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Abstract: Grain quality improvement is a key target for rice breeders, along with yield. It is a
multigenic trait that is simultaneously influenced by many factors. Over the past few decades,
breeding for semi-dwarf cultivars and hybrids has significantly contributed to the attainment
of high yield demands but reduced grain quality, which thus needs the attention of researchers.
The availability of rice genome sequences has facilitated gene discovery, targeted mutagenesis,
and revealed functional aspects of rice grain quality attributes. Some success has been achieved
through the application of molecular markers to understand the genetic mechanisms for better rice
grain quality; however, researchers have opted for novel strategies. Genomic alteration employing
genome editing technologies (GETs) like clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9) for reverse genetics has opened new avenues of
research in the life sciences, including for rice grain quality improvement. Currently, CRISPR/Cas9
technology is widely used by researchers for genome editing to achieve the desired biological
objectives, because of its simple targeting. Over the past few years many genes that are related to
various aspects of rice grain quality have been successfully edited via CRISPR/Cas9 technology.
Interestingly, studies on functional genomics at larger scales have become possible because of
the availability of GETs. In this review, we discuss the progress made in rice by employing the
CRISPR/Cas9 editing system and its eminent applications. We also elaborate possible future avenues
of research with this system, and our understanding regarding the biological mechanism of rice grain
quality improvement.
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1. Introduction

Rice (Oryza sativa L.) feeds more than 3.5 billion people worldwide [1]. Rice grain quality
preferences differ between geographical regions and/or ethnic groups [2]. The prime characteristics
affecting quality are cooking and eating parameters, phytochemicals, and micronutrients [3].
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The assessment of grain quality is a laborious and time-consuming task that not only requires
large amounts of samples at early stages of breeding, but also adherence to standard protocols [4].
Understanding the molecular basis of grain quality has been a prime objective of past quality
improvement research. The fine-mapping and cloning of quantitative trait loci (QTLs) for grain
quality improvement have received more attention recently, because of its large economic value and
consumer preference [5]. Several regulatory and structural genes, chemical pathways, and regulatory
networks involved in grain quality, have been identified using various approaches. In the current
scenario, conventional mutational breeding techniques, i.e., ethyl methanesulfonate and X-rays, have
multiple limitations, and new techniques, i.e., CRISPR/Cas9 are highly desirable for achieving the
goal of rice grain quality improvement with more precision and higher efficiency [6].

The functions of various components of the rice genome ultimately enable the production of higher
yielding varieties with better quality rice grains [7,8]. Currently, CRISPR/Cas9 is a widely adopted
genome editing technology (GET) because of its simplicity, efficiency, and versatility [9]. The target
specificity in CRISPR-Cas9 system is the most reliable, as target sites are recognized by Watson and
Crick model, and off-target sites are identified through sequence analysis [10]. CRISPR/Cas9 cleaves
foreign DNA via two components, Cas9 and single guide RNA (sgRNA). Cas9 is a DNA endonuclease
that can be derived from different bacteria, such as Brevibacillus laterosporus [11], Staphylococcus
aureus [12], Streptococcus pyogenes [13], Streptococcus thermophilus [14], and Streptococcus pyogenes is
the most widely used for Cas9 isolation. Cas9 contains two domains, i.e., the HNH domain and
the RucV-like domain. The HNH domain cuts the complementary strand of CRISPR RNA (crRNA),
while the RucV-like domain cleaves the opposite strand of the double-stranded DNA. The sgRNA
is a synthetic RNA with a length of about 100 nt. Its 5’-end has a 20-nt sequence that acts as a
guide sequence to identify the target sequence accompanied by a protospacer adjacent motif (PAM)
sequence, which is often the consensus NGG (N, any nucleotide; G, guanine). The loop structure at
the 3’-end of the sgRNA can anchor the target sequence by the guide sequence and form a complex
with Cas9, which cleaves the double stranded DNA and forms a double-strand break (DSB) at this
site. Once a DSB is generated, nonhomologous end-joining (NHEJ) or homology-directed repair
(HDR) DNA repair mechanisms are initiated. A DSB is usually repaired by NHEJ in most situations,
and it is a simple way to create mismatches and gene insertion/deletions (indel), leading to gene
knockout. When an oligo-template is present, HDR induces specific gene replacement or foreign DNA
knock-ins [15,16]. These processes are all ways in which CRISPR/Cas9 can efficiently edit the genome
of diverse organisms, including humans, animals and plants (Figure 1).

Recent reviews have described the genetics and biotechnologies [17], integration of knowledge
from omics-based studies [18], and methods for utilizing genome editing, particularly CRISPR/Cas9
for improving rice grain quality [19,20]. Scientists equipped with CRISPR expertise have contributed
by disseminating relevant information to CRISPR newcomers, in contrast to the proprietary nature
of zinc-finger nucleases. In addition, several online platforms are now available to assist researchers
with all concerns relating to CRISPR [21–26]. Based on these developments, we provide a
non-comprehensive review with special emphasis on the applications of the CRISPR/Cas9 system for
the development of rice varieties with better grain quality.



Int. J. Mol. Sci. 2019, 20, 888 3 of 18
Int. J. Mol. Sci. 2018, 19, x  3 of 17 

 

 
Figure 1. Basic flow chart of the CRISPR/Cas9 genome editing system. The engineered CRISPR/Cas9 
system consist of two components; (1a) the Cas9 endonuclease and, (1b) a single-guide RNA (sgRNA). 
“The sgRNA contains a spacer sequence followed by 79 nt of an artificially fused tracrRNA and 
crRNA sequence”, (2) The spacer sequence is typically 20 nt in length, and specifically binds to the 
target DNA sequence containing a 5’-NGG-3’ PAM motif at the 3’ end, which is highly specific for the 
gene of interest, (3) The fused trans-activating crRNA (tracrRNA) and crRNA sequence forms a stem-
loop RNA structure that binds to the Cas9 enzyme; tracrRNA hybridizes and joins Cas9. (4) Assembly 
of sgRNA, attached with the target sequence and the Cas9 vector construct. (5) Transformation of the 
vector construct into rice via different transformation techniques. (5a) Screening and selection of rice 
mutant plants based on phenotypic changes. (5b) Restriction enzyme site loss generating a 
CRISPR/Cas9 mutagenized plant line. (c, control; m, mutagenized; RE, restrictions enzyme). (5c) 
Surveyor Assay (CEL1 and T7 are DNA endonucleases utilized in surveyor assay). (5d) Next-
generation sequencing. (6) Future analysis to obtain T-DNA-free plants, and further experiments to 
prove phenotypic changes cast by the knockout of the gene under investigation. * Different techniques 
for the vector construct transformation. ** Regeneration and screening of transgenic plants for gene 
editing events. 

Figure 1. Basic flow chart of the CRISPR/Cas9 genome editing system. The engineered CRISPR/Cas9
system consist of two components; (1a) the Cas9 endonuclease and, (1b) a single-guide RNA (sgRNA).
“The sgRNA contains a spacer sequence followed by 79 nt of an artificially fused tracrRNA and crRNA
sequence”, (2) The spacer sequence is typically 20 nt in length, and specifically binds to the target DNA
sequence containing a 5’-NGG-3’ PAM motif at the 3’ end, which is highly specific for the gene of
interest, (3) The fused trans-activating crRNA (tracrRNA) and crRNA sequence forms a stem-loop RNA
structure that binds to the Cas9 enzyme; tracrRNA hybridizes and joins Cas9. (4) Assembly of sgRNA,
attached with the target sequence and the Cas9 vector construct. (5) Transformation of the vector
construct into rice via different transformation techniques. (5a) Screening and selection of rice mutant
plants based on phenotypic changes. (5b) Restriction enzyme site loss generating a CRISPR/Cas9
mutagenized plant line. (c, control; m, mutagenized; RE, restrictions enzyme). (5c) Surveyor Assay
(CEL1 and T7 are DNA endonucleases utilized in surveyor assay). (5d) Next-generation sequencing.
(6) Future analysis to obtain T-DNA-free plants, and further experiments to prove phenotypic changes
cast by the knockout of the gene under investigation. * Different techniques for the vector construct
transformation. ** Regeneration and screening of transgenic plants for gene editing events.
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2. Genetics and Genomics of Rice Grain Quality

Milling quality is based on the recovery of brown, milled, and head rice. It is a complex grain
characteristic whose genetics are not fully understood. Over recent years, high throughput mapping
technologies have enabled the identification of several major QTLs associated with rice quality. Two
major QTLs (qBRR3, qBRR5), were mapped to chromosomes five and three, and these influence brown
rice recovery [27,28]. The QTLs qBRR3 and qBRR5 were also found to regulate grain width and
length [28]. Another study mapped the major QTL qHRR3, located on chromosome three, and it is
associated with head rice recovery and grain length [27,29]. Based on these studies, there is a strong
link between grain size or shape and the percentage of head rice recovery. Consistently, four QTLs
related to grain size, including GW2 [30], GW5 [31], GW8 [32], and GS5 [31], have also been cloned
and functionally characterized. Concomitantly, their impact on cooking and eating qualities were also
established. The Waxy (Wx) gene, on chromosome six, is an important gene which controls amylose
content (AC), gel consistency (GC), and rapid visco analyzer pasting viscosity [33]. Additionally,
many Wx alleles are present in different AC classes. Five prevalent classes of AC, glutinous, low,
intermediate, high I, and high II contain five common alleles: Wx, Wxt, Wxg1, Wxg2, and Wxg3,
respectively [34]. Additionally, chalkiness is an integral component that determines the quality and
ultimately the economic value of rice grain. Chalkiness negatively impacts appearance, milling,
cooking, and nutritional qualities, as well as head rice recovery [35]. Chalkiness is largely determined
by external and internal cues.

For example, rice cultivated at high temperatures has higher chalkiness, and genes involved in
starch biosynthesis, grain filling, and starch granule structure all hamper chalkiness [36,37]. Based on
these observations, genes controlling grain chalkiness, including qPGWC-8 [38] and qPGWC-7 [39],
have been fine-mapped. However, the mechanism underlying the formation of grain chalkiness
remains elusive.

Gelatinization temperature (GT) and amylopectin structure are controlled by a major QTL, SSIIa,
which is located on chromosome six [33,40,41]. However, starch biosynthesis-related genes, such as
SBE1, BE3, AGPlar, PUL, ISA, and starch synthesis genes, i.e., SSI, SSIIa, SSIII-2, and SSIV-2 all have
effects on cooking and eating quality [42,43]. Starch biosynthesis pathways and genes/enzymes in rice
endosperm are well characterized (Figure 2). A deletion within exon seven [44] or exon two [45] of the
BADH2 gene, located on chromosome eight, increases the level of 2-acetyl-1-pyrroline (2AP) in fragrant
rice. These mutations render BADH2 non-functional, resulting in increased 2AP [44]. However, the
genetics and biochemical pathways of fragrance need further investigation [3]. In addition, a major
QTL for protein content in rice, qPC1, has been cloned and functionally characterized [46]. A major QTL
responsible for crude fat content (FC) in brown rice, qCFC5, is located on chromosome five [47]. QTLs
controlling FC are governed by time-dependent gene expression; Wang et al. [48] revealed different
expression patterns of FC-related QTLs at the grain filling stage. The possible mechanisms and QTLs
responsible for amino acid content have been characterized by many researchers [49,50]. In addition,
several QTLs responsible for mineral accumulation in rice have been characterized [51]. Based on these
studies, QTLs controlling mineral accumulation in rice grain are largely environmentally regulated [52].



Int. J. Mol. Sci. 2019, 20, 888 5 of 18
Int. J. Mol. Sci. 2018, 19, x  5 of 17 

 

 
Figure 2. Starch biosynthesis pathway in cereals endosperm (modified from [18]). Eighteen genes play 
integral roles in different steps of starch synthesis. AGP, ADP-glucose pyrophosphorylase, AGPlar, 
AGP large subunit; AGPiso, AGP large subunit isoform; AGPsma, AGP small subunit; GBSS, granule 
bound starch synthase; SS, soluble starch synthase; SBE, starch branching enzyme; ISA, isoamylase; 
PUL, pullulanase; ISA and PUL belong to the starch debranching enzyme (DBE). 

Traditionally studies on improving rice grain quality through genetic control have been 
conducted using biparental mapping populations, whilst the latest techniques of genome-wide 
association studies (GWASs) have allowed the understanding of the genetic basis of complex traits, 
i.e., grain quality. Although a sufficient number of studies [53–57] have been carried out using GWAS, 
and various genes/QTLs has been identified as well, which are associated with important grain 
quality parameters, further characterization of the identified candidates is needed. With the onset of 
next-generation sequencing, the construction of a high-resolution genetic map has become handy for 
to analyzing population genetics and for expression analysis. By employing this sequencing 
approach, Chen at al. [58] had constructed a high-density genetic map for a RIL population having 
2711 recombination bin markers. They detected 12 QTL clusters, four of which matched the genomic 
regions of cloned genes or fine-mapped QTLs, i.e., GL7 [59], GS3 [60], gw5/qSW5 [61,62], and qPGWC-
7 [63]. Besides that, eight other novel QTL clusters for grain shape and chalkiness were obtained [58]. 
The integration of the various -omics approaches, including genomics, transcriptomics, proteomics, 
metabolomics, etc., which can be termed as “multi-omics”, may exploit underlying mechanisms to 
improve rice grain quality traits by understanding pathways for seed development and grain quality 
attributes [18], which definitely require extra capital and resources from other breeding platforms, 
i.e. bioinformatics. Based on the presented facts and the well-documented functional genomics of rice 
grain, along with the availability of genetic resources and the high transformation efficiency, the 
employment of the CRISPR/Cas9 system is a better choice for rice grain quality improvement. 

Figure 2. Starch biosynthesis pathway in cereals endosperm (modified from [18]). Eighteen genes play
integral roles in different steps of starch synthesis. AGP, ADP-glucose pyrophosphorylase, AGPlar,
AGP large subunit; AGPiso, AGP large subunit isoform; AGPsma, AGP small subunit; GBSS, granule
bound starch synthase; SS, soluble starch synthase; SBE, starch branching enzyme; ISA, isoamylase;
PUL, pullulanase; ISA and PUL belong to the starch debranching enzyme (DBE).

Traditionally studies on improving rice grain quality through genetic control have been conducted
using biparental mapping populations, whilst the latest techniques of genome-wide association
studies (GWASs) have allowed the understanding of the genetic basis of complex traits, i.e., grain
quality. Although a sufficient number of studies [53–57] have been carried out using GWAS, and
various genes/QTLs has been identified as well, which are associated with important grain quality
parameters, further characterization of the identified candidates is needed. With the onset of
next-generation sequencing, the construction of a high-resolution genetic map has become handy
for to analyzing population genetics and for expression analysis. By employing this sequencing
approach, Chen at al. [58] had constructed a high-density genetic map for a RIL population having 2711
recombination bin markers. They detected 12 QTL clusters, four of which matched the genomic regions
of cloned genes or fine-mapped QTLs, i.e., GL7 [59], GS3 [60], gw5/qSW5 [61,62], and qPGWC-7 [63].
Besides that, eight other novel QTL clusters for grain shape and chalkiness were obtained [58].
The integration of the various -omics approaches, including genomics, transcriptomics, proteomics,
metabolomics, etc., which can be termed as “multi-omics”, may exploit underlying mechanisms to
improve rice grain quality traits by understanding pathways for seed development and grain quality
attributes [18], which definitely require extra capital and resources from other breeding platforms,
i.e. bioinformatics. Based on the presented facts and the well-documented functional genomics of
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rice grain, along with the availability of genetic resources and the high transformation efficiency, the
employment of the CRISPR/Cas9 system is a better choice for rice grain quality improvement.

3. Applications of CRISPR/Cas9 for Rice Grain Quality Improvement

The improvement of rice grain quality attributes via targeted genome editing is a fast, sustainable,
and cost-effective approach. The application of CRISPR/Cas9 requires multiple processes. The initial
step is to discover genes of significant importance. The genes that negatively regulate the grain
quality, can be referred to as Q-genes (any plant gene that facilitates the degradation process of rice
grain quality when expressed). Both forward and reverse genetics approaches can identify the genes
that are responsible for phenotypic variation [3]. Conventional plant breeding tools mainly depend
on naturally existing germplasm variations. The introgression of desirable traits into the selected
germplasm requires successive backcrossing, followed by the screening of large populations, which
requires much time and energy. However, reverse genetic approaches enhance the speed of plant
breeding through targeted genome modification (Figure 3). The available literature on CRISPR/Cas9
has promoted its application towards the genetic improvement of O. sativa L. (Table 1, Figure 4).
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Figure 3. An illustration of rice grain quality improvement through the CRISPR/Cas9 system.
(A) Advantages of CRISPR-mediated gene editing over conventional breeding techniques to develop
rice varieties with high grain quality. (B) An overview of the applications of CRISPR-Cas9 system
in the functional genomics of rice grain quality improvement. The CRISPR-Cas9 system can be used
for genome editing (via the introduction of point mutations, insertions or deletions), transcriptional
regulation (via CRISPRi (CRISPR interference), activation, repression, or epigenetic modulation) or
forward genetics screens (via the generation of loss-of-function, knock-down, or activation mutants
using sgRNA libraries) for understanding the molecular basis of rice grain quality, which can lead to
the generation of crop plants with excellent quality grain.
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Figure 4. Genes responsible for rice grain quality, parallel to their mutated function. ? = potential genes
for editing via CRISPR/Cas9 to improve the grain quality of rice varieties; red downward arrows (↓)
represent a decrease in traits, whereas green upward arrows (↑) represent an increase/improvement in
traits when their respective genes are mutated.



Int. J. Mol. Sci. 2019, 20, 888 8 of 18

Table 1. CRISPR-Cas9-edited genes in O. sativa L.

Application
Prospective Target Gene Cas9 Version Cas9 Promoter sgRNA Promoter Transformation

Method Reference

Quality Improvement

Waxy N/A 35S OsU6

Agrobacterium-mediated
transformation

[64]
SBE1, SBEIIb Codon-optimized Cas9 ZmUbi OsU3 [65]

ISA1 Rice codon-optimized 35S OsU6 [66]
OsPDS, OsBADH2, Oso2g23823, OsMPK2 Rice codon-optimized 2 × 35S OsU3 [67]

OsCYP97A4, OsDSM2, OsCCD4a, OsCCD4b, and OsCCD7 Rice codon-optimized 35S OsU3 [68]
OsNramp5 Rice codon-optimized CaMV35S OsU6a [69]

Yield Improvement

Gn1a, DEP1, GS3, IPA1 Codon-optimized Cas9 OsUbi OsU6a

Agrobacterium-mediated
transformation

[70]
GLW2 Plant codon-optimized 2 × 35S OsU6 [70]
GS9 Rice codon-optimized CaMV 35S OsU3 [71]

GW2, GW5 and TGW6 Codon-optimized Cas9 OsUbi OsU3, OsU6 and TaU3 [72]
TMS5 Codon-optimized Cas9 OsU3/U6 OsU3/U6 [73]

Disease resistance

OsERF922 Codon-optimized Cas9 CaMV 35S OsU6
Agrobacterium-mediated

transformation

[74]
Bsrk1 Rice codon-optimized 35S OsU6 [75]
ALS Rice codon-optimized 2 × P35S OsU6 [76]

OsAnn3 Codon-optimized Cas9 CaMV35S OsU6 [77]
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3.1. Improving Rice Grain Appearance and Milling Quality

Many genes responsible for rice grain appearance quality have been identified, and have the
potential to be tapped with CRISPR/Cas9 technology. Grain appearance is the primary quality
attribute that influences the market acceptability of rice [17]. However, another important quality
trait is the grain chalkiness, which is an undesirable quality attribute, which results in low market
acceptability [78]. Grain shape is regarded as a yield component, and it plays a key role in determining
the quality of rice grains. Recently, GS3, responsible for grain length, and Gn1a, controlling the number
of grains, have been successfully edited in four rice varieties [79]. The transgene-free T1 plants showed
longer grain lengths and increased thousand grain weights in comparison to the wild type. Similarly,
three other important genes GW2, GW5, and TGW6, negative regulators of grain weight, were targeted
through CRISPR/Cas9-mediated multiplex genome editing. The obtained results indicated that the
genome editing of these genes significantly increased grain size and thousand grain weight [72].
There are several identified genes for these traits, and their interactions and functions have been fully
characterized. The integration of functionally characterized genes/QTLs, i.e., OsSPL13, OsSPL16/GW8,
GW7, and Chalk5, through knock-in/out using CRISPR/Cas9, and the assessment of their interactions
among genes, can greatly improve our understanding of rice grain appearance and milling quality.

3.2. Improving Rice Grain Cooking and Eating Quality

Generally, three important physicochemical indices comprising amylose content (AC), gel
consistency, and the gelatinization temperature (GT), altogether determine the cooking and eating
quality of rice grain. All three indices define (~90%) the starch properties of hulled rice. Rice with good
cooking and eating quality determines the cooking ease, along with the firmness and the stickiness
features [80]. AC is regulated by the Wx gene in the endosperm [81], and ALK/SSIIa and RSR1 control
GT [82]. Several studies have been conducted to unearth the roles of different genes and/or enzymes
involved in the regulation and expression of the Wx gene. Wu et al. [83] reported that dozens of dull
genes affect the splicing efficiency of Wx, and they characterized a tetratricopeptide domain-containing
flo2 protein regulating the expression of Wx. Similarly, transcription factors like rsr1, OsBP-5, OsEBP-89,
OsbZIP58, and OsMADS7 modified Wx expression [84,85]. The indica hybrids, especially in China,
are high in AC, and become hard and dry during cooking. Ma et al. [86] successfully edited the
Wx gene in the japonica background, leading to reduced AC. Moreover, transgenic Taichung 65 rice
lines containing a Wx antisense construct had lower AC, and hybrids obtained from these transgenic
lines also showed reduced AC [87]. In comparison, [64,84] introduced a loss-of-function mutation via
CRISPR/Cas9 to the Wx gene in two widely grown japonica cultivars, “Xiushui134” and “Wuyunjing
7”. The Wx gene mutation led to reduced AC, and offered an effective strategy to improve elite
cultivars without any penalty in other desirable agronomic traits. To understand the fine structure and
physical properties of starch SBEI and SBEII, they were mutated via targeted mutagenesis. The results
demonstrated that SBEIIb plays an important role in creating high-amylose rice. The fragrant gene
Badh2 in Zhonghua 11 was edited by the CRISPR/Cas9 mutagenesis system. The mutated line
contained an additional T base in the first exon of Badh2, and resulted in an increased amount of 2AP,
and enhanced fragrance in rice [88]. The successful editing of these genes has proven that this system
could be the best method for understanding the functional aspects of genes and transcriptional factors
influencing cooking and eating quality.

3.3. Improving Rice Grain of Nutritional Quality

Food nutritional quality improvement has great importance worldwide, especially in developing
countries where many people rely on rice as their staple food. Additionally, approximately 24,000
people die daily globally, owing to malnutrition [89,90]. People are eating foods that are deficient
in protein, energy, iron, zinc, vitamin A, and iodine [91]. However, improving rice grain nutritional
quality using CRISPR/Cas9 system can overcome this issue. The content of seed storage proteins
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(SSPs), fats, amino acids, vitamins, and other micronutrients determines the nutritional quality of rice
grain [46], but rice has the lowest protein content of the cereal grains [92]. However, the protein is the
second most abundant ingredient of hulled rice after starch contents, in that the lysine is amongst the
limiting essential amino acids, as per human nutrition standards [17]. Certain amino acids such as
lysine (Lys) and tryptophan (Trp) are missing from the SSPs of rice grain [93,94]. Therefore, improving
nutrition in humans is intriguingly associated with improving nutrition in SSPs, especially for people
in regions where rice is a staple food. Rice contains six 5-methylcytosine (5mC) DNA methylase
genes, including OsROS1, OsROS1b, OsROS1c, OsROS1d, OsDML3a, and OsDML3b, which can play an
important role in enhancing nutritional grain quality. The number of aleurone cell layers was increased
by ta2-1, which is a weak mutant allele of OsROS1 [95]. Approaches to improve protein and essential
amino acids in rice seeds by transgenic engineering have been attempted by many research groups,
e.g., the expression of AmA1 seed albumin [96], the overexpression of aspartate aminotransferase
genes [39], the transfer of two artificially synthesized genes [97], the production of engineered rice [68],
the transfer of wheat glutelin gene Glu-1D × 5 [98], and the expression of a gene encoding a precursor
polypeptide of sesame 2S albumin [99].

The SSPs include four different categories in rice, albumin, globulin, prolamin, and glutelin,
separated by their solubility [100]. In rice, SSP genes have been cloned and characterized mostly
by mutant screening [101]. Movement of the ferritin gene from common bean into rice has been
made possible by transgenic approaches [102]. The concentration of Fe in ferritin-containing rice
lines was double the concentration in controls. In addition, Vasconcelos et al. [103] transferred the
ferritin gene from soybean into rice, and recorded Fe concentrations. Interestingly, it was increased
by three- and two-fold in milled and rough rice, respectively. Similarly, Khalekuzzaman et al. [104]
introduced the ferritin gene driven by an endosperm-specific glutelin promoter, and found increased
Fe concentration in brown and polished seeds of T1 and T2 populations of the cultivar, BRRl Dhan
29 (BR29), respectively, in comparison with controls. Thus, the Fe content was increased by over
two-fold in transgenic lines. Subsequently, many researchers have attempted to increase Fe content in
rice endosperm using different methods such as: (1) overexpressing the genes involved in Fe uptake
from the soil; (2) moving Fe into the grain from the root, shoot and flag leaf; and (3) increasing the
efficiency of Fe storage proteins [105–107]. The nicotianamine synthase (NAS) gene from Hordeum vulgare
L. has been successfully transferred into rice, which significantly improved the contents of Fe and
Zn by two- or three-fold in polished rice grain. In another study, Zheng et al. [108] observed that
the overexpression of endosperm-specific endogenous NAS genes (OsNAS1, OsNAS2, and OsNAS3)
increased Fe accumulation by five-fold in polished rice grain. In addition, Johnson et al. [109] recorded
a two-fold increase of Fe and Zn concentration in polished rice overexpressing single rice OsNAS genes.
β-carotene, which is the precursor of vitamin A, cannot be produced by rice. Therefore, researchers
developed golden rice, which rich in β-carotene, by the introgression of two genes, including phytoene
synthase and phytoene desaturase, to overcome night blindness caused by vitamin A deficiency in many
developing countries [110]. Briefly, all of these genes have been manipulated/introgressed from
different biological backgrounds approaches.

However, these approaches have some limitations, such as being time consuming, involving the
introduction of foreign DNA, off-target genome modifications, the association of undesirable traits
with target attributes, and the lower efficiency makes them a hard choice for researchers. However,
improving rice grain nutritional quality using the CRISPR/Cas9 system can overcome these issues. The
CRISPR/Cas9 system was used to knock out five rice carotenoid catabolic genes (OsCYP97A4, OsDSM2,
OsCCD4a, OsCCD4b, and OsCCD7), and to increase β-carotene accumulation in rice endosperm [111].
However, it was found that the targeted mutations in five carotenoid catabolism genes failed to boost
carotenoid accumulation in rice seeds, which needs further investigations to make the following
approach reliable. Multiplex editing is an easy and well-understood system, especially for comparing
and dissecting the functions and relationships of major genes/QTLs [72]. In the rice genome, up to 46
target sites were edited, with an average of 85.4% mutation frequency [86]. The study also confirmed the
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immediate editing of three sites within the gene OsWaxy, which caused an amylose content reduction
(up to 14%). Multiplex genome editing was also testified with the help of endogenous transfer RNA
(tRNA) processing system in rice, wherever each sgRNA was flanked by tRNA and processed into
single sgRNAs, which caused large deletions in the genomic sequences of the T0 generation [112].
Likewise, it a new strategy was reported in rice for the CRISPR/Cas9-sgRNA multiplex editing
system, where 21 sgRNAs were designed, and the equivalent Cas9/sgRNAs expression vectors were
created [113]. Transformed rice plants were successfully and significantly edited, and up to 82% of the
desired target sites represented deletion, insertion, substitution, and inversion events, thus exhibiting
high editing efficiency. All of these reports clearly show that CRISPR/Cas9 is the best method for
rapidly validating the function of genes, and thereby testing many genes simultaneously. It can be
used to establish proofs of concept before targeting the genes that are directly involved in the quality
of the rice grain.

4. Beyond Rice Grain Quality Improvement

Over the last few years, GETs have revolutionized crop improvement programs. Newly developed
crop varieties have improved traits including high yield, resistance against different diseases, and biotic
and abiotic stresses. Firstly, the knockout of genes that have a great influence on grain yield, such as
GS3, DEP1, GS5, GW2, Gnla, and TGW6, is a simple and direct method for improving average rice yields.
The mutants of these genes give the desired, impressive phenotypes [70,114]. The development of a
rice triple mutant by simultaneously knocking out GW2, GW5, and TGW6 increased the thousand grain
weight significantly [72]. Moreover, hybrid rice production can also be increased by using TMS5 mutant
lines [115,116]. Multiple disease resistance lines have also been obtained via CRISPR/Cas9 technology.
The knockout of the rice blast resistance gene OsERF922 showed significant reduction in blast lesion
formation under pathogen infection [74]. A knockout of the blast resistance gene Bsrk-1 enhanced
the resistance of rice without compromising yield [75]. Moreover, herbicide resistance research was
initiated to ensure public and environmental health, as both are influenced by agrochemical use [117].
ALS1 is one of the main enzymes responsible for the herbicide resistance of rice. Sun, Zhang, Wu, He,
Ma, Hou, Guo, Du, Zhao and Xia [76] carried out mutations at multiple discrete points in the rice
ALS gene using CRISPR/Cas9. The results showed that CRISPR/Cas9-mediated homology-directed
repair was successful. Xu et al. [118] targeted the second exon of BEL in the Nipponbare rice cultivar,
related to bentazon and sulfonylurea herbicide resistance, through CRISPR/Cas9. The phenotypic
screening matched the results of the genetic mutant screening. Additionally, the seedling stage of rice
is more vulnerable to low temperatures. TIFY1b, a transcription factor, and the OsAnn3 gene in rice
were edited through CRISPR/Cas9, which enhanced cold tolerance significantly. In addition, knockout
of the OsNramp5 transporter gene for cadmium (Cd) led to the development of rice hybrid lines with
low Cd accumulation. The mutant osnramp5 showed less accumulation of Cd in roots, shoots, and
seeds [69,119]. Hence, genome editing using the CRISPR/Cas9 system has contributed a lot to the
manipulation of plant genomes, but there is still great potential to be tapped.

5. Conclusions and Future Perspectives

Premium quality rice grain is the demand of a growing population with better living standards.
Presently, the CRISPR/Cas9 system has all genome editing capabilities, e.g., knock-in, knockout,
knockdown, and expression activation. This system has tremendous untapped potential, has formed an
ever-expanding genetic toolbox for plant biologists to investigate functional genomics, and is a helping
hand for breeders to integrate important genes into the genomes of important crops. The successful
application of CRISPR/Cas9 for tissue engineering and human stem cell modification has led to
further developments in the field of precise genome editing. The ability to target multiple genes
via multiplexed genome editing strategies can facilitate pathway-level research to engineer complex
multigenic rice grain quality attributes. Previously, few studies have been conducted that are related
to targeted mutagenesis for rice grain quality improvement. The pathways of rice grain quality are
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not well understood, and they can be investigated for the genetic mechanisms controlling quality
attributes. The development of novel regulatory components from naturally existing peripherals
(genes, promoters, cis-regulatory elements, small RNAs, and epigenetic modifications) can facilitate
the engineering of regulatory pathways for different elements of rice grain quality. The rapid shift of
research toward the utilization of CRISPR/Cas9 systems for targeted mutagenesis could be a promising
approach for overcome barriers to breeding improved quality rice.
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