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The glycocalyx is a complex polysaccharide-protein layer lining the lumen of vascular
endothelial cells. Changes in the structure and function of the glycocalyx promote an
inflammatory response in blood vessels and play an important role in the pathogenesis
of many vascular diseases (e.g., diabetes, atherosclerosis, and sepsis). Vascular
endothelial dysfunction is a hallmark of inflammation-related diseases. Endothelial
dysfunction can lead to tissue swelling, chronic inflammation, and thrombosis.
Therefore, elimination of endothelial inflammation could be a potential target for the
treatment of vascular diseases. This review summarizes the key role of the glycocalyx
in the inflammatory process and the possible mechanism by which it alleviates this
process by interrupting the cycle of endothelial dysfunction and inflammation. Especially,
we highlight the roles of different components of the glycocalyx in modulating the
inflammatory process, including components that regulate leukocyte rolling, L-selectin
binding, inflammasome activation and the signaling interactions between the glycocalyx
components and the vascular cells. We discuss how the glycocalyx interferes with the
development of inflammation and the importance of preventing glycocalyx impairment.
Finally, drawing on current understanding of the role of the glycocalyx in inflammation,
we consider a potential strategy for the treatment of vascular diseases.
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INTRODUCTION

The glycocalyx is a general term for polysaccharide protein complexes covering the surface of
vascular endothelial cells. As the skeletal structure of the endothelial cell surface, the glycocalyx
is a key factor in the regulation of the fluid balance inside and outside of blood vessels and is
closely related to vascular permeability (Jedlicka et al., 2020). Glycocalyx impairment is associated
with many diseases, such as atherosclerosis, diabetes, and sepsis, all of which are related to chronic
inflammation. Table 1 lists the main diseases known to be related to glycocalyx impairment. In
recent years, there have been major advances in anti-inflammatory drugs used to treat diabetes,
atherosclerosis, and sepsis. Among these drugs, interleukin-1 (IL-1) receptor antagonists have
attracted much attention (Jamilloux et al., 2018). Statins are now commonly used for the treatment
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TABLE 1 | Main diseases to glycocalyx impairment.

Diseases References Diseases References

Systemic or local
inflammation

Margraf et al., 2018 Sepsis Iba and Levy, 2019;
Fernández-
Sarmiento et al.,
2020

Diabetes mellitus Dogné et al., 2018 Ischemia-
reperfusion
injury

van Golen et al.,
2012; Abassi et al.,
2020

Chronic and acute
renal disease

Rabelink and de
Zeeuw, 2015;
Tarbell and Cancel,
2016

Atherosclerosis Tarbell and Cancel,
2016; Mitra et al.,
2017

Stroke Zeng, 2017 Hypertension and
pulmonary oedema

Collins et al., 2013;
Mendes et al., 2020

Cancer Kang et al., 2018;
Buffone and
Weaver, 2020

COVID-19 Yamaoka-Tojo,
2020a,b

of atherosclerosis due to their cholesterol-lowering and anti-
inflammatory effects (Horodinschi et al., 2019). Sepsis refers to
a systemic inflammatory response syndrome caused by infection.
The treatment of sepsis involves early circulatory resuscitation,
as well as anti-inflammatory therapy (Huang et al., 2019).
Although current anti-inflammatory treatments can alleviate
the inflammatory response to some extent, they cannot restore
endothelial dysfunction after glycocalyx impairment.

Endothelial cells consist of a single layer of cells covering
the vascular cavity. The vascular endothelium serves as the
first barrier, thereby providing protection against the effects
of inflammation. Damage to the glycocalyx layer is thought
to be initial stage in the development of inflammation (Lupu
et al., 2020). The glycocalyx is connected to the endothelium by
backbone molecules, including proteoglycans and glycoproteins.
These interact to form a network structure, with various
plasma-derived and endothelial cell-derived soluble biological
macromolecules incorporated into this network to form the
basic structure of the glycocalyx (Jedlicka et al., 2020). Due to
the location of the glycocalyx, the entire structure provides a
barrier to water and solute transmission and acts as a bridge
for interactions between blood circulating cells and endothelial
cells. The glycocalyx also functions as a sensor of mechanical
forces, and it protects against overactivation of cell surface
receptors (Pillinger and Kam, 2017). However, the structure
of the glycocalyx is extremely vulnerable, and inflammation,
ischemia/reperfusion, hypervolemia, and vascular surgery can
cause endothelial glycocalyx impairment. Such impairment
causes a decrease in anticoagulants, an increase in endothelial
permeability, enhanced migration of proinflammatory cells,
impaired mechanical conduction, and endothelial nitric oxide
(NO) synthase activity (Sieve et al., 2018). Oxidative stress plays
an important role in the progression of endothelial dysfunction.
It serves as an intermediate trigger, activating the NOD-like
receptor pyrin domain-containing 3(NLRP3) inflammasome
and aggravating the subsequent inflammatory cascade and
endothelial dysfunction (Incalza et al., 2018). Damage to the
glycocalyx layer leads to endothelial cell dysfunction. Vascular
endothelial dysfunction aggravates the inflammatory response,

which leads to a cycle of inflammation and endothelial
dysfunction, with the inflammatory response further aggravating
glycocalyx impairment.

In this review, we summarize recent advances in
understanding of the effects of glycocalyx impairment, focusing
on inflammation development. We discuss components of the
glycocalyx in modulating the inflammatory process. We conclude
by discussing preventing glycocalyx impairment might provide
a strategy to interrupt the cycle of endothelial dysfunction
and inflammation.

STRUCTURE AND FUNCTION OF THE
GLYCOCALYX

The vascular endothelial glycocalyx comprises a layer of villous
polyglycoproteins with a composite structure that are located
on the apical membrane of endothelial cells between the tube
wall and blood (Figure 1). The endothelial glycocalyx serves
as a natural dynamic barrier on the surface of these cells
(Jedlicka et al., 2020). The main components of the endothelial
glycocalyx are glycoproteins with sialic acid residues at the
ends and proteoglycans with glycosaminoglycan (GAG) side
chains. GAGs are linear heteropolysaccharides, which contain
one molecule of hexosamine and one molecule of hexuronic
acid. They are huge family composed of specific combinations
of hexosamine and hexuronic acids (Curry, 2018). GAGs
found on the surface of endothelial cells include heparan
sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid
(HA). Two families of cell surface molecules (syndecans and
glypicans) make up the core protein skeleton of endothelial
glycocalyx (Aldecoa et al., 2020). Syndecan-1 combines with
HS and CS, playing an important role in signal transduction.
Glypican-1 binds to HS, which is directly anchored to a
lipid raft structure rich in cholesterol and sphingolipids via
C-terminal phosphatidylinositol (Figure 2). This structure
plays a role in vesicle transport and signal transduction. The
glycocalyx covers the surface of all vascular endothelial cells
and serves an important function in the pathophysiology
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FIGURE 1 | The structure of glycocalyx (Tarbell and Cancel, 2016). (A) Transmission Electron Microscope of glycocalyx preserved by ruthenium red and osmium
tetroxide. (B) High-magnification image of glycocalyx.

FIGURE 2 | The structure of endothelial glycocalyx.

of blood vessels (Cosgun et al., 2020). The glycocalyx has
three main functions: (1) It acts as a bridge for interactions
between blood circulating cells and endothelial cells, (2) it
acts as a selective permeable barrier for the blood vessel wall,
and (3) it acts as a mechanical sensor of blood shear force
(Cosgun et al., 2020).

THE ROLE OF THE ENDOTHELIAL
GLYCOCALYX LAYER IN INFLAMMATION
AND ENDOTHELIAL DYSFUNCTION

The vascular endothelial glycocalyx layer is a central player
in the inflammatory response. Lipowsky (2018) observed rapid
shedding of vascular endothelial glycocalyx layer in a murine
inflammation model and the release of inflammation mediators,
such as reactive oxygen species (ROS), reactive nitrogen species,

and tumor necrosis factor-α (TNF-α), which impaired the
structural integrity of the glycocalyx, thereby affecting its
function (Lipowsky, 2018; Uchimido et al., 2019; Gallagher
et al., 2020). After the structure of the vascular endothelial
glycocalyx is damaged, vascular endothelial cell intercellular
adhesion molecule 1 (ICAM-1) and vascular cell adhesion
molecule 1 (VCAM-1) are exposed. As a result, leukocytes
in the blood circulation can adhere more easily to vascular
endothelial cells. This process promotes the development
of inflammation and endothelial dysfunction (Mulivor and
Lipowsky, 2004; Vestweber, 2015; Bui et al., 2020; Liew et al.,
2021). Therefore, glycocalyx shedding is an important factor in
vascular endothelial dysfunction.

Endothelial dysfunction results in a reduction in the level
of NO in blood vessels, which, in turn, leads to abnormal
vascular function. Evidence suggests that the characteristics of
endothelial dysfunction include weakened endothelial-mediated
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FIGURE 3 | The role of glycocalyx in endothelial dysfunction and inflammation NLRP3 inflammasome activates to release IL-1 1L-18, and destroys endothelial
glycocalyx. These mediators possess properties of pro-inflammatory activation. IL-1 and IL-18 binding to its cell surface receptor to activate intracellular signaling
molecules MyD88, which then causes NF-κB activation. The activation of NF-κB signaling pathway increases the secretion of pro-inflammatory mediators such as
cytokines and chemokines to mediate the adhesion of leukocyte and promote leukocyte extravasation. All of these reactions increase endothelial dysfunction by
altering cell contractility and disrupting intercellular connections.

vasodilation, disturbed hemodynamics, impaired fibrinolytic
ability, and excessive generation of ROS and oxidative stress
(Gimbrone and García-Cardeña, 2016; Incalza et al., 2018;
Cyr et al., 2020; Zuchi et al., 2020).

The inflammatory response is an important mechanism
underlying the development and progression of endothelial
dysfunction, and it plays a pivotal role in the pathological
process of vascular diseases. Soeki and Sata (2016) showed that
high-sensitivity C-reactive protein, an inflammatory marker, is
associated with metabolic risk factors for cardiovascular diseases
(Li et al., 2018). C-reactive protein can damage the vascular
endothelium, resulting in a decrease in NO production by the
vascular endothelium (Sproston and Ashworth, 2018). When an
inflammatory reaction occurs in blood vessels, B lymphocytes,
T lymphocytes, and mononuclear are activated. This leads to
an increase in the production of IL-6 and TNF-α. The activities
of IL-6 and TNF-α are interlinked, with TNF-α inducing the
production of IL-6 and IL-6 stimulating the liver to increase
the production of C-reactive protein or vice versa. Macrophages
in atherosclerotic plaques, neutrophils, and monocytes in the
blood synthesize TNF-α, which induces the release of TNF-α
in the presence of arterial injury. TNF-α rapidly upregulates
endothelial cell adhesion factors, which activate endothelial cells

and inflammatory cell aggregation and lead to the release of
inflammatory mediators (Sahibzada et al., 2017; Ng et al., 2018;
Wang and He, 2020). TNF-α also regulates endothelial cell
damage and remodels through the nuclear factor-κB (NF-κB)
signaling pathway (Hayden and Ghosh, 2014; Blaser et al., 2016).

Reactive oxygen species and RNS released in the inflammatory
response degrade HA, HS, and CS. ROS and RNS cause
degradation of vascular endothelial glycocalyx by activating
matrix metalloproteins (MMPs) and inactivating endogenous
protease inhibitors (Rubio-Gayosso et al., 2006; van Golen et al.,
2014). Proteases result in structural damage to the vascular
endothelial glycocalyx. This damage, with the associated loss of
the activity of various enzymes, including superoxide dismutase,
antithrombin III, and thrombomodulin, as well as that of
signaling molecules, results in weakening or loss of the barrier
function of the endothelial glycocalyx layer (Kolářová et al., 2014;
Sieve et al., 2018; Moore et al., 2021). This eventually leads to
an imbalance in the enzymatic system, with endothelial barrier
coagulation and antioxidant dysfunction. Most importantly,
damage to the structure of the vascular endothelial glycocalyx
via an inflammation reaction disturbs the mechanical stress
transduction function of the glycocalyx. The latter leads to
a series of pathological changes, including increased vascular
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FIGURE 4 | The pathogenic role of glycocalyx liberated fragments and the pathophysiologic consequences of endothelial glycocalyx loss.

permeability, edema, changes in the interactions between
endothelial cells and white blood cells, and an imbalance in
the coagulation and antioxidant systems, and decreased vascular
tone (Yao et al., 2007; Chappell and Jacob, 2014). These
changes further exacerbate endothelial dysfunction. Therefore,
endothelial glycocalyx impairment is a crucial factor in the cycle
of inflammation and endothelial dysfunction.

MECHANISM BY WHICH THE
ENDOTHELIAL GLYCOCALYX LAYER
REGULATES INFLAMMATION

In the cycle of inflammation and endothelial dysfunction,
although the vascular endothelial glycocalyx layer is damaged
and shed, it continues to play a critical role in regulating the
development and progression of inflammation (Figures 3, 4).
HS is the main component of vascular endothelial glycocalyx
GAGs, which are disseminated widely on the surface and matrix
of vascular cells. Numerous studies have confirmed that through
its protein binding properties, HS participates in various steps of
inflammation. L-selectin is constitutively expressed by leukocytes
and participates in the regulation of leukocyte rolling. Thus
far, no natural ligand for L-selectin has been found. In the
glycocalyx, HS is known to interact with L-selectin and to
act as an L-selectin ligand, regulating the rolling of leukocytes
in the vascular cavity in the initial stage of inflammation
(Collins and Troeberg, 2019). In the inflammatory response, a
variety of transmembrane glycoproteins in the immunoglobulin

superfamily, including ICAM-1 and VCAM-1, and integrins are
involved in inducing leukocytes to extend and adhere tightly to
the side surface of the vessel lumen. Wang (2011) found that
knocking out the HS gene significantly reduced the accumulation
of the chemokine IL-8 on the luminal surface of endothelial
cells, while inhibiting the tight adhesion of neutrophils caused
by chemokines. However, the expression levels of ICAM-1 and
VCAM-1 did not change. In the same study, in the absence of any
difference in endothelial permeability, transcytosis of chemokines
from the tissue to the vascular cavity was greatly weakened in the
HS gene knockout mice (Middleton et al., 1997). Massena et al.
(2010) reported that glycocalyx HS mediate the accumulation of
the chemokine MIP-2 on the surface of the endothelial cell cavity
and forms a concentration gradient, mediating the movement
of leukocytes toward the transmembrane site. HS can combine
with chemokines to form complexes (e.g., IL-8), which increases
the affinity of chemokines for corresponding receptors on the
cell membrane (Koenig et al., 1998). After enzyme digestion
of HS, binding of chemokines to endothelial cells is reduced,
and the effect of these chemokines on vascular endothelial cells
is weakened. HS can regulate leukocyte chemotaxis in many
ways during the inflammatory response. These include regulating
neutrophil rolling, regulating the formation of inflammation-
related chemokine concentration gradients, and regulating the
transport of chemokines from the inflammation site to the
vascular lumen (Kumar et al., 2015).

The CS is a type of sulfated GAG and the main component
of the endothelial glycocalyx layer. It is a linear polysaccharide
make up of repeated disaccharide units composed of glucuronic
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acid and N-acetylhexosamine. CS is known to elicit a
range of beneficial anti-inflammatory effects, including
increasing type II collagen and proteoglycans, reducing bone
resorption, and improving the anabolic/catabolic balance
in chondrocytes (Martel-Pelletier et al., 2015). Therefore,
CS is widely used in the study of osteoarthritis. Melgar-
Lesmes et al. (2016) found that CS interferes with the
proinflammatory activation of monocytes and endothelial
cells driven by TNF-α, thus reducing the progression of
inflammation and preventing the formation of atherosclerotic
plaques. In this way, CS treatment might provide a new
strategy for the clinical treatment of atherosclerosis. Moreover,
in vitro studies showed that CS reduced inflammation
mediators and the apoptotic process, in addition to reducing
protein production of inflammatory cytokines, inducible NO
synthase, and MMPs (Campo et al., 2009). The activation
of NF-kB signaling is pivotal to the inflammatory response
in the pathogenesis of numerous diseases. Vallières and
du Souich (2010) reported benefits of CS in numerous
inflammatory diseases and attributed these to a reduction
in NF-kB nuclear translocation in chondrocytes and the
synovial membrane. Loeser et al. (2005) reported that by
reducing the phosphorylation of extracellular regulated protein
kinase1/2 and p38 mitogen activated protein kinase, CS
diminished the nuclear translocation of NF-kB triggered by
heat shock proteins, glucose regulated proteins, fibronectin,
extracellular matrix fragments, proinflammatory cytokines, IL-
1β and TNF-α, Pathogen-associated molecular patterns, and
lipopolysaccharides. In this way, CS reduced the expression
of proinflammatory cytokines, NO synthase, cyclooxygenase 2,
phospholipase A2, and MMPs and diminished the inflammatory
reaction (Loeser et al., 2005). This mechanism of action
of CS may explain its effect on diseases with a strong
inflammatory component.

The HA belongs to a large family of GAGs and has been
proven to display multiple biological functions, which depend
on its molecular size (Litwiniuk et al., 2016). According to
recent research, HA has anti-inflammatory properties. High-
molecular weight (HMW) HA tends to be anti-inflammatory,
whereas low-molecular weight (LMW) HA tends to be
proinflammatory (Gall, 2010). LMW-HA can induce various
proinflammatory responses, such as activation of murine
alveolar macrophages (Noble et al., 1996). In addition, small
HA fragments increase the expression of several cytokines,
including MMP-12, plasmogen activator inhibitor-1, MIPs (MIP-
1α and MIP-1β), monocyte chemoattractrant-1, keratinocyte
chemoattractant, and IL-8 and IL-12 (Horton et al., 1999, 2000).
Bourguignon et al. (2011) showed that LMW-HA stimulates
TLR2, TLR4, and MyD88 to form a signaling complex with
CD44, leading to NF-κB specific transcriptional activation and
the expression of the proinflammatory cytokines IL-1β and IL-
8 in a human breast cell line. Taken together, these reports
suggest that LMW-HA induces inflammation via activation
of TLRs and initiation of MyD88/NF-κB signaling, which
leads to the production of proinflammatory cytokines and
chemokines. Unlike small HA fragments, HMW-HA exhibits
anti-inflammatory effects as it is a natural macromolecular

polymer. Wang et al. (2006) analyzed the influence of HMW-
HA on the expression of various inflammatory cytokines
in patients with early-stage osteoarthritis. They reported
downregulation of IL-8, inducible NO synthase, aggrecanase-2,
and TNF-α gene expression in IL-1-stimulated fibroblast-like
synoviocytes. Blocking the CD44 receptor with anti-CD44
antibody inhibited the downregulatory effects of HMW-HA
on gene expression. Campo et al. (2011) reported that HMW-
HA significantly diminished TLR4, TLR2, MyD88, and NF-kB
expression and protein synthesis in synoviocytes in a murine
model of osteoarthritis. They also observed reduced mRNA
expression, TNFα, IL-1β, IL-17, and MMP-13 production,
and inducible NO synthase gene expression in arthritic
mice treated with HMW-HA (Campo et al., 2011). During
inflammation, the endothelial glycocalyx is shed and degraded,
and HA is degraded from a polymerized state to LMW-
HA, thereby changing from an anti-inflammatory state to a
proinflammatory state, which further promotes the development
of inflammation. The aforementioned findings confirm the
importance of protecting the integrity of the glycocalyx under
inflammatory conditions.

The enzymatic degradation pathways of glycocalyx
components are presented in the gray box. Pathogenic features of
released fragments of short HS chains and LMWHA are depicted
as orange boxes. The consequences of endothelial glycocalyx
degradation are summarized in the green box.

THE ROLE OF THE ENDOTHELIAL
GLYCOCALYX LAYER IN REGULATING
THE NLRP3 INFLAMMASOME

Inflammation is a protective immune response to external stimuli
pathogen-associated molecular patterns and damage-associated
molecular patterns released by body damage can activate various
inflammasomes (Rathinam and Fitzgerald, 2016). The NLRP3
inflammasome is one of the most comprehensively studied and
is known to be involved in the development and progression
of various inflammation-related diseases, such as atherosclerosis
and diabetes (Danielski et al., 2020). Recent studies confirmed
that the glycocalyx plays an important role in regulating the
activation of the NLRP3 inflammasome. Wang et al. (2018)
reported that HS inhibits inflammation by downregulating the
NLRP3 inflammasome and cleavage of IL-1β during wound
healing in diabetic rats. In their study, rats treated with HS
exhibited decreased activation of cleaved IL-1β, IL-18, and TNF-
α, as well as decreased expression of NLRP3 (Wang et al., 2018).
Rajan et al. (2010) found that in a cell-free system, NLRP3 directly
interacts with intrinsic RNA and HA, which was followed by
activation of the NLRP3 inflammasome. These studies illustrate
the important role of the glycocalyx in regulating the activation
of NLRP3 inflammasomes (Rajan et al., 2010). However, the
specific mechanism underlying the activity of the glycocalyx
remains unclear and requires further study. It is also not known
whether the glycocalyx can regulate other inflammasomes (e.g.,
NLRP1, NLRC4, NLRP6, and AIM2). This may be a direction for
further research.
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CONCLUSION

Recent evidence has accumulated that endothelial glycocalyx
impairment promotes a cycle of endothelial dysfunction
and inflammation. The findings presented herein highlight
the important role of endothelial glycocalyx integrity in
combating endothelial dysfunction and vascular inflammation.
Stimulation by exogenous substances or endogenous mediators
of endothelial cells induces an inflammatory response, leading
to endothelial glycocalyx damage and impairment of its
mechanical sensory function. This leads to increased vascular
permeability and changes in interactions between endothelial
cells and leukocytes, which results in endothelial dysfunction
and further aggravates inflammation. These changes trigger
signal transduction pathways and activation of the NLRP3
inflammasome, thereby exacerbating disease. We postulate
that interrupting the cycle of endothelial dysfunction and
inflammation may prevent endothelial glycocalyx impairment
and lead the way toward new treatments for inflammatory
diseases. It is worth noting that emerging studies point
to a role for statins in improving vascular dysfunction
by inhibiting the NLRP3 signaling pathway and combating
glycocalyx impairment. Sulodexide, a common anticoagulant and
antithrombotic drug used in the clinical setting, repairs vascular
endothelial cell damage, including glycocalyx impairment. It
also has anti-inflammatory effects. Drugs that can combat
both glycocalyx impairment and exert anti-inflammatory effects
may pave the way toward new treatments for cardiovascular
diseases. Another potentially interesting area of research is
the possible role of the endothelial glycocalyx layer as a
target in COVID-19 therapy. It is well known that COVID-
19 can cause a systemic inflammatory storm and endothelial

cell injury (Rovas et al., 2021). Thus, characteristics of the
glycocalyx seem to be a potential target for the treatment of
COVID-19.

Although our understanding of the effect of the endothelial
glycocalyx layer on inflammation is growing, the specific detailed
mechanism of how the glycocalyx modulates inflammation,
especially under disturbed oscillatory flow conditions, remains
unclear. In addition, although the glycocalyx is known to regulate
not only inflammation at multiple levels but also the activation
of the NLRP3 inflammasome, whether the abnormal shear
stress that occurs under vascular disease conditions regulates
the NLRP3 inflammasome through the glycocalyx needs to
be further studied. Furthermore, whether the glycocalyx can
regulate NLRP1, NLRC4, NLRP6, and AIM2 inflammasomes is
not yet clear. Finally, whether both syndecans and glypicans,
the two main families of glycocalyx core protein skeletons,
participate in regulating the inflammatory response remains
to be determined.
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