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Abstract: Metformin is a drug in the family of biguanide compounds that is widely used in the
treatment of type 2 diabetes (T2D). Interestingly, the therapeutic potential of metformin expands
its prescribed use as an anti-diabetic drug. In this sense, it has been described that metformin
administration has beneficial effects on different neurological conditions. In this work, we review the
beneficial effects of this drug as a neuroprotective agent in different neurological diseases, with a
special focus on epileptic disorders and Lafora disease, a particular type of progressive myoclonus
epilepsy. In addition, we review the different proposed mechanisms of action of metformin to
understand its function at the neurological level.

Keywords: AMPK; epilepsy; GPD2; Lafora disease; mechanism of action; metformin; neurologi-
cal disorders

1. Introduction

Metformin (N,N-Dimethylimidodicarbonimidic diamide) belongs to the family of
biguanide compounds that have glucose-lowering effects. Among the biguanide family
of compounds, metformin was initially of little clinical interest, due to its low potency
requiring high doses of the compound to be effective. However, metformin showed
a higher safety profile than its counterparts, such as phenformin or buformin, which
were discarded for clinical use because they produced lactic acidosis (reviewed in [1]).
Metformin is currently the most commonly prescribed drug for type 2 diabetes (T2D), and
is taken by an estimated 150 million people worldwide. It has the advantage over other
non-insulin-based diabetes therapies of reducing blood glucose levels without inducing
hypoglycemia. Due to its superior safety profile, it has become the first-line treatment for
T2D, and is now featured on the World Health Organization’s essential medicines list [1–3].
However, although metformin is usually well tolerated, it does have some side effects. In
some patients, it can produce lactic acidosis, gastrointestinal discomfort, and vitamin B12
deficiency. For this reason, metformin should be administered initially at low doses that
are increased if side effects do not appear [4].

The regular dose of metformin used in diabetic patients is 1–2 g/day, leading to a
plasma metformin concentration of 50–100 µM. Numerous reports on the possible met-
formin mechanisms of action have been published, and some contradictory results have
been shown due to differences in the cellular system used in the analyses, or because
different doses of metformin were used (reviewed in [1]). Thus, different mechanisms
of action have been described depending on the dose used in rats and mice: (1) supra-
pharmacological metformin doses (>250 mg/kg/day) achieved >1 mM plasma metformin
concentration; and (2) regular pharmacological treatment (50–100 mg/kg/day) achieved
50–100 µM metformin concentration, which corresponds to the regular human dose men-
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tioned above [1–3]. Thus, depending on the dose, the mechanism of action of metformin
can be explained by it affecting different signaling pathways (see below).

According to PubChem [PubChem. Available online: http://pubchem.ncbi.nlm.nih.
gov/compound/metformin (accessed on 12 May 2021)], the pKa of metformin is 12.4. This
value indicates that metformin exists in a monoprotonated form at neutral pH (6–8), and
that only when it reaches a pH < 3.1 would it exist as biprotonated species. Due to its
unusually hydrophilic nature, metformin cannot passively diffuse through cell membranes,
and must rely on members of organic cation transporters (OCTs) [1–3]. Therefore, only
those tissues that express members of the OCT family (e.g., liver, kidney, and small intestine)
will be targets for the action of metformin [5–7]. Metformin can also act on neuronal cells
as they express two members of the OCT family, namely OCT1 and plasma membrane
monoamine transporter (PMAT) [8]. Once metformin enters cells, it accumulates within
the mitochondria [1] (Figure 1).

The therapeutic potential of metformin treatment expands its prescribed use as an
anti-diabetic drug. Thus, metformin has been shown to be effective in the treatment of
multiple diseases, including polycystic ovary syndrome [9], cardiovascular disease [10–12],
and cancer [12–14]. In addition, it delays the aging process [12,15,16] and alleviates inflam-
mation associated with it [17], and also modulates the microbiota to promote health [3,18].
Furthermore, metformin may have additional beneficial effects yet to be discovered. The
beneficial effects of metformin also extend to neurodegenerative diseases; metformin has
been reported to alleviate the pathophysiology of Alzheimer’s, Parkinson’s, and Hunt-
ington’s diseases, as well as multiple sclerosis, among others [12,19]. In this work, we
will review the different proposed mechanisms of action of metformin and the beneficial
effect that this drug has as a neuroprotective agent in different neurological diseases, with
special attention to epileptic disorders and Lafora disease, a form of progressive myoclonus
epilepsy (see below).

http://pubchem.ncbi.nlm.nih.gov/compound/metformin
http://pubchem.ncbi.nlm.nih.gov/compound/metformin
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Figure 1. Metabolic pathways affected by metformin. A diagram of the main pathways related
to glycolysis and gluconeogenesis is depicted. Gluconeogenic substrates are highlighted in grey,
and enzymes directly affected by metformin are highlighted in orange. Specific enzyme isoforms
present in neurons are in red, and those present in astrocytes are in blue. See text for details. AldoA:
aldolase; Alt: Alanine aminotransferase; AMPK: AMP-activated protein kinase; NADH: ubiquinone
oxidoreductase; Fbp: fructose bisphosphatase; Gapdh: glyceraldehyde-3P dehydrogenase; G6pc:
glucose 6-phosphatase; G6pd: glucose-6P dehydrogenase; Gck: glucokinase; Glctk: glycerate kinase;
GLUT: glucose transporter; Gpd: glycerol-3P dehydrogenase; Gph: glycogen phosphorylase; Gs:
glycogen synthase; Ldh: lactate dehydrogenase; LKB1: liver protein kinase; MCT: monocarboxylic
transporter; OCT: organic cation transporter; Pc: pyruvate carboxylase; Pdh: pyruvate dehydro-
genase; Pdk: pyruvate dehydrogenase kinase; Pepck1: phosphoenolpyruvate carboxykinase; Pfk:
phosphofructokinase; Pfkfb3: phosphofructokinase 2,6-bisphosphatase; Pkm: pyruvate kinase; TCA
cycle: tricarboxylic acid cycle; Tpi: triosephosphate isomerase.



Int. J. Mol. Sci. 2021, 22, 5351 4 of 17

2. Proposed Mechanism of Action of Metformin to Lower Glucose Levels
2.1. Inhibition of Mitochondrial Glycerol-3-Phosphate Dehydrogenase (GPD2)

It is now widely accepted that the anti-hyperglycemic effect of metformin is mainly
due to the suppression of hepatic glucose production (HGP) (reviewed in [1–3]). Hepatic
glucose production is the result of the balance between glucose forming pathways (glu-
coneogenesis and glycogenolysis) and glucose consuming pathways (glycogen synthesis,
glycolysis, and the pentose phosphate pathway) (Figure 1). Among them, hepatic gluconeo-
genesis contributes more than 50% of HGP and is considered the main pathway regulated
by metformin. Metformin negatively regulates gluconeogenesis at different levels:

(a) At the transcriptional level: metformin prevents cAMP responsive binding (CREB)-
mediated transcription of the gluconeogenic glucose 6-phosphatase (G6PC) and phos-
phoenolpyruvate carboxykinase 1 (PEPCK1) genes. This is an indirect effect due to
the inhibition of mitochondrial complex I by metformin (see below), leading to an in-
crease in AMP levels, which inhibits adenylate cyclase and thus leads to a decrease in
levels of cAMP, a mediator of CREB-dependent transcription. In addition, metformin
has been proposed to activate AMP-activated protein kinase (AMPK), which has a
negative effect on the transcriptional regulation of gluconeogenesis genes, among
others [4] (see below);

(b) Reducing the availability of gluconeogenic substrates: hepatic gluconeogenesis de-
pends on the availability of appropriate substrates, such as glycerol, lactate, pyruvate,
alanine, and dihydroxyacetone phosphate (DHAP), in order to convert them to glu-
cose (Figure 1, grey boxes). Glycerol and DHAP are mutually interconnected, since
glycerol is converted to glycerol 3-P (G3P) by glycerate kinase (Glctk) and then G3P is
converted to DHAP by mitochondrial glycerol-3-phosphate dehydrogenase (GPD2).
Metformin has been shown to inhibit mitochondrial GPD2 at regular concentrations
(50–100 µM) (reviewed in [1–3]; Figure 1, orange box). Therefore, after treatment with
metformin, the levels of DHAP are reduced, and this leads to a decrease in the flux of
gluconeogenesis. As a consequence of this inhibition, G3P and glycerol accumulate in
hepatocytes (Figure 1).

The function of GPD2 is coupled to one of the major NADH/NAD+ shuttles, the alpha-
glycerophosphate shuttle, which consumes NADH and transforms DHAP to glycerol-3P
through the action of cytosolic glycerol-3P dehydrogenase 1 (GPD1). Inhibition of GPD2
by metformin alters the cytosolic redox balance and leads to a higher NADH/NAD+ ratio,
due to low levels of DHAP. This high NADH/NAD+ ratio also prevents the conversion
of lactate into pyruvate by lactate dehydrogenase (LDH). Therefore, inhibition of GPD2
by metformin decreases the levels of two of the main gluconeogenic substrates, DHAP
and pyruvate, and leads to the accumulation of glycerol and lactate (Figure 1). This
accumulation of lactate is probably the cause of the appearance of lactic acidosis in some
patients treated with metformin [1–3].

However, metformin does not affect the gluconeogenic use of pyruvate and alanine
as substrates, since their entry into the gluconeogenesis pathway does not involve a
redox-dependent mechanism (Figure 1). This would explain why hypoglycemia is rarely
observed in patients treated with metformin or in healthy individuals, since part of the
gluconeogenesis pathway is still active [1].

2.2. Inhibition of Mitochondrial Complex I of the Respiratory Chain and Activation of
AMP-Activated Protein Kinase (AMPK)

An additional mechanism to explain the hypoglycemic effect of metformin on hepato-
cytes is its inhibitory action on mitochondrial complex I (NADH/ubiquinone oxidoreduc-
tase) [20]. Mitochondrial complex I of the respiratory chain is the site of the contribution of
NADH to the proton gradient of OXPHOS (oxidative phosphorylation) (Figure 1, orange
box). Inhibition of complex I by metformin reduces the mitochondria’s ability to consume
NADH and the production of ATP. High levels of NADH and low levels of ATP have a
crucial negative impact on the gluconeogenesis pathway, as this process requires a large
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amount of energy and depends on a correct NADH/NAD + balance. Furthermore, as ATP
production is reduced, the AMP/ATP ratio increases, and this leads to the activation of
AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis [2,4,21].
AMPK activation leads to the activation of catabolic pathways (e.g., glycolysis through the
activation of Pfkfb3, an enzyme involved in the formation of 2,6-fructose bisphosphate, an
allosteric activator of phosphofructokinase 1 (Pfk1)) and the inhibition of anabolic pathways
(e.g., glycogen synthesis by inhibiting glycogen synthase; Gs), to restore energy balance
(Figure 1) [4,21]. AMPK exerts this function both at the transcriptional level, regulating
the activity of different transcriptional factors by phosphorylation (e.g., the downregu-
lation of CREB, carbohydrate-responsive element binding protein (ChREBP), and sterol
regulatory element binding protein (SREBP-1), which are involved in the expression of
genes related to gluconeogenesis, the carbohydrate metabolism, and sterol biosynthesis,
respectively; on the other hand, AMPK upregulates peroxisome proliferator-activated
receptor γ co-activator 1 alpha (PGC1alpha), involved in mitochondrial biogenesis, and
activates pro-health span molecules, such as the forkhead box O3 (FOXO3) transcription
factor and sirtuin 1 (SIRT1) deacetylase, which in turn induce the expression of protective
molecules [2,4,21,22]). AMPK also operates at the level of key metabolic enzyme activity
(e.g., inhibition of acetyl-Co carboxylase (Acc1/2), an enzyme involved in the synthesis
of malonyl-CoA, an intermediate in fatty acid synthesis, and an inhibitor of fatty acid
oxidation; therefore, AMPK activation inhibits the synthesis of fatty acids and promotes
their degradation) [21]. Therefore, the increase in the AMP/ATP ratio caused by metformin
activates AMPK indirectly, but this effect is only obtained when metformin is administered
at supra-pharmacological concentrations (>1 mM) [1]. Recent results support the indirect
effect of metformin on the activation of AMPK, as they show that metformin does not
affect AMPK directly, but acts on the upstream liver kinase (LKB1), which participates in
the phosphorylation and activation of the catalytic alpha subunit of AMPK [23] (Figure 1,
orange box).

2.3. Effects of Metformin on Glucose Metabolism in the Brain

The effect of metformin on glucose metabolism occurs not only in hepatocytes, but
also in other tissues, such as the brain [4]. Neurons and astrocytes are recognized to have
different glucose metabolic profiles. The metabolism of neurons relies more on mitochon-
drial oxidative phosphorylation (OXPHOS) [24,25], due to the singularities of different
glycolytic enzymes present in these cells. Thus, neurons have a pyruvate kinase isoform
(Pkm1) that is completely active, and the resulting pyruvate is rapidly transformed into
acetyl-CoA by active mitochondrial pyruvate dehydrogenase (Pdh) (Figure 1, enzymes
highlighted in red) [24,25]. On the other hand, neurons express a lactate dehydrogenase
isoform (Ldh1) that works better by transforming lactate into pyruvate, so the amount of
lactate produced by them is very low. Furthermore, they express the monocarboxylate
transporter 2 (MCT2) which is fully active in the uptake of lactate from the surrounding
medium [24,25] (Figure 1, enzymes highlighted in red). In conclusion, neurons are prepared
to capture lactate and convert it into pyruvate, which will enter the mitochondria to obtain
energy. In contrast, astrocytes have a glucose metabolism that is more glycolytic [24,25].
They have reduced OXPHOS due to the low activity of their mitochondrial pyruvate de-
hydrogenase (Pdh), since it is inactivated by an active pyruvate dehydrogenase kinase 4
(Pdk4) (Figure 1, enzymes highlighted in blue). In addition, astrocytes express an isoform
of lactate dehydrogenase (Ldh5) that is fully active in reducing pyruvate to lactate, which
is exported outside the cell by monocarboxylate transporters MCT1/4. Hence, the glucose
metabolism of astrocytes is designed to produce lactate and export it to the surrounding
media. In addition, astrocytes can enhance glycolytic flux, because they have an active
phosphofructokinase 2,6-bisphosphatase (Pfkfb3) that synthesizes 2,6-fructose bisphos-
phate, a potent allosteric activator of phosphofructokinase 1 (Pfk1) (Figure 1, enzymes
highlighted in blue), and this enzyme can be fully activated by AMPK [24,25] (see above).
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Bearing all this information in mind, we hypothesize that at the central nervous system
(CNS), metformin would produce a reduction in gluconeogenesis in both neurons and
astrocytes by inhibiting mitochondrial Gpd2 and activating AMPK, which would cause a
decrease in the levels of DHAP and pyruvate, as in the case of hepatocytes (see above); in
addition, this would cause an increase in the glycolytic flux (use of Glu-6P). This would in
turn lead to increased lactate production in astrocytes and increased OXPHOS in neurons.
Glycolysis would also increase in astrocytes, due to the metformin-mediated activation
of AMPK that would activate Pfkfb3, leading to an enhancement of Pfk1 activity (Figure
1). To cope with a higher demand for Glu-6P, glucose uptake and glycogen degradation
would be accelerated. As metformin-mediated activation of AMPK would also inactivate
glycogen synthase, we expect glycogen levels to decrease after metformin treatment. This
could explain the prevention in polyglucosan synthesis in mouse models of Lafora disease
after treatment with metformin [26] (see below).

2.4. Metformin Ameliorates Oxidative Stress

Substantial evidence shows that metformin exerts antioxidant effects. Some of these
can be attributed to the inhibition of mitochondrial complex I, which reduces reactive
oxygen species (ROS) production by the OXPHOS respiratory chain [4]. In addition,
metformin has other functions related to the activation of the AMPK pathway: (i) reduction
of ROS levels by upregulating the expression of antioxidant enzymes, such as thioredoxin,
through the AMPK–FOXO3 pathway; (ii) modulation of the expression of sirtuin 3 (SIRT3)
deacetylase, whose activity promotes antioxidant effects in the cell; (iii) downregulation
of NADPH oxidase, one of the main producers of cellular ROS; and (iv) enhancement of
mitochondrial biogenesis by enhancing the function of PGC1alpha transcription factor [27].

2.5. Metformin and Neuroinflammation

Following brain injury, neuroinflammation is initially neuroprotective, but when it
becomes chronic or excessive, it eventually causes damage [28]. It is now accepted that
sustained brain inflammation promotes neuronal hyperexcitability and seizures, and that
dysregulation in the immunoinflammatory function of the glia is a common factor that
predisposes or contributes to the generation of seizures. At the same time, acute seizures
upregulate the production of pro-inflammatory cytokines in microglia and astrocytes,
triggering a cascade of inflammatory mediators. Thus, epileptic seizures and inflammatory
mediators form a positive feedback loop, reinforcing each other [28]. For this reason, it has
recently been proposed that the treatment of inflammation with specific anti-inflammatory
drugs may be beneficial in the treatment of refractory epilepsies [28]. However, since the
use of general anti-inflammatory drugs is not recommended due to their detrimental per-
formance in long-term treatments [29], only specific anti-inflammatory compounds, whose
selection has been made after a thorough understanding of the main related inflammatory
pathways, should be used with each particular type of epilepsy.

Activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) is
a hallmark of neuroinflammation, and is present in most neurological diseases. The Toll-like
receptor 4 (TLR4) signaling pathway induces NF-kB activation through myeloid differ-
entiation primary response 88 (MyD88) and tumor necrosis receptor-associated factor 6
(TRAF6), leading to the expression of pro-inflammatory mediators: cytokines, chemokines,
cyclooxygenase 2 (COX2), and inducible nitric oxide synthase (iNOS) [30]. It has been
described that the activation of AMPK by metformin reduces general inflammatory condi-
tions since it inhibits the signaling of NF-kB, as well as the expression of pro-inflammatory
cytokines (interleukin 1-beta (IL-1beta), interleukin 6 (IL-6), tumor necrosis factor alpha
(TNFalpha), C–C motif chemokine ligand 2 (CCL2), etc.) in different cell types [31–33],
suggesting that AMPK activation could protect against neuroinflammation [19]. Simi-
larly, activation of AMPK by berberine reduces activated microglia; neutrophil infiltration;
and IL-1beta, IL-6, CCL2, and CXCL2 production, which occur after traumatic brain in-
jury [34]. In both cases, AMPK prevented the activation of the TLR4/NF-kB signaling
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pathway [31,34,35]. AMPK also inhibits lipopolysaccharide (LPS)-induced expression of
proinflammatory cytokines (TNF-alpha, IL-1beta, and IL-6) by attenuating LPS-induced,
TLR4-mediated NF-kB activation [36–38]. Similarly, AMPK prevented the advanced gly-
cation end-product (AGE)-mediated signaling pathway, which ends with an increase in
NF-kB expression and reduced iNOS and COX2 levels in AGE-treated human neural
stem cells (hNSCs) [39]. The anti-inflammatory action of AMPK was also associated
with the inhibition of LPS-induced activation of the phosphatidyl inositol 3 kinase (PI3-
kinase)/RAC-alpha serine/threonine-protein kinase (Akt) pathway [37]. Downregulation
of NF-kB levels inhibits the activation of the nucleotide-binding oligomerization domain
and leucine-rich repeat and pyrin domain 3 (NLRP3) inflammasomes, while decreasing the
activation of caspase1 and reducing the production of IL-1beta [38]. These mechanisms are
particularly important in microglia, where AMPK inhibits the release of pro-inflammatory
markers, decreasing neuroinflammation [40], and in astrocytes, where AMPK inhibits
elevated ER stress and hyperglycemia-induced inflammation [41].

Since neuroinflammation is a recognized event associated with neurological disorders,
such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, and epilepsy, metformin
could have a positive effect on these diseases (see below).

3. Metformin as a Neuroprotective Agent in Different Neurological Disorders

There is growing interest in the potential use of metformin in diseases of the cen-
tral nervous system (CNS). Although most neurological disorders are different in nature,
they share basic pathological mechanisms that are altered in the corresponding disease.
Examples of these are the AMPK and mechanistic target of rapamycin (mTOR) kinase
pathways. As indicated above, AMPK is a master regulator of energy homeostasis. It is
activated in conditions of energy deprivation, and by activating catabolic pathways and
inhibiting anabolic pathways it restores energy balance. In contrast, the mTOR pathway
is activated under high-energy conditions, and operates by activating anabolic pathways
and inhibiting catabolic pathways. Both the AMPK and mTOR pathways are intercon-
nected, and activation of the AMPK pathway results in inhibition of the mTOR system,
either by directly inactivating components of the mTOR complex (e.g., raptor, tuberous
sclerosis complex 2 (TSC2)) or by reversing the effect of mTOR on common substrates (e.g.,
ULK1 in the autophagy process) [42]. In particular, metformin activates AMPK signaling,
and also inhibits mTOR signaling via AMPK-dependent as well as AMPK-independent
pathways [1–3]. In the following, we will briefly review the action of metformin as a
neuroprotector agent in various neurological disorders.

3.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder. It is
characterized by progressive memory loss and impaired cognitive function. Clinical
studies indicate an ameliorative effect of metformin on cognitive decline and Alzheimer’s
disease [43]. In fact, patients with T2D receiving metformin had a lower risk of cognitive
impairment and a lower risk of developing Alzheimer’s disease than other patients with
T2D receiving alternative treatments [44]. AMPK activation has also been reported to have
neuroprotective effects in different mouse models of Alzheimer’s disease [45,46].

3.2. Parkinson’s Disease

Parkinson’s disease is the second most prevalent neurodegenerative disorder. Disease
progression has been considered a consequence of mitochondrial dysfunction, with ele-
vated levels of reactive oxygen species (ROS) and increased oxidative stress leading to the
death of dopaminergic neurons [47]. Treatment with metformin reduces oxidative stress
and improves the expression of antioxidant enzymes, such as superoxide dismutase and
catalase [48]. This effect of metformin was achieved both by activating the AMPK pathway
as well as through AMPK-independent mechanisms, such as activation of the brain-derived
neurotrophic factor (BDNF) signaling pathway [49]. In animal models of Parkinson’s dis-
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ease, metformin inhibits alpha-synuclein aggregation, prevents mitochondrial dysfunction,
attenuates oxidative stress, enhances autophagy through AMPK activation, and prevents
neurodegeneration and neuroinflammation (reviewed in [50]).

3.3. Huntington’s Disease

Huntington’s disease is an autosomal, dominant inherited disorder related to the
presence of a defective huntingtin gene (Htt) [51]. Mutant huntingtin protein containing
long poly-Q tracks overloads the ubiquitin proteasomal degradation system and forms
aggregates with itself and with other proteins, leading to a depletion of critical molecules
involved in neuronal homeostasis and resulting in neuronal degeneration [51]. Treatment
with metformin has been reported to reduce the number of huntingtin aggregates, probably
due to activation of autophagy, which results from activation of the AMPK pathway [43].

The reduction in the number of huntingtin aggregates is correlated with an improve-
ment in cognitive and behavioral function in mouse models of Huntington’s disease [52].

3.4. Multiple Sclerosis

Multiple sclerosis is a chronic autoimmune disease that causes demyelination and
destruction of neuronal cells at the CNS [53]. Current therapeutic approaches are based on
the regulation of autoimmune attacks and the preservation of oligodendrocyte function.
Metformin alleviates oxidative stress and restores mitochondrial function in patients with
multiple sclerosis [54,55]. Furthermore, in an AMPK-dependent manner, metformin was
able to enhance the expression of genes involved in the protection of oligodendrocytes
and the restoration of central nervous system functions in an experimental model of
autoimmune encephalomyelitis [56].

3.5. Epilepsy

Epilepsy is a neurological disorder characterized by a predisposition to generate
epileptic seizures and the associated cognitive, psychological, and social consequences of
this condition [28,57]. Epilepsy affects 1% of the total world population (around 65 million
people worldwide) and is caused by acquired injuries in the brain (for example, after a
stroke or traumatic brain injury), infectious diseases, autoimmune diseases, and genetic
mutations. To date, more than 500 genes are associated with epilepsy [57]. The first-line
treatment for epilepsy is antiseizure drugs (ASDs). The development of ASDs was based
on the neuron-centric hypothesis that an imbalance of excitatory and inhibitory currents
was largely responsible for epileptic seizures [58]. However, despite the availability of
many ASDs, approximately one-third of patients fail to control seizures or soon become
resistant to the effects of the ASDs [57,58]. Consequently, there is a critical need to de-
velop innovative antiepileptic treatment strategies to improve progression and limit the
detrimental consequences of the disease.

Since some forms of epilepsy are related to the upregulation of the mTOR pathway,
different therapeutic strategies have been designed to inhibit this pathway [59]. The
inhibition of mTOR signaling promotes a reduction in the generation of pro-inflammatory
cytokines and chemokines (IL-1beta, TNFalpha, CCL2, iNOS, etc.) by microglia, which
results in improvements in the motor deficit in the middle cerebral artery occlusion (MCAO)
model of cerebral stroke [60]. As indicated above, AMPK is a master regulator of energy
homeostasis: it is activated under conditions of energy deprivation, and by activating
catabolic and inhibiting anabolic pathways it restores energy balance. In contrast, the
mTOR pathway is activated under high-energy conditions, and operates by activating
anabolic pathways and inhibiting catabolic pathways. Activation of these pathways occurs
at the CNS, as with other peripheral tissues [4]. Interestingly, the AMPK and mTOR
pathways are interconnected, and the activation of the AMPK pathway results in the
inhibition of the mTOR system (see above). In particular, activation of AMPK by metformin
inhibits mTOR signaling and has resulted in improved seizure control in models of mTOR
overactivation [1,3,61,62].
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These results were confirmed by a recent report indicating that AMPK activation
by metformin improved lithium- and pilocarpine-induced status epilepticus in rats by
inhibiting the mTOR pathway [63]. The beneficial effect of AMPK activation by metformin
and calorie restriction on the main symptoms of an electric-ignition model of epilepsy,
especially those related to generalized seizures, has also been observed [64].

Using an epileptic diabetic rat model, the activation of AMPK by metformin was
reported to improve the inflammatory status and histopathological alterations present in
this model [65]. Metformin normalized the levels of glutamate and gamma-aminobutyric
acid (GABA), and reduced the levels of IL-1beta, TNF-alpha, NF-kB, and caspase 3. These
effects were proposed to be a consequence of AMPK activation and mTOR inhibition [65].

AMPK activation also has beneficial effects on other models of epilepsy. For example,
metformin has a beneficial effect against seizures and epilepsy in mouse models of induced
epilepsy with pentylenetetrazol (PTZ), a pro-convulsive agent, due to its antioxidant
and anti-apoptotic actions and upregulation of heat shock protein 70 (Hsp70) [62,66,67].
The anti-apoptotic effect was related to a downregulation of the RNA-like endoplasmic
reticulum kinase (PERK) pro-apoptotic protein kinase/eukaryotic initiation factor 2 alpha
(eIF2alpha)/activating transcription factor 4 (ATF4)/C/EBP homologous protein (CHOP)
pathway [39]. Recently, it has been described that metformin reduces CHOP expression
and apoptosis induced by status epilepticus in rats [68]. The beneficial effects of metformin
on this model could also be due to an improvement in autophagy [69]. Additional reports
indicate that AMPK activation by metformin decreases seizure susceptibility, facilitates
seizure termination, and reduces the number and duration of seizures in a PTZ-induced
epilepsy model [70].

AMPK activation by metformin also exhibits an anti-inflammatory effect in kainate-
induced status epilepticus by inhibiting IL-1beta production and reducing the expression
of glial fibrillary acidic protein (GFAP) and S100beta markers of astrogliosis, as well
as by increasing secretion of the anti-inflammatory cytokine IL-10 [71]. In this model,
metformin exerted a neuroprotective role against the kainate-induced epileptogenic process
by preventing neuronal cell death, aberrant neurogenesis, and mossy fiber sprouting [72].

An additional relationship between AMPK and epilepsy is seen through the reg-
ulatory action on glucose transporter GLUT1. GLUT1 is the main glucose transporter
in endothelial and astrocytic cells. GLUT1 deficiencies disrupt glucose transport in the
brain, and this leads to seizures in patients with GLUT1 deficiency syndrome (OMIM
606777) [73]. AMPK activation has recently been shown to regulate the translocation of
GLUT1 to the plasma membrane from internal stores by destabilizing the thioredoxin-
interacting protein (TXNIP). This enhances astrocytic glucose uptake and glycolysis and
enables proper regulation of the astrocyte–neuron lactate shuttle (ANLS), which preserves
neuronal metabolic functionality [74]. This could explain the beneficial effects of AMPK
activation by metformin on PTZ-induced seizures in mice on a high-fat diet, since after
treatment with metformin, a normalization in the expression levels of GLUT1 and GLUT3
was observed [75].

In conclusion, AMPK activation was able to attenuate the generation of seizures by
delaying the onset of epilepsy, reducing neuronal loss in the hippocampus, and preventing
cognitive impairments in both acute and chronic epilepsy models. In the case of metformin,
its antiepileptic effects could be attributed to an amelioration of oxidative brain damage,
activation of the AMPK pathway, inhibition of the mTOR signaling, downregulation of
brain-derived neurotrophic factor (BDNF), and neurotrophic receptor tyrosine kinase 2
(TrkB) levels or improvement of proteostasis [76,77].

Therefore, AMPK can be considered as a new anti-inflammatory and antiepileptic
signaling pathway. Its activation leads to a decrease in the mTOR and TLR4/NF-kB signal-
ing pathways, thus representing a promising therapeutic target for immunoinflammatory
disorders like epilepsy [78]. In fact, in a recent screening of repurposing drugs with anticon-
vulsive properties, AMPK activators, such as metformin, appeared as promising candidates
with therapeutic potential as anti-epileptic drugs [79].
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4. Metformin and Lafora Disease

Lafora disease (OMIM 254780) is an ultra-rare form of autosomal, recessive progressive
myoclonic epilepsy (PME), characterized by the accumulation of insoluble glycogen-like
inclusions (polyglucosans) in the brain and other tissues; these are called Lafora bodies
(LBs), and they can be identified with periodic acid Schiff (PAS) staining [80–86]. Lafora is
a neurodegenerative disease, also considered a glycogen storage disease [87–92]. Various
genetically engineered animal models, showing multiple symptoms present in patients
with the disease, have been used to study the molecular basis of the disorder and search
for effective therapies [93–97]. One of the compounds that successfully improved their
symptoms is metformin [26,98], and as we will see below, it is already being used in
clinical practice.

4.1. Clinical Aspects of Lafora Disease

Lafora disease is a fatal neurological disorder that usually begins in children between
the ages of 10 and 15 who appear to have normal neurological development. The first
symptoms are epileptic seizures, myoclonus, and/or cognitive alterations that cause school
difficulties [86,99]. The cognitive and neurological deterioration is very rapid, and very
soon language and intellectual problems occur that continue to worsen until patients
develop severe dementia, ataxia, dysarthria, amaurosis, and respiratory failure. There
are no specific treatments for the disease; seizures alone are treated with anticonvulsant
drugs, but patients quickly develop resistance and myoclonus becomes constant. Status
epilepticus or aspiration pneumonitis usually leads to death within the next 5 to 10 years
from diagnosis [86,100,101].

Mutations in EPM2A (epilepsy of progressive myoclonus type 2 gene A) or NHLRC1/
EPM2B (NHL repeat-containing protein 1/epilepsy of progressive myoclonus type 2 gene
B) [102–105], encoding the laforin or malin proteins, respectively [106–108], have been
described as causes of the disease. Lafora disease-causing mutations in the EPM2A gene
represent approximately 60% and in the EPM2B gene 35% of patients with Lafora disease.
Patients with mutations in the EPM2B gene appear to have a slightly milder phenotype
than patients with mutations in the EPM2A gene [109]. In addition, mutations in the same
gene and even the same mutation have been described to be associated with important
phenotypic variations. Therefore, it has been suggested that genetic or epigenetic modifying
factors could be responsible for the age of onset and severity of the disease [110].

Laforin and malin form a functional complex and work together in the regulation
of glycogen synthesis, in the homeostasis of glucose transporters, in the maintenance of
proteostasis, and in the response to oxidative stress, among other physiological pathways
(reviewed in [111]).

4.2. Animal Models of Lafora Disease

Several experimental models of Lafora disease have been generated by deleting the
Epm2a or Epm2b genes in mice. We and other groups have analyzed the functional alter-
ations of two of them: Epm2a−/− [93] and Epm2b−/− [97] mice. Both models present memory
deficiencies, impaired motor activity and coordination, dyskinesia, altered neuronal ex-
citability, and myoclonus similar to those present in patients with the disease [93,97,112,113].
The presence of neurodegenerative processes and the accumulation of Lafora bodies
in the brain correlate with the appearance of functional abnormalities and with the
presence of reactive astrogliosis, oxidative stress, altered proteostasis, and impaired au-
tophagy [30,97,114–121].

4.3. Pharmacological Interventions in Animal Models of Lafora Disease

We have studied the effect of various pharmacological treatments in the Epm2b−/−

mouse model [26,98,122]. To improve proteostasis, we use 4-phenylbutyric acid (4-PBA), a
chemical chaperone that reverses the misfolding and aggregation of proteins associated
with various neurodegenerative diseases [123,124]; trehalose, another chemical chaperone
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that prevents protein denaturation and protects cellular integrity against stress phenom-
ena [125]; and sodium selenate, an agent that reduces oxidative stress and the appearance
of epileptic seizures in other animal models [126,127]. Our results indicate that, of the
substances used, 4-PBA and sodium selenate, considerably improve memory impairment,
motor activity, abnormal posture, and dyskinesia, as well as sensitivity to PTZ [26,98,122].

We also use metformin in Epm2b−/− mice, and showed that it reduces the accumu-
lation of polyglucosans and polyubiquitin aggregates in the brain, decreases neuronal
loss and reactive astrogliosis, and improves neuropsychological tests [26]. In addition,
metformin decreases susceptibility to seizures, reduces the number and length of seizures,
and eliminates the mortality induced by the pro-convulsive agent pentylenetetrazol (PTZ)
in Epm2a−/− and Epm2b−/− mice [98]. These results allowed the designation of metformin
as an orphan drug for the treatment of Lafora disease by the European Medicines Agency
(EMA) in 2016 and the United States Food and Drug Administration (FDA) in 2017.

Due to these regulatory authorizations, metformin has been introduced into the clinical
treatment of patients with Lafora disease. In a study with 10 patients, the authors indicated
that the result of the metformin administration was inconclusive, probably because the
patients engaged in the trial were quite advanced in the disease. In any case, the authors
suggested that treatments should be attempted as early as possible in the course of Lafora
disease [128].

5. Conclusions

In conclusion, metformin has beneficial effects on several neurological disorders that
could be attributed to both AMPK-dependent and AMPK-independent mechanisms of
action (Figure 2).
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As a whole, metformin improves mitochondrial function (thereby reducing ROS
production and oxidative stress), reduces the inflammatory response, reduces glucose
production, and improves proteostasis (enhances the degradation of toxic aggregates).
Therefore, the use of metformin as a disease-modifying drug is widely recognized. How-
ever, as the regular dose of metformin is 1–2 g/day, future studies should be aimed to
understand what is the main mechanism of action related to neuroprotection, in order to
look for more active compounds that affect only this pathway.
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