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Quantum Computation Based on 
Photons with Three Degrees  
of Freedom
Ming-Xing Luo1, Hui-Ran Li1, Hong Lai2 & Xiaojun Wang3

Quantum systems are important resources for quantum computer. Different from previous encoding 
forms using quantum systems with one degree of freedom (DoF) or two DoFs, we investigate the 
possibility of photon systems encoding with three DoFs consisting of the polarization DoF and two 
spatial DoFs. By exploring the optical circular birefringence induced by an NV center in a diamond 
embedded in the photonic crystal cavity, we propose several hybrid controlled-NOT (hybrid CNOT) 
gates operating on the two-photon or one-photon system. These hybrid CNOT gates show that three 
DoFs may be encoded as independent qubits without auxiliary DoFs. Our result provides a useful way to 
reduce quantum simulation resources by exploring complex quantum systems for quantum applications 
requiring large qubit systems.

Quantum computer has shown its superiority for solving difficult problems such as the large integer decomposi-
tion1–3 and data searching4,5. Since its difficult the large integer decomposition is the mathematical foundation of 
the well-known RSA cryptography which may be used for classical cryptographic applications6–8. Most of these 
quantum computation tasks may be completed with evolutions of quantum systems and desired quantum meas-
urements1–5,9,10. If the quantum circuit model11 is applied, these evolutions may be synthesized by series of local 
quantum gates. Exactly, proper small gates such as the controlled phase-flip (CZ) gate or controlled-not (CNOT) 
gate combined with single-qubit gates12–14 can be used to implement quantum tasks with multiple qubits. These 
small gates construct a universal quantum gate set for quantum computing. Up to now, the CNOT gate has been 
widely implemented using several quantum systems, such as the linear optics15,16, ion trap17,18, atom19,20, and 
nuclear magnetic resonance21,22.

The solid-state quantum system has also attracted much attentions in quantum simulations because of its 
special optical property and scalability23–26. Moreover, electron-spin qubits associated with the nitrogen-vacancy 
(NV) defect centers are particularly useful. In fact, due to the long room-temperature coherent time27, the neg-
atively charged NV defect center in the diamond lattice, consisting of a substitutional 14N atom and an adja-
cent vacancy, is an attractive candidate for quantum information processing. It has been used to prepare and 
detect optical sources28–33, generate hybrid quantum entanglements between the NV center and photon34, or 
electrons35,36, purify two-photonic hyperentanglement in both the polarization and spatial DoFs37, or implement 
the CZ gate between the NV centers assisted by the microsphere cavity38,39. The single-electron and nuclear-spin 
states can be faithfully detected even under ambient conditions40,41, when the electron spin of the NV defect 
center couples to nearby 13C nuclear spins. Another diamond NV− center is proposed with six electrons from the 
nitrogen and three carbons surrounding the vacancy42, which is confined in a microtoroidal resonator (MTR)43 
with the quantized whispering-gallery mode (WGM). This useful system allows for an ultrahigh-Q and a small 
mode volume of WGM microresonators44–46, which has been applied to construct quantum gates on electron-spin 
qubits47,48 or remote qubits49,50. Furthermore, recent experiments have assembled several hybrid systems, where 
colour centers in diamond nanocrystals or bulk diamond are coupled to the evanescent fields of cavities, which are 
defined in non-diamond materials coupling to WGMs in a silica micro-sphere50–52, diamond-GaP micro-disk53, 
GaP micro-ring cavities54, or SiN photonic crystal55.

Most of previous quantum simulations focused on systems with single DoF15–22 or hybrid systems56–60. A 
few schemes have considered photons with two DoFs61,62. Our recent result63 presents the independence of 
two DoFs (polarization DoF and spatial DoF) of photonic system, and then is used to construct the ququart 
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(four-dimensional) quantum logic64. Thus quantum simulation resources may be saved one half. In this paper, 
we further reduce quantum resources by considering photonic systems with three DoFs. Motivated by recent 
schemes65,66, each photon may be encoded with two circularly polarized states and four modes, i.e., |l, I〉 ,|r, I〉  
and |l, E〉 ,|r, E〉  for two crystal emissions. Here, l(r) refers to the left (right) side of each cone and I(E) denotes 
the internal (external) cone, as shown in Fig. 1. A general state is given by the product of one polarization state 
and two longitudinal momentum states. In the follow, we will investigate these photonic DoFs for the quantum 
simulation, without using auxiliary DoFs. From the quantum circuit model, CNOT gate will be schematically 
implemented on these DoFs of photonic states assisted by NV centers. For the symmetry of two spatial modes in 
each photonic system, fifteen CNOT gates are required to operate on the polarization DoFs and spatial-DoFs of 
the two-photon or one-photon system. Each gate is completed by interacting photons to auxiliary NV centers, 
disentangling NV centers, and correcting the emitting photons. These schemes are beyond to previous CNOT 
gates on the same DoF of two-photon state14,15,56,57, hybrid CNOT gates on the photon and stationary electron 
spins in quantum dots58–61, or different DoFs of two photons62,63. Our theoretical result shows that three DoFs 
of each photonic system can be used as independent qubits in one quantum task. Hence, two thirds of quantum 
resources may be saved for quantum simulations with large qubit systems, such as the Shor’s algorithm.

Results
To show the encoding independence of the polarization DoF and two spatial DoFs of each photon, it is necessary 
to prove that all quantum transformations in SU(2n) may be implemented on these DoFs. Based on the theory of 
the universal logic gates12–14, it is sufficient to consider the CNOT gate on any two DoFs of the photonic system. 
It means that fifteen CNOT gates should be performed on photonic systems with three DoFs, where nine CNOT 
gates are on the two-photon system (all combinations of three DoFs) and six CNOT gates are on the one photon 
system. By exploring optical selection rules of the NV center in the crystal cavity, these CNOT gates may be real-
ized without altering DoFs and auxiliary DoFs during implementations. In this case, each photonic DoF can be 
encoded as an independent qubit in quantum applications.

Photon with three DoFs. Circularly polarized photon in the state α1|L〉  +  α2|R〉  (left circularly polarized 
state |L〉  and right circularly polarized state |R〉 ) is created at a degenerate wavelength λ =  2λp by each BBO 
crystal along two correlated directions belonging to the lateral surfaces of two SPDC cones, with full aperture 
angles θI and θE, respectively64,65, as shown in Fig. 1. The output state is dependent of these angles. I refers to the 
internal cone whereas E denotes the external cone, corresponding to the first and the second crystal, respec-
tively. The dichotomy existing between the I cone and E cone is thus identified as an independent DoF, i.e., the 
corresponding mode emission as l(r) by referring to the left (right) side of each cone64,65. If the pump coherence 
length exceeds more than one order of magnitude the total crystal length, the coherence and indistinguishability 
between two crystal emissions may be guaranteed64,65. Two conical emissions are then transformed into two 
cylindrical ones by a positive lens with focal length f, located at a distance f from the intermediate point of the 
second crystal device. By selecting four pairs of correlated modes with an eight-hole screen, |l, I〉  and |r, I〉  for 
the first crystal and |l, E〉  and |r, E〉  for the second crystal emission, a general photonic state is prepared as the 
product of one polarization state and two longitudinal momentum states (or, equivalently, a ququart state) and is 
expressed as a 3-qubit state:

φ α α β β β β= + ⊗ + + +L R l I r I l E r E( ) ( , , , , ) (1)1 2 1 2 3 4

where |α1|2 +  |α2|2 =  1 and |β1|2 +  |β2|2 +  |β3|2 +  |β4|2 =  1. Here, βj are dependent of aperture angles θI and θE, and 
focal length f, which are not goals in this paper64,65.

Figure 1. Schematic photon generation from the internal (I) and external (E) cone assisted by a two-crystal 
system. Polarized state as an input pulse passes through two 0.5 mm thick Type I β-barium-borate (BBO) 
crystal slabs. The input photon is created at a degenerate wavelength λ =  2λp by each BBO crystal along two 
correlated directions belonging to the lateral surfaces of two SPDC cones, with full aperture angles θI and θE, 
respectively. The internal (I) and external (E) cone correspond to the first and the second crystal, respectively. 
The annular sections of each emission cone, with approximate diameters dI and dE are intercepted by a single 
eight-hole screen. The dichotomy existing between the I cone and E cone is identified as an independent DoF. 
The corresponding mode emission as l(r) by referring to the left (right) side of each cone.
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A diamond NV center coupled to an MTR with a WGM. Schematic NV center in a diamond embedded 
in a photonic crystal cavity is shown in Fig. 2. The negatively charged NV center is consisted of a substitutional 
nitrogen atom and an adjacent vacancy with six electrons. The Λ -type three-level system is realized using specific 
excited state |A2〉  =  (|E−〉 |m+〉  +  |E+〉 |m−〉 ) as an ancillary state66,34. Here, |E±〉  are orbital states with angular 
momentum projection along the NV axis. The ground state is an electronic spin triplet with a splitting of 2.88 GHz 
between the magnetic sublevels |0〉 (ms =  0) and |m±〉 (ms =  ± 1)34. |A2〉  may decay into two ground states |m−〉  and 
|m+〉  by exciting the NV center with a polarized 2-ns p-pulse that is shorter than the emission timescale, and the 
reflection may be separated from fluorescence photons using detection timing34. The normal boundary condition 

κ= +ˆ ˆ ˆb b aout in  is used to derive the optical selection rule with the input field b̂in, output field b̂out and cavity 
field operator â. If spins stay in the ground states most of the time67, the optical reflection coefficient may be 
approximately defined in the follow (see Methods)
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where δωc and δωe are frequency detunings satisfying δωc =  ωc −  ω and δωe =  ωe −  ω. ωc, ω and ωe are the frequen-
cies of the cavity mode, input photon pulse, and NV center, respectively. g is the coupling strength between the 
cavity and the NV center. κ, κs and γ are the damping rate of the cavity, cavity side leakage mode, and spontaneous 
decay rate of the NV center, respectively. If define the cooperativity C =  2g2/(γκ), the photonic reflection proba-
bility68 is determined by the cooperativity C and the cavity tuning as follow
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Considering the coupling strength g =  0, an NV center is uncoupled from the cavity (the cold cavity), and the 
reflection coefficient r(ω) becomes
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Thus the input pulse in the polarized state |L〉  gains a phase shift θ after reflecting from the hot cavity (g >  0) 
with the NV center |m−〉 , or a phase shift θ0 after reflecting from the cold cavity (g =  0) with the NV center |m+〉 . 
The input pulse in the state |R〉  gains a phase shift θ0 after reflecting from the cold cavity with the NV center |m−〉 ,  
or a phase shift θ after reflecting from the hot cavity with the NV center |m+〉 . By choosing a proper frequency 
detuning δωe =  066 and the cooperativity C ≫  1, the reflection coefficients may satisfy |r(ω)| ≈  1 and |r0(ω)| ≈  1 
when the cavity side leakage κs is negligible. By adjusting the frequencies ω and ωc such that δωc/κ →  0 and C ≫  1, 
the phase shifts may be realized as θ =  0 and θ0 =  π. Hence, the following optical transition may be obtained as

→ − →

→ → − .

− − + +

− − + +

R m R m R m R m
L m L m L m L m

, ,
, (5)

From this optical transition, an NV center requires a polarization-degenerate cavity mode, which is also suit-
able in H1 photonic crystals69,70 and fiber-based cavities71.

Figure 2. Schematic NV center coupling to the resonator and possible Λ-type optical transitions in the NV 
center. âin and âout are the input and output field operators of a waveguide, respectively. The bold levels encode 
qubits, i.e., |m±〉  =  |ms =  ± 〉 . The transition |m−〉  →  |A2〉  is derived by a left circularly polarized photon σ+ (|L〉 ), 
and |m+〉  →  |A2〉  is derived by a right circularly polarized photon σ− (|R〉 ).
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CNOT gate on the same DoF of the two-photon system. Schematic CNOT gate on the same DoF of 
the two-photon system is shown in Fig. 3. NV centers ei trapped in the photonic crystal NVi are initially prepared 
in the superposition states |+〉 = | 〉 + | 〉− +m m: ( )/ 2ei

. Two input photons A1 and A2 are in the states 
φ α α β β β β= + ⊗ + + +R L l I l E r I r E( ) ( )A i i i i i i i i i i i i i i1 2 1 2 3 4

i
, i =  1, 2. Figure 3(a) is used to complete 

the CNOT gate on the polarization DoFs of two photons, i.e.,

= ⊗ + + ⊗ +C A A R R R R L L L L R L L R( , ) ( ) ( ) (6)pp 1 2

In detail, the photon A1 from each spatial mode (l1I1, l1E1, r1I1 or r1E1) evolves as CPBS →  NV1 →  CPBS to 
complete the following controlled phase gate

= ⊗ + + ⊗ −− − + + − − + +CZ A e R R m m m m L L m m m m( , ) ( ) ( ) (7)pa 1 1

on the polarization DoF and the NV center e1 (see Appendix A of Supplementary Information for details). And 
then, after one Hadamard operation Ha on the NV center e1 in the NV1, the photon A2 from each spatial mode 
evolves as Hp →  CPBS →  NV1 →  CPBS →  Hp to complete the following hybrid CNOT gate

= ⊗ + + ⊗ +− − + +C e A m m R R L L m m R L L R( , ) ( ) ( ) (8)ap 1 2

on the NV center e1 and the polarization DoF of the photon A2 (see Appendix A of Supplementary Information 
for details). Now, after disentangling the NV center e1 using the measurement under the basis 

Figure 3. Schematic CNOT gate on the same DoF of two photons. (a) Schematic CNOT gate on the 
polarization DoFs of two photons. CPBS represents a polarizing beam splitter in the circular basis, which 
transmits |R〉  and reflects |L〉 . CBS represents a 50% 50 beam splitter to perform the Hadamard operation on the 
spatial DoF of a photon. X represents a waveplate to implement the bit-flip operation Xp =  |R〉 〈 L| +  |L〉 〈 R|. Ha 
represents the Hadamard operation on the NV center in a cavity. (b) Schematic CNOT gate on the spatial DoFs 
of two photons. Hp represents a half-wave plate (HWP) to perform the Hadamard operation on the polarization 
DoF of a photon. The numbers 1, 2, … , 8 denote the orders for an input pulse to interact with an NV center.
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|±〉 = | 〉 ± | 〉− +m m{ : ( )/ 2 }, the phase flip Zp =  |R〉 〈 R| −  |L〉 〈 L| is performed on the photon A1 from each mode 
for the measurement outcome |−〉e1

. Thus the CNOT gate Cpp(A1, A2) has been realized on the photons A1 and A2.
Figure 3(b) is a schematic circuit to complete the CNOT gate on the spatial DoF {l, r}s of two photons, i.e.,

= ⊗ + + ⊗ +C A A l l l l r r r r l r r l( , ) ( ) ( ) (9)ss 1 2l r,

Here, the photon A1 from each spatial mode r1I1 or r1E1 evolves as CPBS →  NV2 →  (X →  NV2 →  X) →  CPBS to 
complete the following controlled phase gate

= ⊗ + + ⊗ −CZ A e l l l l r r r r l l r r( , ) ( ) ( ) (10)s a 1 2l r,

on the spatial DoF {l, r} and the NV center e2 in the state |+〉 (see Appendix B of Supplementary Information 
for details). Now, after a Hadamard gate Ha performed on the NV center e2 in the NV2, the followed circuit CB
S →  CPBS →  NV2 →  (X →  NV2 →  X) →  CPBS →  CBS for each mode pair (l2I2, r2I2) or (l2E2, r2E2) is used to com-
plete the hybrid CNOT gate on the NV center e2 and the spatial DoF {l, r} of the photon A2 (see Supplementary 
Information for details), i.e.,

= ⊗ + + ⊗ +− − + +C e A m m l l r r m m l r r l( , ) ( ) ( ) (11)as 2 1l r,

Now, the CNOT gate C A A( , )ss 1 2l r,
 may be realized by disentangling the NV center e2 using the measurement 

under the basis {|± 〉 }, where Zp is performed on the photon A1 from each spatial mode r1I1 and r1E1 for the meas-
urement outcome |−〉e2

.
A similar CNOT gate

= ⊗ + + ⊗ +C A A I I I I E E E E I E E I( , ) ( ) ( ) (12)ss 1 2I E,

holds for the spatial DoF {I, E}s of two photons using an NV center e3 trapped in the optical cavity NV3 (see 
Appendix C of Supplementary Information for details).

Hybrid CNOT gate on the different DoFs of the two-photon system. Figure 4(a) is a schematic 
circuit to implement the CNOT gate on the polarization DoF of the photon A1 and the spatial DoF {l, r} of the 
photon A2, i.e.,

= ⊗ + + ⊗ +C A A R R l l r r L L l r r l( , ) ( ) ( ) (13)ps 1 2l r,

In fact, similar to the Fig. 3(a), the first controlled phase flip CZpa(A1, e1) in the equation (7) is used to change 
the photon A1 and the NV center e1 from φ| 〉 |+〉A e1 1

 to φ +CZ A e( , )( )pa A e1 1
1 1

. And then, after one Hadamard 
operation Ha performed on the NV center e1 in the NV1, the followed circuit CBS →  CPBS →  NV1 →  (X →  NV1 →  

Figure 4. Schematic CNOT gate on different DoFs of the two-photon system. (a) Schematic CNOT gate 
on the polarization DoF of one photon and the spatial DoF {l, r} of the other. (b) Schematic CNOT gate on the 
spatial DoF {l, r} of one photon and the polarization DoF of the other. (c) Schematic CNOT gate on the spatial 
DoF {l, r} of one photon and the spatial DoF {I, E} of the other photon. ei denote auxiliary NV centers in the NV-
cavity NVi, i =  1, 2, 3. The subcircuits Ha, CZpa, Cap, CZsa and Cas are shown in the Fig. 3.
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X) →  CPBS →  CBS for each spatial mode pair (l2I2, r2I2) or (l2E2, r2E2) is used to complete the CNOT gate Cas(e2, A1)  
in the equation (11) on the NV center e1 and the spatial mode {l, r} of the photon A2 (similar to the Fig. 3(b)). After 
disentangling the NV center e1 using the measurement under the basis {|± 〉 }, the hybrid CNOT gate C A A( , )ps 1 2l r,

 
is realized on the photons A1 and A2, where Zp is performed on the photon A1 from each spatial mode r1I1 and r1E1 
for the measurement outcome − e1

, see Appendix D of Supplementary Information for details.
Similarly, after the controlled-phase flip CZpa(A1, ′e1) on the photon A1 and the NV center e1′ in the state |+ 〉 , a 

schematic circuit is applied to the photon A2 from two spatial mode pairs (l2I2, l2E2) and (r2I2, r2E2) to complete the 
CNOT gate on the NV center e1′ and the spatial DoF {I, E} of the photon A2 (see Appendix E of Supplementary 
Information for details). The hybrid CNOT gate

= ⊗ + + ⊗ +C A A R R I I E E L L I E E I( , ) ( ) ( ) (14)ps 1 2I E,

is implemented on the polarization DoF of the photon A1 and the spatial DoF {I, E} of the photon A2 after dis-
entangling the NV center e1′.

Figure 4(b) is used to implement the CNOT gate on the spatial DoF {l, r} of the photon A1 and the polarization 
DoF of the photon A2, i.e.,

= ⊗ + + ⊗ +C A A l l R R L L r r R L L R( , ) ( ) ( ) (15)s p 1 2l r,

In fact, similar to the evolutions as shown in the Fig. 3(b), the controlled phase gate CZ A e( , )s a 1 2l r,
 in the equa-

tion (10) is performed on the photon A and the NV center e2 in the state |+ 〉  to get φ| 〉 |+〉CS A e( , )( )sa A e1 2 1 2
. And 

then, after one Hadamard operation Ha on the NV center e2 in the NV2, the followed circuit for the photon A2 
from each spatial mode is used to complete the CNOT gate Cap(e2, A2) on the NV center e2 and the polarization 
DoF of the photon A2 (see the Fig. 3(a)). The final joint state is φ φC e A CS A e( , ) ( , )( )ap s a A A2 2 1 2l r, 1 2

. Finally, by 
disentangling the NV center e2 using the measurement under the basis {|± 〉 }, the hybrid CNOT gate C A A( , )s p 1 2l r,

 
is realized, where − Ip will be performed on the photon A1 from each spatial mode r1I1 and r1E1 for the measure-
ment outcome |−〉e2

, see Appendix F of Supplementary Information for details. Moreover, if the second part of the 
present circuit above is applied to the photon A1 from two spatial modes l1I1 and l1E1, the CNOT gate is imple-
mented on the spatial DoF {I, E} of the photon A1 and the polarization DoF of the photon A2, see Appendix G of 
Supplementary Information for details.

Figure 4(c) is used to implement the CNOT gate on the spatial DoF {l, r} of the photon A1 and the spatial DoF 
{I, E} of the photon A2, i.e,

= ⊗ + + ⊗ +C A A l l I I E E r r I E E I( , ) ( ) ( ) (16)s s 1 2l r I E, ,

In detail, similar to the evolutions as shown in the Fig. 3(b), the controlled phase gate CZs al r,
 in the equa-

tion (10) is performed for the photon A and the NV center e3 in the state |+ 〉  to get φ |+〉CZ A e( , )( )s a A e1 3l r, 1 3
. And 

then, after one Hadamard operation Ha on the NV center e3, the followed circuit for the photon A2 from each 
spatial mode is used to realized the CNOT gate C e A( , )as 3 2I E,

 =  |m−〉 〈 m−|⊗ (|I〉 〈 I| +  |E〉 〈 E|) +  |m+〉 〈 m+|⊗ (|I〉 〈 
E| +  |E〉 〈 I|) on the NV center e3 and the spatial DoF {I, E} of the photon A2. The final joint state is 

φ φ|+〉C e A CZ A e( , ) ( , )( )as s a A e A3 2 1 3I E l r, , 1 3 2
. Now, by disentangling the NV center e3 using the measurement 

under the basis {|± 〉 }, C A A( , )s s 1 2l r I E, ,
 may be deterministically realized, where − Ip will be performed on the pho-

ton A1 from each spatial mode l1E1 and r1E1 for the measurement outcome |−〉e3
, see Appendix H of 

Supplementary Information for details. Similarly, the CNOT gate may be implemented on the spatial DoF {I, E} 
of the photon A1 and the spatial DoF {l, r} of the photon A2, see Appendix I of Supplementary Information for 
details.

Hybrid CNOT gate on different DoFs of one photon. Figure 5 is a schematic circuit to implement the 
CNOT gate C psl r,

 in the equation (13) on the polarization DoF and the spatial DoF {l, r} of the photon A1. In detail, 
similar to the Fig. 3(a), the controlled-phase flip CZpa in the equation (7) is used to change the photon A1 and the 
NV center e1 from φ +A e1 1

 to φ +CZ A e( , )( )pa A e1 1
1 1

. And then, after one Hadamard operation Ha performed 
on the NV center e1, the followed CNOT gate Casl in the equation (11) is performed on the NV center e1 and the 
spatial DoF {l, r} of the photon A1 (similar to the Fig. 3(b)). After disentangling the NV center e1 using the meas-
urement under the basis {|± 〉 }, the hybrid CNOT gate C psl r,

 is realized on the photon A1, where Zp will be per-
formed for the photon A1 from each mode for the measurement outcome − e1

, see Appendix J of Supplementary 

Figure 5. Hybrid CNOT gate on different DoFs of one photon. e1 denotes an auxiliary NV center in the NV-
cavity NV1. The subcircuits CZpa and Cas are shown in the Fig. 3.
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Information for details. Moreover, if the CNOT gate C e A( , )as 1 1IE
 is performed on the NV center e1 and the photon 

A1 after CZpa(A1, e1), the hybrid CNOT gate C ps I E,
 in the equation (14) is realized on the photon A1 after properly 

disentangling the auxiliary NV center, see Appendix K of Supplementary Information for details.
For the hybrid CNOT gate on the spatial DoF {l, r} and the spatial DoF {I, E} of the photon A1, the photon A1 

from the spatial modes r1I1 and r1E1 passes through CBS, − I, CBS, sequentially. The photon A1 evolves as follows

φ
α α α α

α α α α
α α α α

α α α α
α α α α
α α α α

 →

 →

 →

+ + +

+ + + +
+ + +

+ − + −
+ + +

+ + + +

−

′ ′ ′ ′

′ ′ ′ ′

R l I R l E L l I L l E

R r I R r E L r I L r E
R l I R l E L l I L l E

R r I R r E L r I L r E
R l I R l E L l I L l E

R r I R r E L r I L r E (17)

A r I r E

CBS

r E

I

r I r E

CBS

1 mode pairs ( , )

mode

mode pairs ( , )

0 1 1 1 1 1 4 1 1 5 1 1

2 1 1 3 1 1 6 1 1 7 1 1

0 1 1 1 1 1 4 1 1 5 1 1

2 1 1 3 1 1 6 1 1 7 1 1

0 1 1 1 1 1 4 1 1 5 1 1

3 1 1 2 1 1 7 1 1 6 1 1

1
1 1 1 1

1 1

1 1 1 1

where α α α′ = ′ + ′( )/ 22 2 3 , α α α′ = ′ − ′( )/ 23 2 3 , α α α′ = ′ + ′( )/ 26 6 7 , and α α α′ = ′ − ′( )/ 27 6 7 . Similar cir-
cuit may be used to realize the hybrid CNOT gate on the spatial DoF {I, E} and the spatial DoF {l, r} of the photon 
A1, see Appendix K of Supplementary Information for details. Moreover, the CNOT gates on the spatial mode 
DoF and the polarization DoF of the photon A1 are easily realized by two flip waveplates on two spatial modes r1I1 
and r1E1, or l1E1 and r1E1, respectively.

Discussions
In ideal conditions, one may neglect the cavity side leakage, and the reflection coefficients satisfy |r0(ω)| ≈  1 and 
|r(ω)| ≈  1. The corresponding fidelities of the present CNOT gates are nearly 100%. In experiment, the general 
fidelity is defined by ∫ ρ= | Φ Φ |F f , where |Φ 〉  is the ideal final state without side leakage while ρf is the final 
state under a real situation with side leakage. In the resonant condition δωe =  0, if the cavity side leakage is consid-
ered, the optical selection rule for the NV-cavity system given by the equation (5) becomes

→ − →

→ → − .

− − + +

− − + +

R m r R m R m r R m
L m r L m L m r L m

, ,
, (18)

0

0

Due to the exchangeability of two spatial DoFs of one photon with respect to random initial photons, the 
fidelities and efficiencies are evaluated for four CNOT gates: CNOT gate on two polarization DoFs, CNOT gate 
on two spatial DoFs, CNOT gate on the polarization DoF of one photon and the spatial DoF of the other photon, 
and CNOT gate on the polarization and spatial DoFs of one photon system, as shown in Figs 6 and 7, respectively. 
Generally, large cooperativity C and low relative detuning δωc/κ are required for high fidelities and efficiencies. 
For the diamond NV centers, the photoluminescence is partially unpolarized, and the emission with ZPL is 
only 4% of the total emission. ZPL with zero phonon line is only 4% of γ =  2 ×  15 MHz31. For the diamond NV 
center in a MTR with WGM mode system, |r(ω)| ≈  0.95 when C ≥  1834 with small detuning δωc/κ ≈  0; |r(ω)| ≈  1 
when C ≥  50 with small detuning δωc/κ ≈  0 for κ ≈  1 GHz or κ ≈  10 GHz. For our CNOT gates, if C ≥  18 and 
δωc/κ ≈  0.1, their fidelities are greater than 82.6% and their efficiencies are greater than 75.4%. If C ≥  50 and 
δωc/κ ≈  0.1, their fidelities are greater than 98.4% and their efficiencies are greater than 94.7%.

In conclusion, we have investigated the possibility of quantum simulations using photon systems with three 
DoFs. We have constructed fifteen schematic CNOT gates operating on the spatial and polarization DoFs of 
the two-photon system or one-photon system. Different from previous CNOT gate on the same DoF of the 
two-photon system14,15,56,57, our schemes are based on different DoFs of two photons or one photon. Compared 
with hybrid implementations on the photon and stationary electron spins in quantum dots58–61, the present 
CNOT circuits are ultimately realized on the photon system, and the electron spins in NV center are auxiliary 
resources to build the correlation between photons. The present schemes have shown that two different spatial 
DoFs may be viewed as independent qubits simultaneously, which has beyond previous independence of the 
polarization and spatial DoFs62,63. Although different DoFs may be easily exchanged in terms of encoding, the 
schematic operations are inconvenient for photon systems with two different spatial DoFs. The main reason is 
that the hybrid CNOT gates are not realized in one-shot manners. Thus, it is difficult to exchange these DoFs 
during applications, where different DoFs may be used as different encoding types such as the quantum Shor 
algorithm or the quantum search algorithm. Hence, our results are distinct from all previous quantum logic gates 
on different photons14,15,56,57. Our theoretical schemes have shown that three DoFs of photon systems may be 
independent in quantum information processing. Two thirds of the quantum resources may be saved in quantum 
simulations. With the recent experiments of the NV-cavity system33–35, our schemes are expected to be applicable 
for the entanglement distribution or large-scale quantum computation.

Methods
A diamond NV center coupled to an MTR with a WGM. The master equation of the whole system may 
be expressed by a Lindblad form as follows

� H Hρ ρ ρ ρ= + +


i H[ , ] , (19)1 2

where H =  H1 +  H2 +  H3 +  H4. ω= ˆ ˆ†
H b b1  is the Hamiltonian of an input photon pulse. σ σ= ++ −ˆ ˆ†H g a a( )2  is 

the standard Jaynes-Cummings Hamiltonian for a two-level system interacting with a single electromagnetic 
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mode by applying the rotating wave approximation and dropping the energy nonconserving terms. σ− and σ+ are 
the Pauli raising and lowering operators, respectively. g is the coupling strength between the cavity and X−. 

σ= ωH z3 2
c  is the Hamiltonian of the dipole. σz is the Pauli operator for the population inversion. 
κ= −ˆ ˆ ˆ ˆ† †

H a b ab( )in in4  i s  t h e  i n t e r a c t i o n  b e t w e e n  t h e  e x c i t a t i o n  f i e l d  a n d  s y s t e m . 
 ρ ρ ρ ρ= − + −κ κ+ ˆ ˆ ˆ ˆ ˆ ˆ† † †

b b b b b b( 2 )1 2
s  accounts  for  the  damping of  the  input  photon pulse . 

ρ σ ρσ σ σ ρ ρσ σ= − −γ
− + + − + −(2 )2 2

  accounts for spontaneous emission of the dipole. The input-output opti-
cal relation of the NV center system may be calculated from the Heisenberg equations67 in terms of the cavity field 
operator â, input pulse field b̂ and dipole operator σ−,

δω κ κ
σ κ

σ
δω

γ
σ σ γ

= −


 + +



 − −

= −


 +



 − +

−

−
−

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

da
dt

i a g b

d
dt

i g a b

2 2
,

2
,

(20)

c
s

in

e z in

If spins stay in the ground states most of the time [〈 σ−〉  =  − 1], the cavity output b̂out is connected with the 
input field by the standard input-output relation by a reflection coefficient r(ω).

Measurement of the NV center e in cavity. To measure the NV center e of an entangled system α|m−〉 e 
|Ω1〉  +  β|m+〉 e|Ω2〉 , an auxiliary photon c in the state +R L( )1

2
 may be used as follows. Let the photon c pass 

through one CPBS to split the circular polarizations |R〉  and |L〉 , and the right-circular polarization |R〉  interact 
with the cavity system, and its output combine with |L〉  of the photon c using the other CPBS. Thus, the joint 
system evolves

α β

α β

+ Ω + + Ω

− Ω + + Ω .

− +

− +


R L m R L m

R L m R L m

2
( )

2
( )

2
( )

2
( )

(21)

c e c e

c e c e

1 2

1 2

Figure 6. Average fidelities of the present CNOT gates vias the cooperativity C and relative detuning δωc/κ. 
(a) The average fidelity of the CNOT gate on the polarization DoFs of two photons; (b) The average fidelity of 
the CNOT gate on the spatial DoFs of two photons; (c) The average fidelity of the hybrid CNOT gate on the 
polarization and spatial DoFs of the two-photon system; (d) The average fidelity of the hybrid CNOT gate on 
the polarization and spatial DoFs of the one photon system. The average fidelity is computed as the expectation 
of random input photons.
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Hence, the NV center e can be determined by measuring the photon in the orthogonal basis ±{ }R L( )1
2

. 
The NV center is |m−〉  or |m+〉  for the measurement outcome +R L( )1

2
 or −R L( )1

2
, respectively.
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