype. At least
for CD8+ T cells longer persistence of CD8+ clones isolated
from central memory T cells as compared to clones from CD8+
effector cells was observed in vivo after T cell transfer. This
further indicates the importance of specific T cell subset functions
for effective adoptive immunotherapy (48). An open question
remains how CD4+-T cells would sense their antigen in vitro.
We could demonstrate that OVA expression by the tumor cells,
MHC I presentation and recognition ofMHC I presented peptide
by cocultured CD8+ T cells was mandatory for CD4+ T cell
action. CD4+ T cells in general and OT-2 T cells in particular
can be stimulated MHC II independently in the presence of
large amounts of soluble antigen (49). OVA is known to be
secreted by cells stably transfected with it and additional antigen
release by CD8+-OT-1-T cells might lead to the level of antigen
required for CD4+ T cells in vitro. The exact role of this
known mechanism in vivo is currently unclear but has been
repeatedly shown in several models (15). In any case, the in vivo
activity observed strongly suggests translational potential for this
strategy. An open question is how much data from the OT-1-
OT-2 system will be transferrable to endogeneous antigens and
to TCRs with different affinities. This antigen system is one of
the most widely tested systems in T cell research. A significant
amount of our knowledge has been generated in these models.
Several studies suggest that data gathered from such preclinical
studies will actually translate to clinical studies, corroborating the
value of the OT-1-OT-2 system for translational T cell research
(50, 51).

Antibodies, such as nivolumab, targeting the PD-1-PD-L1
axis can revive exhausted CD8+ T cells and have demonstrated
impressive clinical activity (52, 53). However, more than 50%
of PD-L1-positive tumors do not respond to anti-PD-L1/PD-
1 antibody treatment (54). In addition, treatment protocols
using those antibodies often require multiple injections and
cause significant toxicities to the patient (55). Based on
our previous data we assume that a single dose of PD1-
CD28 fusion receptor-transduced CD4+ and CD8+ T cells
would induce tumor regression in vivo, significantly lowering
potential side effects due to systemic T cell activation (32).
Even PD-L1 negative tumors could be targeted by our
combinatorial approach. Transduced CD4+ T cells can also be
activated by interaction with PD-L2, another ligand of PD-1,
expressed on antigen-presenting cells present in the tumor
microenvironment.

In summary, our results indicate that PD1-CD28 fusion
protein transduced CD4+ T cells have the potential to overcome
the PD-1-PD-L1 immunosuppressive axis in pancreatic cancer
and non-Hodgkin-lymphoma. Collectively, inhibiting PD-1
signaling in both CD4+ and CD8+ T cells might be the most
effective way to enhance antitumor immunity. This data will
need to be further investigated in other models while moving the
approach toward translation.
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Supplementary Figure 1 | Differentiation of PD1-CD28 fusion protein

(PTM)-transduced CD4+ and CD8+ T cells in T cell-tumor cell cocultures. (A–D)

PTM-transduced, untransduced primary murine OT-1, PTM-transduced,

untransduced primary murine OT-2 T cells or OT-1 together with OT-2 T cells were

prestimulated for 24 h with anti-CD3 antibody and recombinant PD-L1. T cells

were then cocultured with Panc02-OVA-PD-L1. CCR7 and CD62L expression on

T cells was analyzed prior to and after 36 h of coculture by flow cytometry.

Experiments (A–D) are representative of three independent experiments each

performed at least in duplicates. Bars represent SEM.

Supplementary Figure 2 | Cytotoxic activity of PD1-CD28 fusion protein

(PTM)-transduced CD4+ and CD8+ T cells in T cell-tumor cell coculture in the

presence of an Interleukin-2 (IL-2) neutralizing antibody. PTM-transduced,

untransduced primary murine OT-1, PTM-transduced, untransduced primary

murine OT-2 T cells or OT-1 together with OT-2 T cells were prestimulated for 24 h

with anti-CD3 antibody and recombinant PD-L1. T cells were then cocultured with

Panc02-OVA in the presence or absence of neutralizing anti-IL-2 antibody and

LDH release from lysed tumor cells was measured. The experiment was

performed in quadruplicates. Bars represent SEM and P values from Student’s

t-test are shown. All tests are two-sided.
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