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Abstract
Purpose: The clinical management of brain metastases after stereotactic radiosurgery (SRS) is difficult, because a physician must
review follow-up magnetic resonance imaging (MRI) scans to determine treatment outcome, which is often labor intensive. The
purpose of this study was to develop an automated framework to contour brain metastases in MRI to help treatment planning for SRS
and understand its limitations.
Methods and Materials: Two self-adaptive nnU-Net models trained on postcontrast 3-dimensional T1-weighted MRI scans from
patients who underwent SRS were analyzed. Performance was evaluated by computing positive predictive value (PPV), sensitivity, and
Dice similarity coefficient (DSC). The training and testing sets included 3482 metastases on 845 patient MRI scans and 930 metastases
on 206 patient MRI scans, respectively.
Results: In the per-patient analysis, PPV was 90.1%§ 17.7%, sensitivity 88.4%§ 18.0%, DSC 82.2%§ 9.5%, and false positive (FP) 0.4
§ 1.0. For large metastases (≥6 mm), the per-patient PPV was 95.6% § 17.5%, sensitivity 94.5% § 18.1%, DSC 86.8% § 7.5%, and FP
0.1 § 0.4. The quality of autosegmented true-positive (TP) contours was also assessed by 2 physicians using a 5-point scale for clinical
acceptability. Seventy-five percent of contours were assigned scores of 4 or 5, which shows that contours could be used as-is in clinical
application, and the remaining 25% were assigned a score of 3, which means they needed minor editing only. Notably, a deep dive into
FPs indicated that 9% were TP metastases not identified on the original radiology review, but identified on subsequent follow-up
imaging (early detection). Fifty-four percent were real metastases (TP) that were identified but purposefully not contoured for target
treatment, mainly because the patient underwent whole-brain radiation therapy before/after SRS treatment.
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Conclusions: These findings show that our tool can help radiologists and radiation oncologists detect and contour tumors from MRI,
make precise decisions about suspicious lesions, and potentially find lesions at early stages.
© 2022 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Approximately 20% to 40% of patients with cancer
develop brain metastases.1 Stereotactic radiosurgery (SRS)
is a functional and routinely used treatment for brain
metastases,2,3 using multiple cobalt sources (Gamma Knife)
or a linear accelerator (Linac) and delivering a single high
dose of radiation to targets.1,4 Accurately detecting and con-
touring metastases for treatment planning are important
steps to successfully treat brain metastases with SRS.5,6

Traditionally, brain metastases are detected manually
by a radiologist, and contoured by a radiation oncologist
using radiation therapy planning software.7,8 However,
reports exist of missed small and even large brain metas-
tases in clinical practice during the planning of Gamma
Knife radiosurgery because of varied human factors.9,10

Automating metastasis detection could be used as a tool
to support clinicians in image evaluation.11,12 This auto-
mation can efficiently reduce human errors, achieve aims
with minimal human operation, and augment system per-
formance.13 Deep learning models have recently shown
great potential in medical image analysis, specifically in
segmentation, detection, and classification.11,14

Several approaches have been introduced for brain
metastasis segmentation in magnetic resonance imaging
(MRI) using deep learning.4 These methods use several deep
convolutional neural networks (CNNs), including different
layers for convolution, pooling, and classification.15 Previous
studies showed the detection of brain metastases with a high
sensitivity at >80%.8 However, those studies usually reported
a large number of false-positive (FP) findings and low
Figure 1 Workflow of building and evaluating our model. Abb
itives; MRI = magnetic resonance imaging; WB-Net = whole-br
positive predictive values (PPVs) at the same time, and none
reported the early detection of metastases.10,16-18

Developing an automated framework to detect metas-
tases from brain MRI and provide accurate contouring
could greatly facilitate treatment planning for SRS, as well
as treatment outcome prognosis in patient follow up. In
addition, having a model to detect metastases in earlier
stages before a radiologist is able to see them would have
a huge effect in clinical applications. The purpose of this
study was to develop and validate an automated frame-
work to contour brain metastases from MRI scans using
deep neural networks with improved FP detection and
early detection of metastases.
Methods and Materials
We developed a framework using nnU-Net19 for brain
metastasis detection in postcontrast T1-weighted MRI
scans (Fig. 1). In the framework, we trained 2 segmenta-
tion models based on a self-adaptive nnU-Net, brain
metastases detector (BM-Net) to segment the metastases,
and whole-brain network (WB-Net) to segment brain vol-
ume as our region of interest for metastases detection.
Patient data

This study was approved by the local institutional review
board (protocol number PA16-0379). The data set in this
study was comprised of 1 planning MRI scan per patient
from 1051 patients who underwent Gamma Knife
reviations: BM-Net = metastases detector; FPs = false pos-
ain network.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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treatment at MD Anderson Cancer Center between August
2009 and August 2019. We applied no limitation on the
size or number of metastases when collecting the data.
Patients were scanned with an axial 3-dimensional T1-
weighted MRI sequence with and without contrast echo.
The acquisition parameters of the MRI system were as fol-
lows: GE medical system models Signa PET/MR, Discovery
MR750, Optima MR 450, and Siemens model Aera; mag-
netic field strength 1.5T/3T; modality MRI; repetition time
5.4 to 10 ms; flip angle 12o to 20o; matrix size 256 £ 256,
and voxel size 0.94£ 0.94£ 1 mm3.

The data set included patients ages 16 to 82 years with
a total of 4442 brain metastases, the largest of which was
63 mm, and the number of metastases per patient was up
to 27. The mean number of metastases was 4 § 3.5 per
patient, and the mean metastasis size was 10 § 7.4 mm.
These metastatic tumors were contoured by experienced
oncologists. Only those tumors identified for Gamma
Knife treatment were contoured, and these contours were
used as ground-truth for segmentation comparison in this
study. Of note, some tumors might not be contoured
because of varied medical reasons, which will be detailed
in the section of FP detection.

The patient data set was randomly split into 845 for the
training set and 206 for the testing set (80:20). Table 1
shows the demographics and primary cancer types of
patients in the training and testing sets. The average num-
ber of metastases per patient and size of metastases
(Table 1) show that tumors were distributed with almost
the same ratio in the training and testing sets. Moreover,
an inclusive subset of 30 patients was randomly selected
from the training set, and their brain volumes were manu-
ally contoured from the MRI scans to train the WB-Net.
Segmentation

As shown in Figure 1, the training set was used to train
the BM-Net to detect metastases, and the subset of 30 MRI
scans was used to train theWB-Net to contour brain volume.
The self-adaptive nnU-Net framework was used to train both
networks. The nnU-Net uses the U-Net architecture with an
automated pipeline, including data augmentation, prepro-
cessing, and postprocessing, which require no changes in the
architecture of the network and take care of hyper-parameter
tuning.19 Specifically, the data augmentation and preprocess-
ing steps in the nnU-Net includes Gaussian blur, Gaussian
noise, scaling, rotation, simulation of low resolution, bright-
ness, gamma correction, contrast, and mirroring. No addi-
tional preprocessing was performed other than that.

The U-Net20 network consists of a series of convolu-
tional layers that reduce the dimension of input image
(256 £ 256), and stack together several 3 £ 3 convolutional
maps with padding, followed by a rectified linear unit. The
U-Net uses 2 £ 2 max-pooling layers with stride 2, and
contracts until the bottommost is reached. This is the
encoder part where the model grows the predetermined
number of channels. From the bottommost, the model
starts on the upconvolution path, which is called decoder or
expanding part. At every stage of the upconvolution, the
model concatenates the results of the corresponding step
from the downsampling path, which adds robustness to the
network.

The training configuration of the nnU-Net was as fol-
lows: An initial learning rate of 0.001 and stochastic gradi-
ent descent with Nesterov momentum (m = 0.99) was
used for the optimizer. Networks were trained for 1000
epochs, with each epoch defined as iteration >250 mini-
batches. The loss function is the sum of Dice loss and
cross-entropy.19 The nnU-Net trained 2 configurations
(2- and 3-dimensional U-Net) in a 5-folder cross-valida-
tion, and used the optimal ensemble of these models to
choose the best model, which could also be a combination
of 2 models according to validation performance.19,20
Evaluation

Objective evaluation
We calculated PPV, sensitivity, and Dice similarity

coefficient (DSC) of the entire segmentation mask for
each patient based on a per-patient level and metastasis
level in 3 categories of metastasis size (<3 mm, ≥3 mm
and <6 mm, and ≥6 mm), as well as for all tumor sizes, to
enable a comparison with previous studies of brain metas-
tasis contouring. PPV tells us the probability that a pre-
dicted metastasis is truly positive, and sensitivity shows
the likelihood that a negative result (no metastasis) is truly
negative. In other words, a model with high PPV and sen-
sitivity has a low FP and false negative (FN) rate, respec-
tively. The definitions of these metrics are as follows:

PPV ¼ TP
TP þ FP

Sensitivity ¼ TP
TP þ FN

where true positive (TP) reflects the number of metastases
correctly identified, FP the number of metastases incorrectly
identified, and FN the number of metastases not identified.
DSC computes the overlap of automatic segmentation Us

and ground truth segmentation Ug as follows:

DSC ¼ 2 � k jUs \Ug k
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Table 1 Patient demographics and primary cancer types in training and testing sets

Training set Testing set Total

Number of patients 845 206 1051

Mean age, y 59.4 57.5 59.3

Sex, male:female 406:439 101:105 507:544

Magnetic field, 1.5T:3T) 806:39 192:14 998:53

Mean size of metastases, mm 10.1 § 7.4 12.3 § 9.2 10.5 § 7.8

Mean metastases per patient, n 4.1 § 3.6 4.1 § 3.1 4.1 § 3.5

Number of metastases <3 mm 78 60 138

Number of metastases ≥3 mm and <6 mm 1267 324 1591

Number of metastases ≥6 mm 2137 546 2683

Primary cancer type, n (%)

Non-small cell lung 349 (41.3) 61 (29.6) 410 (39)

Melanoma 166 (19.6) 53 (25.7) 219 (20.8)

Breast 117 (13.8) 38 (18.4) 155 (14.7)

Renal 87 (10.3) 21 (10.4) 108 (10.3)

Gastrointestinal 30 (3.6) 9 (4.4) 39 (3.7)

Head and neck 20 (2.4) 4 (1.9) 24 (2.3)

Genitourinary 19 (2.2) 7 (3.4) 26 (2.5)

Thyroid 18 (2.1) 3 (1.5) 21 (2)

Sarcoma 14 (1.7) 4 (1.9) 18 (1.7)

Small cell lung 13 (1.5) 2 (1) 15 (1.4)

Neuroendocrine carcinoma 8 (0.9) 3 (1.5) 11 (1)

Thymic 3 (0.4) 0 (0.0) 3 (0.3)

Nonmelanoma skin 1 (0.1) 1 (0.5) 2 (0.2)
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On a per-patient level, PPV and sensitivity values were
first evaluated for each patient using FPs, FNs, and TPs,
and then the mean was calculated among all patients in
each category. When calculating PPV and sensitivity per
patient in each category, for special cases in which TP, FP,
and TN were all 0, we defined the PPV and sensitivity
measures as 1. If TP was 0 and FN and FP were >0, we
defined the PPV and sensitivity measures as 0. On the
per-metastasis level, the PPV and sensitivity values were
calculated based on the total number of TPs, FPs, and
FNs in the testing set.
Subjective evaluation
The quality of our contours was assessed by 2 central ner-

vous system radiation oncologists, who assigned scores from
1 to 5 as follows: 5 means strongly agree and the contour
can be used as is; 4 means agree, minor edits are there but
not necessary; 3 means neither agree nor disagree, minor
edits are necessary; 2 means disagree, major edits are neces-
sary; and 1 means strongly disagree, unusable. A total of 24
patients’MRI scans were randomly sampled from the testing
set, so each reviewer assessed 12 MRI scans. To avoid bias in
their scoring, we only shared the predicted contours with
the reviewers without showing the ground truth.
False positive investigation

The BM-Net detected metastasis, and WB-Net segmented
the brain volume as the region of interest in the MRI scans.
All metastases that were detected outside of the brain in the
WB-Net were removed using the BM-Net in a postprocessing
step. The initial FP detection of brain metastases based on the
segmentation model was further investigated by using a com-
bination of radiology reports and follow-up MRI as reference
to recategorize the FP detection. If a current FP metastasis
was marked as a tumor in the radiology report, the FP metas-
tasis was recategorized as a TP metastasis. If the radiology
report did not consider the FP metastasis a tumor but follow-
up MRI confirmed the FP metastasis as a tumor, this FP
metastasis was recategorized as TP detection as well. These
recategorized metastases were added to the testing data set,
and updated the number testing metastases in Table 1. Table 2
lists 5 possible categories of the initial FP metastases and their
recategorization after this further examination.
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Results
False positive detection

Our segmentation model identified a total of 164 FP
metastases based on the contours drawn for Gamma-knife
treatment planning. After further FP investigation by
including radiology reports and follow-up MRI scans,
these 164 FP metastases were grouped into 5 different cat-
egories as shown in Table 2. This recategorization reduced
the FP metastases to 94. The other 70 metastases were real
metastases not contoured for Gamma-knife treatment
because of a medical reason or being indiscernible at the
time of treatment. These metastases were added to the
testing metastases to calculate model performance.
Figure 2 presents 1 example from each group of this false
FP detection (groups 2-5 in Table 2).
Model performance

By moving these actual noncontoured metastases (false
FP detections) to the TP detection list, our tool detected
only 94 cases that were actual FP detection. The perfor-
mance of the model was evaluated by calculating TP, FP,
FN, PPV, sensitivity, and DSC in 3 size categories in addi-
tion to all sizes on the metastases and per-patient levels.
Table 3 shows the evaluated metrics of our model. On a
per-patient level for all metastasis sizes, PPV, sensitivity,
DSC, and FPs per patient were 90.1% § 17.7%, 88.4% §
18.0%, 82.2% § 9.5%, and 0.4 § 1.0, respectively. For
metastases ≥6 mm, these metrics were 95.6% §17.5%,
94.5% § 18.1%, 86.8% § 7.5%, and 0.1% § 0.4, respec-
tively. The mean number of metastases in the testing set
was 4.1 § 3.1 per patient.

Figure 3 shows the box-whisker plot of PPV and sensi-
tivity in the 4 categories of sizes on a per-patient level.
PPV was higher than sensitivity in all categories, and the
model had the best performance in detecting metastases
≥6 mm for both metrics. Table 3 also shows the evaluated
Table 2 Investigation of 164 false-positive cases using radio
scans

Group
Number of
metastases

Radiology
report

Grou
(trea

1 94 Not tumor

2 38 Tumor

3 15 Not tumor Not c

4 6 Suspect tumor

5 11 Tumor (identified for
whole brain treatment)

Unknown indicates that follow-up magnetic resonance imaging had not been
metrics on the per-metastasis level in the 4 size categories.
With all metastasis sizes included, the model PPV was
790/884 (89.4 %), sensitivity was 790/930 (84.9%), and
DSC was 80.4% § 15.9%. For metastases ≥6 mm, the
PPV, sensitivity, and DSC values were 523/540 (96.9%),
523/546 (95.8 %), and 86.5% § 9.8%, respectively.
Subjective evaluation

The review assessments from the 2 radiation oncolo-
gists were very similar. The first physician evaluated the
quality of 65 metastases, and 77% of the autosegmented
contours had a score of ≥4 and 23% had a score of 3. The
second physician evaluated the quality of 52 metastasis,
and 74% had a score of ≥4 and 26% had a score of 3.
None of the metastases that the reviewers assessed had a
score <3. Overall, the quality of the autosegmented con-
tours can be assessed as 4.0, which shows that contours
predicted by the model can be used as is or with only
minor editing.
Discussion
This work presents an evaluation of a deep learning
approach for brain metastasis segmentation. The model
detected 88.4% § 18.0% of tumors on average for each
patient with a PPV of 90.1% § 17.7%. Our results show
that the performance of the model depends on the metas-
tases size, and the model has better performance in detect-
ing and contouring larger metastases (≥6 mm) than
smaller ones.

The model achieved an overall DSC of 82.2% § 9.5%,
which shows good segmentation performance. However,
interobserver variability in target volume delineations of
brain metastases for SRS has been always a challenge for
quality assurance in clinical trials.9,21 Therefore, assessing
the quality of contours by experienced physicians seems a
better way of evaluating segmentation. The subjective
logy report and follow-up magnetic resonance imaging

nd truth
tment) Follow up Classification

Not tumor False positive

Unknown True positive

ontoured Tumor True positive/early detection

Tumor True positive

Unknown True positive

checked because of confirmation of a tumor on the radiology report.



Figure 2 A, False false-positive detection, with the left image
showing our model-predicted tumors. The radiologist also
marked the metastases as tumors (right image), but the physi-
cian did not contour these tumors for medical reasons; B, early
detection, with the left image showing our contour, but the
radiologist did not report a tumor at this location. In the fol-
low-up magnetic resonance imaging scan 4 months later (right
image), the radiologist marked this location as a tumor; C, false
false-positive detection, with the left image showing the pre-
dicted contours, and themiddle image is the radiologist’s image
showing a suspected tumor. However, in a follow-up image 4
months later (right image), the radiologist indicated confidence
of a tumor at this location; and D, false false-positive detection.
Although our model correctly detected the metastasis in the
left image, since the patient had undergone whole brain radia-
tion therapy, treatment of the lesion was not required, and the
lesion was not contoured in the ground truth image.
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evaluation showed that 75% of the autocontours were
clinically acceptable and could be used as is, and the
remaining 25% needed only minor editing. This finding
shows consistent and accurate contouring for clinical
application.

Our investigation of FPs showed the potential of our
model for clinical application in assisting radiologists and
other physicians in detecting indiscernible metastases in
early stages. The model can also help radiologists make
more precise decisions when a lesion is suspected of being
a tumor or abscess. At the metastasis level, the model
achieved near-perfect detection performance in large
metastases (≥6 mm), with PPV and sensitivity of approxi-
mately 97% and 96%, respectively.

In reviewing the chart for cases with a false FP detection
in Table 2, we found that the main medical reason for not
contouring those metastases for Gamma Knife treatment
was whole brain radiation therapy (WBRT) or after Gamma
Knife treatment. As a general practice, for patients who had
received WBRT before Gamma Knife treatment, physicians
would typically treat only lesions that showed progression
of disease since the time of completion of WBRT. Sepa-
rately, in some cases, physicians treated patients with
Gamma Knife before planned WBRT, essentially offering
the boost dose before WBRT, which could include treat-
ment of the largest lesions, symptomatic lesions, or lesions
potentially in eloquent areas to increase the likelihood of
treatment response to these sites.

For patients with numerous metastases, there would be
too many lesions to treat with Gamma Knife, so a physician
might plan on treating only the lesions most concerning
first and resort to WBRT for other lesions. Lesions noted by
the radiologist as indeterminate/suspected but not definitive
were also not typically treated to avoid mistreatment or
unnecessary toxicity. In routine clinics, these suspected
lesions are further evaluated during follow up. Importantly,
this study focuses on the ability to detect all lesions and not
necessarily whether those lesions are clinically indicated for
treatment targeting. Thus, there are understandable differ-
ences in the detection or contouring of identified lesions
compared with the lesions marked and contoured for treat-
ment, including history of WBRT or deferring treatment of
indeterminate lesions.

Several previous works have investigated the fully
automatic segmentation of brain metastases. Xue et al.10

built a cascaded 3-dimensional fully convolution network
to detect and segment brain metastases using 1201 patient
T1 contrast MRI scans, and split them into training and
testing sets with a 75:25 ratio. The researchers reported
sensitivity and DSC rates of 96% and 85% § 8%, respec-
tively, but these results were limited to large metastases
(≥6 mm) only. Zhang et al.22 trained and tested a Faster
region-based convolutional neural network (Faster R-
CNN) on 270 and 45 patients T1 contrast MRI scans,
respectively, and reported a sensitivity rate and FP per
patient of 96% § 12% and 20 § 13, respectively.



Table 3 Model metrics on per-patient level in 4 size categories

Metric <3 mm ≥3 mm and <6 mm ≥6 mm All sizes

Per-patient level

Positive predictive value, % 85.0 § 34.9 90.7 § 26.2 95.6 § 17.5 90.1 § 17.7

Sensitivity, % 94.1 § 23.0 83.4 § 30.8 94.5 § 18.1 88.4 § 18.0

Dice similarity coefficient, % 31.2 § 14.5 72.0 § 10.1 86.8 § 7.5 82.2 § 9.5

True positive 0.2 § 0.6 1.1 § 1.6 2.5 § 1.8 4.0 § 3.1

False positive 0.2 § 0.5 0.2 § 0.6 0.1 § 0.4 0.4 § 1.0

False negative 0.1 § 0.4 0.5 § 0.9 0.1 § 0.4 0.7 § 1.2

Per-metastasis level

Positive predictive value, % 50.6 85.9 96.9 89.4

Sensitivity, % 68.3 69.8 95.8 84.9

Dice similarity coefficient, % 30.7 § 16.7 71.0 § 12.2 86.5 § 9.8 80.4 § 15.9

True positive 41 226 523 790

False positive 40 37 17 94

False negative 19 98 23 140
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Dikici et al.23 developed a 2-stage model to first detect
image points with high probability of representing brain
metastasis and a custom-built CNN to classify these points.
The researchers reported sensitivity as 90% and FP as 9 § 3
per patient. Grøvik et al.18 trained a CNN model based on
GoogLeNet24 architecture using 105 and 51 patient multise-
quence MRI scans for training and testing, respectively. The
researchers reported PPV, sensitivity, DSC, and FP per
patient as 79% § 20%, 53% § 22%, 79% § 12%, and 8.3§
13, respectively. Zhou et al.8 developed a 2-stage deep learn-
ing algorithm using 748 and 186 postcontrast T1-weighted
MRI scans for training and testing, respectively. Their
model included a single-shot detector to first detect regions
containing metastases, followed by a fully convolutional
network to segment the metastases from these regions. The
researchers reported PPV as 58% § 25%, sensitivity as 88%
§ 19%, DSC as 85% § 13%, and FPs as 3§ 3 per patient.
Figure 3 Comparison of box-whisker plot of positive
predictive value and sensitivity of the model in 4 size cate-
gories on a per-patient level.
Charron et al17 adapted an existing 3-dimensional con-
volutional neural network (DeepMedic25) to detect and seg-
ment brain metastases using 164 and 18 multisequence
MRI scans for training and testing, respectively. The
researchers obtained a sensitivity of 93% § 20%, DSC of
79% § 21%, and FPs of 8§ 7 per patient. Lui et al.16 devel-
oped a CNN-based algorithm using 225 and 15 postcontrast
T1 MRI scans for training and testing, respectively, and
reported DSC of 67% § 3%. Yoo et al.26 developed a deep
learning model, using 58 patient MRI scans for training and
12 for testing with small brain metastases (volume <67 cc).
The researchers applied training techniques to the well-
known 2-dimensional U-Net, and obtained a sensitivity of
97%, average FP rate of 1.25 per patient, and DSC of 75%.

Grøvik et al.27 also developed a deep learning model in
which a neural network was trained on 4 distinct MRI
sequences using an input-level dropout layer. The
researchers used a training set of multisequence MRI for
100 patients, and validated/tested on 10/55 patients, and
the test set was missing 1 of 4 MRI sequences used for
training. Grøvik et al. reported PPV as 79%, sensitivity as
67%, and DSC as 75.5%. By comparison, our model, with
a PPV of 90% § 17%, achieved the best detection perfor-
mance and, with 0.4 § 1.0 FPs per patient, achieved the
lowest FP value. Moreover, our data set is one of the larg-
est data sets in existing similar studies, and we examined
all different metastasis sizes. The higher PPV and sensitiv-
ity rates using our method implies that our approach may
save more time in contouring these tumors for treatment.

One major limitation of our approach is the small
lesion detection. The PPV for tumor size <3 mm is
50.6%, showing that around half of detected lesions are
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FP. Sensitivity is 68%, showing that around 30% of lesions
cannot be correctly detected. The low accuracy in small
lesion detection might be caused by the imaging noise/
artifacts and small vessels in the brain, because their
appearance on MRI scans is similar to that of small
lesions. Increasing training data to include more small
lesions could potentially reduce the effect from imaging
noise/artifacts or small brain vessels.

In Table 2, we show that a total of 21 lesions initially
not marked as tumors or marked as suspect tumors were
confirmed as tumors during a follow-up visit, which
shows the potential of this tool in helping identify lesions
in an early stage. However, because of the different time
spans from treatment to follow-up imaging and given the
many FP detections in small lesions, we are unable to
draw a definitive conclusion that this tool can identify
lesions in an early stage. Radiologists need to use their
best judgment to determine whether a tumor or not by
using this tool as an auxiliary to make their decision.
Conclusions
We developed an automated framework to detect brain
metastases on MRI scans. Our model achieved a high PPV
and sensitivity value with a high level of clinical accept-
ability that can provide consistent and accurate contour-
ing for clinical application. This model could potentially
help radiologists and oncologists detect and contour
tumors, make precise decisions on suspected metastases,
and potentially find metastases at an early stage. A deep
dive into FPs indicated that approximately 40% of metas-
tases were TP metastases not contoured in ground truth
because of other medical reasons or being indiscernible at
the time of treatment, but identified later by a radiologist
on subsequent follow-up imaging.
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