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ABSTRACT
Aims/Introduction: Recent studies have identified genomic and transcript level
changes along with alterations in insulin secretion in patients with diabetes and in rodent
models of diabetes. It is important to establish an efficient system for testing functional
consequences of these changes. We aimed to generate such a system using insulin-
secreting MIN6 cells.
Materials and Methods: MIN6 cells were first engineered to have a tetracycline-
regulated expression system. Then, we used the recombination-mediated cassette
exchange strategy to explore the silencing-resistant site in the genome and generated a
master cell line based on this site.
Results: We identified a site 10.5 kbps upstream from the Zxdb gene as a locus that allows
homogenous transgene expression from a tetracycline responsible promoter. Placing the Flip/
Frt-based platform on this locus using CRISPR/Cas9 technology generatedmodifiedMIN6 cells
applicable to achieving cassette exchange on the genome. Using this cell line, we generated
MIN6 subclones with over- or underexpression of glucokinase. By analyzing amixed popula-
tion of these cells, we obtained an initial estimate of effects on insulin secretion within
6 weeks. Furthermore, we generated six MIN6 cell sublines simultaneously harboring genes of
inducible overexpression with unknown functions in insulin secretion, and found that Cited4
and Arhgef3 overexpressions increased and decreased insulin secretion, respectively.
Conclusions: We engineered MIN6 cells, which can serve as a powerful tool for testing
genetic alterations associated with diabetes, and studied the molecular mechanisms of
insulin secretion.

INTRODUCTION
It is now widely accepted that pancreatic b-cell impairment,
whether in terms of function, mass or both, is of central impor-
tance for the development not only of type 1, but also type 2
diabetes mellitus. Recent advances in genome-wide association
analysis1,2 and several studies analyzing transcriptomes or pro-
teomes in insulin secreting cells3–7 have revealed genes that
might be involved in impaired b-cell function and/or mass.
These genes are either overexpressed or suppressed in islets or
b-cells of diabetes patients. However, research progress beyond
identification of these candidate genes has been hampered, and
analyses of the functional impacts of these abnormalities have

been limited. Genome-modified murine models and analyses of
their pancreatic islets are straightforward approaches to investi-
gating the functions of these candidate genes, but are costly
and time-consuming. Although imperfect, utilization of highly
differentiated insulinoma cell lines, such as bTC38, MIN69,10,
INS111–13 or EndoC-bH14, is an alternative for studying gene
functions involved in insulin secretion. However, these cells also
present certain difficulties. One of the disadvantages encoun-
tered is the low transfection efficiency of nucleotides in these
cell lines. When investigating effects of abnormalities in candi-
date genes, 70–80% of cells, perhaps more, need to be geneti-
cally modified, because physiological phenotypes are not
anticipated to be particularly large15. Using a viral vector is one
approach to overcoming this difficulty16–18. However, viralReceived 20 May 2021; revised 3 August 2021; accepted 9 August 2021
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transduction can affect insulin secretory function if the amounts
of virus vectors are not precisely controlled19. Therefore, gener-
ating stable cell lines would be preferable, offering the advan-
tages of accuracy and reproducibility of experiments,
particularly when large numbers of cells are required, such as
for metabolome analysis20,21. However, generating and using
such cell lines can be problematic. One issue is clonal differ-
ences, a topic discussed in great detail by Newgard et al.22

Another difficulty is that stable cell line generation is time-
consuming, taking a few months, as well as laborious when
using highly differentiated insulin secreting cells.
Drug-inducible expression systems can reportedly be applied

to overcome clonal differences23,24. Functional tests can be car-
ried out 2–7 days after drug treatment and comparisons are
then made between genetically identical cells (isogenic cells) dif-
fering only in the presence or absence of the drug for short
periods. If functional changes are observed, the researcher can
confidently attribute these differences to changes in expressions
of the genes of interest.
The recombinase-mediated cassette exchange (RMCE)

method is being applied to expedite stable cell line generation
and eliminate laborious clone selection processes25,26. The yeast
Flp recombinase with Flp recognition target sites has been
widely used, because it has the highest specificity of integration
and lowest cross-reactivity of the recombination target sites.
The Flp-based RMCE method utilizes a set of hetero-specific
Flp recognition target sites to direct a gene of interest toward a
unique previously tagged and high-expression locus on the
chromosome. The RMCE master cell lines can be selected for a
high level of expression, long-term stability and robust cassette
exchangeability. Once isolated and stored as master cells, the
cell lines can be routinely used to rapidly create multiple gener-
ations of stable cell lines. However, there is a problem regarding
loci on the genome where the platform should be placed. The
mouse Rosa26 locus is well-known, but transgene expressions,
especially from an artificial tetracycline-responsive promoter,
seem to be prone to silencing in this locus27,28. Therefore, iden-
tification of other more appropriate sites for homogeneous
transgene expression is desirable.
MIN6 cells were established and characterized more than

30 years ago9,10, and have been used worldwide. MIN6 cells
grow relatively slowly, however, and it takes more than
2 months to generate stable transformants. In addition, clonal
differences are a common problem with other insulin-secreting
cells. In the present study, to overcome the challenges of clonal
differences, as well as to minimize time-consuming and labori-
ous procedures, we engineered MIN6 cells to have a
tetracycline-regulated expression system and the platform for
RMCE at a newly identified safe harbor locus.

METHODS
Plasmid construction
Detailed construction strategies are described in Supporting
Information.

Genome walking
Genomic deoxyribonucleic acid (DNA) was extracted using the
DNeasy kit (Qiagen, Valencia, CA, USA). Integration sites were
identified using a Genome Walker kit (Takara, Shiga, Japan).

MIN6 cell culture and electroporation for RMCE
MIN6 cells were cultured in DMEM, as previously
described9,10. To examine proliferation rates, 50,000 cells were
seeded in wells in 24-multiwell plates, harvested at 1, 3, 5 and
7 days, and then counted.
For RMCE transfection, 3 9 106 cells were electroporated

with 5 lg of exchange vectors and 5 lg of pCAG-Flpe29 using
the Nucleofector 2b device (Lonza, Allendale, NJ, USA).
Selected antibiotics were added to the cells 4 days later. Ganci-
clovir treatment, when required, was started 10 days after elec-
troporation and lasted for 6 days. Three weeks after the start of
antibiotics, colonies were picked up or combined. For analysis
of platform integration, polymerase chain reaction (PCR) was
carried out with Q5 DNA polymerase (New England Biolab,
Ipswich, MA, USA) using the primers listed in Table S1. Green
fluorescent protein (GFP) and red fluorescent protein fluores-
cence was observed using a fluorescent microscope (BZ-X700;
Keyence, Osaka, Japan).

Reverse transcription PCR
Total ribonucleic acid (RNA) was extracted using the RNeasy kit
(Qiagen). Complementary DNA (cDNA) synthesis was carried
out using ReverTra Ace (Toyobo Life Science, Tokyo, Japan).
Quantitative reverse transcription PCR analysis was carried out
using FastStart Essential DNA Green Master (Roche, Basel,
Switzerland) and a LightCycler 96 (Roche). The primers used are
listed in Table S2. Transcript levels were normalized with b-actin
messenger RNA (mRNA), and the average from three experi-
ments in doxycycline (dox)-untreated cells was defined as 1.0.

Western blot
Cells were dissolved in sodium dodecyl sulfate sample buffer,
and proteins were subjected to sodium dodecyl sulfate polyacry-
lamide gel electrophoresis and then transferred to nitrocellulose
membranes. Membranes were probed with rabbit anti-GFP
antibody (1:1,000; #632592, Takara) or anti-glucokinase anti-
body (1:1,000; #15629-1-AP; Proteintech, Rosemont, IL, USA)
and together with mouse anti-b-actin antibody (1:5,000;
#60008-1-Ig, Proteintech) overnight at 4°C, and then incubated
for 1 h with donkey anti-rabbit immunoglobulin G (1:10,000)
and with sheep anti-mouse immunoglobulin G (1:10,000) con-
jugated with horseradish peroxidase (GE Healthcare, Piscat-
away, NL, USA). Detection was accomplished using
EZWestLumi plus reagent, and visualized using WSE-
6200HLuminoGraphII (ATTO, Tokyo, Japan).

Southern blot
Southern blot analysis was carried out (by Dr Takahiro Fujino)
at the Division of Analytical Bio-Medicine, Ehime University
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Advanced Research Support Center (ADRES). Detailed proce-
dures are described in Supporting Information.

Knockdown by microRNA-embedded short hairpin RNA
against glucokinase
A plasmid containing the miRE backbone30,31 was purchased
from Mirimus Inc. (Woodbury, NY, USA). Target sequences of
glucokinase were selected by analyzing the mouse glucokinase
mRNA sequence on the shERWOOD website32. The following
target sequences were used: for shGck#1 50-tggacaagcatca
gatgaaaca-30, shGck#2 50-acactcaggtcttgctctttca-30 and shGck#1
50-agctgcgcacacgtggtgcttt-30.

Glucose utilization and static insulin secretion assays
Glucose utilization was measured by following the conversion
of [5-3H]glucose into [3H]H2O. as previously described10. Cells
were seeded in 24-well plates and subjected to dox treatment.
The cells were pre-incubated in HBKRBB9,10 with 0.1% bovine
serum albumin and 5 mmol/L glucose for 0.5 h, and then
incubated with HBKRBB with 5, 12.5 or 20 mmol/L [5-3H]glu-
cose. After a 2-h incubation period, a 0.1-mL aliquot of the
incubation medium was transferred to a microtube and then
placed in plastic scintillation vials containing 0.6 mL of distilled
water. The vials were stoppered and kept at 37°C for 36 h to
allow the [3H]H2O in the microtube to equilibrate with the
water. Subsequently, the microtube was taken out and 10 mL
of scintillation fluid were added.
For insulin secretion, cells were treated as aforementioned

and then incubated in HBKRBB supplemented with varying
concentrations of glucose, 5 mmol/L glucose (Glc) + 30 mmol/
L KCl, 5 mmol/L Glc + 10 mmol/L leucine + 10 mmol/L glu-
tamine or 5 mmol/L Glc + 0.1 lmol/L glimepiride for 1 h.
The media were then collected and assayed for immunoreactive
insulin by enzyme-linked immunosorbent assay (Mercodia,
Uppsala, Sweden). Protein contents were analyzed after extrac-
tion with 0.1N NaOH using the Pierce 660 nm protein assay
kit (Thermo Fisher Scientific).

Statistical analysis
Data are expressed as the mean – standard error of the mean.
Statistical significance was tested using the unpaired Student’s t-
test, unless otherwise described.

RESULTS
Identification of a novel genome site appropriate for platform
insertion
MIN6 cell subclone 4, MIN6c4, retained glucose-stimulated
insulin secretion after long-term culture3. MIN6c4 cells were
transfected with pCMV-Tet3G (Takara Bio.) and selected
against G418. Then, transiently transfecting pTRE3g-Luc
expressing luciferase under the control of the tetracycline-
responsive promoter and luciferase activity analysis yielded
clones with high inducible luciferase expression on dox treat-
ment. We selected one clone, named MIN6Tet3G9, which

showed the highest luciferase activity, as well as robust glucose-
responsiveness of insulin secretion and cellular insulin content
similar to those of parental MIN6c4 cells.
Transgene expressions, especially those from a tetracycline-

responsive promoter, reportedly tends to be heterogeneous
when expression units are placed at the Rosa26 locus27,28.
Therefore, we explored novel loci that allow homogeneous
expression from a tetracycline-responsive promoter. We used
a construct, SAF3ZeoSFwr, having a splice acceptor (Fig-
ure 1a) to trap an intrinsic transcript. We also created a con-
struct with the SV40 promoter instead of a splice acceptor,
SVpF3ZeoSFwr (Figure 1a). The platform, either SAF3-
ZeoSFwr or SVpF3ZeoSFwr, was introduced into MIN6Tet3G9
cells, and zeocin-resistant colonies were harvested and com-
bined 3 weeks later. These pooled zeocin-resistant cells were
then subjected to RMCE with an exchange plasmid; that is,
pF3BsdSTreGFPGFwr (Figure 1b). The rationale for this strat-
egy aimed at RMCE-mediated insertion of GFP after chromo-
somal integration of the platform, but not direct insertion of
GFP embedding in the platform, is as follows: when the plat-
form fragment was introduced by electroporation, the frag-
ment was integrated randomly into chromosomal sites in the
cells. Although the recipient platform should be integrated as a
single copy for reproducible cassette exchange, random inte-
gration could result in not only single copy integration at sin-
gle genome sites, but also multiple tandem integrations at a
single site, or multiple integrations at multiple genome sites.
Tandem copies can reportedly be changed to a single copy
after RMCE33. In addition, simultaneous cassette exchange at
multiple genome sites on single RMCE reportedly did not con-
sistently take place33 or was even rare34. Therefore, our
assumption was that clones with multiple tandem integrations
at a single site and those with integration at multiple genome
sites could be eliminated by appropriate phenotype selection
after RMCE. These considerations led us to a strategy that
involved searching for clones with a single recipient platform
by initially integrating the smaller recipient platform randomly
and then examining antibiotic phenotypes after RMCE with
pF3BsdSTreGFPGFwr (Figure 1b).
Colonies growing against blasticidin after RMCE with a

pF3BsdSTreGFPGFwr, showed variable GFP intensity in
response to dox treatment (Figure 1c). GFP expressing colonies
were picked up and examined for zeocin-sensitivity. Among 52
clones sensitive to zeocin and resistant to blasticidin, we selected
one clone from among the cells transfected with SAF3ZeoSFwr,
and three clones from those transfected with SVpF3ZeoSFwr

based on their robust and uniform GFP expression after dox
induction. We then tested whether these clones produced, after
another RMCE with pF3HygSTreRFPGFwr, colonies expressing
red fluorescent protein homogenously (Figure 1e,f). In the clone
identified from cells transfected with SAF3ZeoSFwr, the genomic
walking method identified that the platform was inserted into
intron 2–3 of the islet amyloid polypeptide gene. In two clones
from cells transfected with SVpF3ZeoSFwr, the insertion
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Figure 1 | Strategy for identifying novel genetic sites for homogenous expression from tetracycline-dependent promoter. (a) The recipient
platforms for recombinase-mediated cassette exchange containing a mutated FRT (F3) and a wild-type FRT in reverse orientation (Fwr). SA, splice
acceptor of rabbit b-globin; SpA, SV40 polyA region; SVp, SV40 promoter; Zeo, zeocin-resistant gene. (b) The exchange vector making cells
blasticidin (Bsd)-resistant and expressing green fluorescent protein (GFP) under the tetracycline-regulated promoter (TRE). (c) GFP expression in
growing colonies of MIN6Tet3G cells transfected with the platform and then subjected to recombinase-mediated cassette exchange with the
construct shown in (b) and treated with 1 μg/mL dox. Bar, 100 μm. (d) The exchange vector making cells hygromycin (Hyg)-resistant and
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occurred at intron 2–3 of the Gng12 (guanine nucleotide binding
protein, gamma 12) gene and at intron 3–4 of the Nup93 (nucle-
oporin 93) gene. As integrations at sites within genes might
affect gene expression, we considered these sites to not be appro-
priate for platform insertion.
A Basic Local Alignment Search Tool search using a sequence

of another clone, designated MIN6 cassette exchange (MIN6CE)
clone 40, obtained by genome walking, hit two sites in the
X chromosome. These sites are approximately 10.5 kbps
upstream from the initial codons of Zxda and Zxdb (zinc finger,
X-linked, duplicated A and B) on the proximal short arm of the
X chromosome35. These regions containing Zxda and Zxdb are
duplicated, and Zxda and Zxdb are located 61 kbps apart from
each other and in opposite directions (Figure 1g,h). As MIN6
cells were derived from male mice, the insertion sites could be
one of those upstream from Zxdb or Zxda. PCR was carried out
for a primer within the platform and one in the common region
of the Zxdb and Zxda genes, and the resulting product was
sequenced. The sequence showed several bases of clone 40 to be
identical to those of Zxdb, but not Zxda, identifying that the inte-
gration site as being upstream from Zxdb (Figure 1i).

CRISPR/Cas9-mediated integration of the platform into the
Zxdb site
To make the Zxdb site a general application target site in any
of the mouse cell lines, we generated a set of plasmids that
allow platform insertion using the CRISPR/Cas9 system at the
locus. Sequencing the genome of the MIN6CE clone 40 cells
showed that the platform had been inserted with deletion of
92 bp (Figure 2a, underlined). We selected a protospacer adja-
cent motif sequence in this deleted region (Figure 2a), after
screening of candidate sites by a program presented on the
Integrated DNA Technologies website. We also improved the
platform by including the Herpes simplex virus thymidine
kinase (HSVtk) gene in the new platform for negative selec-
tion during RMCE36 and changed the antibiotic marker from
zeocin to blasticidin (Figure 2b), because the latter kills MIN6
cells more efficiently. A plasmid containing the platform
flanked with ~800 bps homology arms (Figure 2b) and those
expressing guide RNA and Cas9 were electroporated and
selected against blasticidin. We screened more than 10 clones
by PCR (just three clones are shown) for proper platform
integration in the Zxdb locus by PCR and sequencing (Fig-
ure 2b,c). One of the selected clones (clone 1 in Figure 2c)
was designated MIN6CEon1. To confirm correct insertion of

the platform, Southern blot analysis was carried out (Fig-
ure 2d,e). An inner HSVtk1 probe yielded a single band, indi-
cating that off target or random integrations did not take
place. The expected shift of the BamHI fragment of one allele
shown by the 50 probe, together with results of the PCR anal-
ysis (Figure 2b,c), showed the platform to have been correctly
integrated.
MIN6CEon1 cells showed robust insulin secretion in response

to high glucose (Figure 3a). Insulin secretory responses of these
cells to non-glucose nutrients and a sulfonylurea were observed to
be very similar to those in MIN6c4 cells (Figure 3b). Their growth
rate was identical to that of MIN6c4 cells (Figure 3c). When
MIN6CEon1 cells were used for RMCE with pF3Hyg-
STreGFPGFwr (Figure 2b), and selected against hygromycin
(200 lg/mL) and ganciclovir (10 lg/mL), a mixed cell population
consisting of essentially 100% GFP-positive cells was obtained
(Figure 3d). Induction of GFP expression in these cells was regu-
lated in a dox concentration-dependent manner (Figure 3e,f).

Overexpression of glucokinase in MIN6CEon1 cells
To validate the system, we generated MIN6 cells overexpressing
b-cell type glucokinase. Complementary DNA of glucokinase
with b-cell specific exon 1 was subcloned into the pF3Hyg-
STreGFPGFwr after deleting GFP cDNA. MIN6CEon1 cells
were subjected to RMCE with pF3HygSTrebGckGFwr (Fig-
ure 4a), and treated with hygromycin and ganciclovir. Because
nearly 100% of cells with proper cassette exchange survive, the
combined cell population should be sufficient to obtain an ini-
tial estimate of the effects of overexpressing genes of interest.
Therefore, 3 weeks after transfection, we picked up six colonies,
followed by combination and expansion of other colonies.
These cells were named MIN6CEon1oeGck. Treatment with
0.3 µmol/L dox for 2 days increased glucokinase mRNA (Fig-
ure 4b) and protein (Figure 4c) levels by threefold and 1.5-
fold, respectively. We observed stronger induction with
1.0 lmol/L dox (Figure 4c) to cause cell death (data not
shown). When combined cells were subjected to [5-3H]glucose
utilization assay, glucose metabolism more than doubled at all
three glucose concentrations tested in MIN6CEon1oeGck cells
treated with 0.3 lmol/L dox (Figure 4c). We also observed that
insulin secretion was increased at an intermediate glucose con-
centration (12.5 mmol/L), but not at either basal (5 mmol/L)
or high (20 mmol/L) glucose concentrations (Figure 4d). These
cell viability and insulin secretion results were consistent with
regulated glucokinase expression in INS-1 cells23. We obtained

expressing red fluorescent protein (RFP) under the tetracycline-regulated promoter. (e) RFP expression in colonies of MIN6 cassette exchange
clone 40 cells subjected to recombinase-mediated cassette exchange with the construct shown in (d) and treated with 1 μg/mL doxycycline. Bar,
100 μm. (f) RFP expression in dispersed cells from a single colony shown in (e). Bar, 100 μm. (g) Gene organization on the X chromosome around
the Zxda and Zxdb loci. Blue vertical solid and broken arrows indicate the region where a Basic Local Alignment Search Tool research hit using the
sequence obtained from clone 40. (h) Polymerase chain reaction strategy for determining the integration site. The platforms at the candidate
integration sites are shown by a bold red arrow and a white arrow framed with red. Oligo primers, op1155 and op1379, were used to amplify
duplicated regions containing different nucleotides. (i) Amplified sequence of the duplicated region from MIN6 cassette exchange clone 40
matched to the sequence of Zxdb.
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Figure 2 | CRISPR/Cas9-mediated integration of the recombinase-mediated cassette exchange (RMCE) platform at the site upstream from Zxdb.
(a) The nucleotide sequence around the platform integration site in MIN6 cassette exchange clone 40 cells. The underlined portion was deleted in
clone 40 cells. The protospacer adjacent motif sequence used for targeted integration is shown in red. (b) Schema of targeted integration into the
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plasmid (2 μg) and a Cas9 expressing plasmid (4 μg). The oligo primers shown are used for analyzing proper integrations. Note that the platform
is integrated in the antisense direction relative to the genome direction. (c) Polymerase chain reaction genotyping of clones transfected with the
platform using the oligo primers shown in (b). W: the wild type (intact) region was amplified using op1216 and op1272, generating a 2,018 bps
band. Left junction: amplified by op1216 and op975, 1,296 bps. Right junction: amplified by op1137 and op1272, 2,271 bps. (d) Wild-type (WT) and
knock-in (KI) alleles showing BamHI sites, and a 50 probe and a HSVtk probe used in Southern blot. (e) Southern blot analysis of genomic
deoxyribonucleic acid from parental MIN6Tet3G and MIN6CEon1 cells probed with HSVtk (left panel) and 50 probe (right panel).

(e)

β-actin

GFP

0 0.01 0.03 0.1 0.3 1.0 dox (µg/ml) 

In
su

lin
 (µ

g/
m

g 
pr

ot
ei

n/
h)

Ce
ll 

co
un

t (
 x

 1
05 /

w
el

l)

(day)

0.0

1.0

2.0

3.0

4.0

5.0

In
su

lin
 (µ

g/
m

g 
pr

ot
ei

n/
h)

G5 G12.5 G20 KCl30
0.0

1.0

2.0

3.0

4.0

5.0

Glim G5 Leu10
+

Gln10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 3 5 7

0 0.01 0.03 0.1 0.3 1.0 

dox (µg/ml)

(f)

(c)(b)(a)

(d)

48

26

Figure 3 | Characteristics of MIN6CEon1 cells. (a,b) Insulin secretion stimulated with varying concentrations of glucose or (a) 5 mmol/L
glc + 30 mmol/L KCl, and (b) 5 mmol/L Glc + 10 mmol/L leucine (Leu) + 10 mM glutamine (Gln) or 0.1 μmol/L glimepiride (Glim) in MIN6c4
(white columns) and MIN6CEon1 cells (grey columns). Data represent the mean – standard error of the mean, n = 3 experiments. (c) Proliferation
of MIN6c4 (white circles) and MIN6CEon1 cells (grey circles). Data represent the means – standard error of the mean, n = 3 experiments.
(d) Doxycycline (dox; 1 μg/mL)-induced green fluorescent protein (GFP) fluorescence of MIN6CEon1 cells after recombinase-mediated cassette
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Figure 4 | Generation of glucokinase-overexpressing and -knock down cells by recombinase-mediated cassette exchange. (a) A recombinase-
mediated cassette exchange vector for glucokinase overexpression under the TRE3g promoter. (b) Glucokinase messenger ribonucleic acid (mRNA)
expressions in MIN6CEon1oeGck cells treated with (grey column) and without (white column) doxycycline (dox; 0.3 μg/mL for 2 days). Data are
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similar results using individual clones from the same electropo-
ration procedure (data not shown).

Knockdown of glucokinase in MIN6CEon1 cells
We then applied this system to a loss-of-function study by
utilizing shRNA-mediated knockdown. For this purpose, we
took advantage of a modified system of miR30-based pri-
microRNA expression by RNA polymerase II, as a
tetracycline-regulated system can be applied to achieve regu-
lated knockdown30. As shown in Figure 4e,f, the exchanging
plasmid contains a shRNA-encoding sequence embedded in
miRE30. We targeted glucokinase again and looked for three
target sequences by using the shERWOOD program32. Dox-
induced expression of glucokinase-targeting shRNA shGck#2
for 6 days caused a 70% reduction in both mRNA and pro-
tein levels (Figure 4g,h), whereas shGck#1 and #3 caused just
20–30% reductions in a mixed cell population. The former
cells were named MIN6CEon1shGck. [5-3H]glucose utilization
showed a more than twofold reduction in glucokinase-
knockdown cells at all three glucose concentrations tested
(Figure 4i). Glucose-stimulated insulin secretion was signifi-
cantly reduced in MIN6CEon1shGck cells treated with dox
(Figure 4h,j), similar to results obtained using islets from
mice with heterozygous knockout of the b-cell glucokinase
gene37.

Simultaneous generation of six stable sublines overexpressing
genes with unknown roles in insulin secretion
To examine whether this system is applicable to screening for
novel genes with the potential to be important for glucose-
stimulated insulin secretion, we endeavored to generate six
stable cell lines simultaneously. A preliminary microarray com-
parison of transcripts in highly glucose-responsive MIN6c4 cells
and those of long passaged poorly-responsive MIN6 cells, iden-
tified more than 1,000 genes differentially expressed between
the two cell populations. We confirmed differential expression
in several genes by semiquantitative reverse transcription PCR.
Transcript levels of Cited4 (Cbp/P300-interacting transactiva-
tor 4), Lyve1 (lymphatic vessel endothelial hyaluronan recep-
tor 1) and Rspo4 (R-spondin 4) were significantly higher in
cells showing high responsiveness (Figure 5a), and those of
Arhgef3 (Rho guanine nucleotide exchange factor 3), Folr1 (fo-
late receptor 1) and Plin5 (perilipin 5) were significantly higher
in cells showing low responsiveness (Figure 5b). cDNAs were
amplified from MIN6c4 mRNA with appropriate primers and
cloned into the exchange plasmid. MIN6CEon1 cells were elec-
troporated with these exchange vectors. Three weeks after
electroporation, two-thirds of the colonies were combined.
Dox-induced expressions of these genes were verified with pri-
mers used for cloning cDNAs (Figure 5c). Then, combined
cells were subjected to testing for glucose-stimulated insulin
secretion. Static insulin secretion analysis showed that Cited4
overexpression resulted in increased glucose-stimulated insulin
secretion, whereas overexpression of Arhgef3 decreased insulin

secretion. Lyve1, Rspo4, Folr1 and Plin5 had no significant
impacts on insulin secretion (Figure 5c).

DISCUSSION
For stable integration of an artificial expression unit, it is impor-
tant to select a proper genome site. It has been reported that inte-
gration of an artificial expression unit with the tetracycline-
regulated system at mouse Rosa2627,28, human AAVS136 locus or
another unknown mouse locus38 reportedly resulted in unsatis-
factory mosaic expression or silencing of tetracycline-controlled
genes. Thus, we randomly integrated the recipient platform, and
searched for clones expressing GFP uniformly and at a high level
on dox treatment. We found that the platform located at the site
10.5 kbps upstream of Zxdb escapes silencing. Special character-
istics of the Zxda and Zxdb gene regions (being duplicated and
reciprocally connected) could be the reason for this. Further stud-
ies are required to clarify the underlying mechanisms. Regarding
safety, there are no reports of genes located at this site. In addi-
tion, so far as we were able to ascertain, the insulin secretion, cell
morphology and growth of MIN6CEon1 cells are indistinguish-
able from those of parental MIN6c4 cells. Therefore, the site
upstream from Zxdb might be a safe harbor site for foreign gene
integration. We reached this site by chance after random integra-
tion of the platform. However, owing to progress in the genome
editing technology, the RMCE platform can now be integrated at
this site in any mouse cell genome, allowing the site to be easily
modulated by RMCE. Use of this site might be applicable to
other species including humans, although genome organization
might differ among species.
MIN6CEon1, a MIN6 master cell line, has been generated by

intended integration of the platform by means of genome engi-
neering. These cells are equipped with a tetracycline-regulated
gene expression system. This allowed us to examine the effects
of modifying gene expressions on insulin secretion, based on
control (non-induced) and modified (induced) cells differing
only in the single gene expression being examined; that is, with
the other components being the same. Thus, clonal differences
can be overcome.
This system is especially useful for gain-of-function studies. As

essentially 100% of cells are isogenic, a mixed cell population
allows an initial estimate of the effects of a modified gene expres-
sion to be examined within 6 weeks, which is shorter by approxi-
mately 1 month than the time frame for conventional methods.
The initial estimates need to be confirmed using clones expanded
from the appropriate single colonies. One can obtain multiple
expresser clones by analyzing three to six clones. Given this ease-
of-use, one researcher can generate six or even more cell lines
simultaneously. In our earlier attempts to establish and refine this
method, we found that Cited4 could be positive regulators and
Arhgef3 a negative regulator of glucose-stimulated insulin secre-
tion. Details of the mechanisms by which these genes modulate
insulin secretion merit future analysis. For loss-of-function stud-
ies, we took advantage of the microRNA-embedded shRNA
expression system. As prediction of the effective target sites for
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RNA interference remains imperfect, greater efforts are necessary
than gain-of-function analysis. We have knocked down several
genes (data not shown) and found, for practical application, that
it appears to be most appropriate to select at least three target
regions in a single gene.
In conclusion, we generated MIN6CEon1 cells for RMCE

with an inducible expression system. These cells are anticipated
to be useful for studying functional impacts of genome muta-
tions revealed by genetic studies and to thereby contribute to
progress in diabetes research.
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Table S1 | Oligonucleotide primers for analysis of platform integration.

Table S2 | Primers for reverse transcription polymerase chain reaction.
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