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Abstract: Caprine herpesvirus 1 (CpHV-1) is a member of the alpha subfamily of herpesviruses,
which is responsible for genital lesions and latent infections in goat populations worldwide. In
this study, for the first time, the transcriptome and proteomics of CpHV-1 infected Madin Darby
bovine kidney (MDBK) cells were explored using RNA-Sequencing (RNA-Seq) and isobaric tags
for relative and absolute quantitation-liquid chromatography tandem mass spectrometry (iTRAQ-
LC-MS/MS) technology, respectively. RNA-Seq analysis revealed 81 up-regulated and 19 down-
regulated differentially expressed genes (DEGs) between infected and mock-infected MDBK cells.
Bioinformatics analysis revealed that most of these DEGs were mainly involved in the innate immune
response, especially the interferon stimulated genes (ISGs). Gene Ontology (GO) enrichment analysis
results indicated that the identified DEGs were significantly mainly enriched for response to virus,
defense response to virus, response to biotic stimulus and regulation of innate immune response.
Viral carcinogenesis, the RIG-I-like receptor signaling pathway, the cytosolic DNA-sensing pathway
and pathways associated with several viral infections were found to be significantly enriched in
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Eleven selected DEGs
(Mx1, RSAD2, IFIT1, IFIT2, IFIT5, IFIH1, IFITM3, IRF7, IRF9, OAS1X and OAS1Y) associated with
immune responses were selected, and they exhibited a concordant direction both in RNA-Seq and
quantitative real-time RT-PCR analysis. Proteomic analysis also showed significant up-regulation
of innate immunity-related proteins. GO analysis showed that the differentially expressed proteins
were mostly enriched in defense response and response to virus, and the pathways associated with
viral infection were enriched under KEGG analysis. Protein-protein interaction network analysis
indicated most of the DEGs related to innate immune responses, as DDX58(RIG-I), IFIH1(MDA5),
IRF7, Mx1, RSAD2, OAS1 and IFIT1, were located in the core of the network and highly connected
with other DGEs. Our findings support the notion that CpHV-1 infection induced the transcription
and protein expression alterations of a series of genes related to host innate immune response, which
helps to elucidate the resistance of host cells to viral infection and to clarify the pathogenesis of
CpHV-1.

Keywords: caprine herpesvirus 1; innate immune response; ISGs; RNA-Seq; iTRAQ

1. Introduction

Herpesviruses are double-stranded DNA enveloped viruses and are regarded as im-
portant human and animal pathogens. They heavily impact human health under a number
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of conditions and cause economic losses in livestock [1,2]. Caprine herpesvirus 1 (CpHV-1)
belongs to the family Herpesviridae and the genus Varicellovirus. The virus was first iso-
lated from goats in 1974 and further characterized in 1975 [3]. CpHV-1 infection has been
reported in goats globally, including in the US, Canada, Brazil, Australia, New Zealand,
Mediterranean countries (such as Greece, Italy, Spain, France, etc.) and China [4–8]. CpHV-
1 is believed to infect goats by the nasal or reproductive route, displaying high tropism to
the genital tract [9,10]. The virus can establish latent infection in trigeminal ganglia and
eventually induce immunosuppression. CpHV-1 causes systemic disease in young kids,
characterized by high morbidity and mortality rates, while in adult goats the infection leads
to vulvovaginitis, balanoposthitis, respiratory disease and occasionally abortion [6,7,11–13].
Previous studies showed that CpHV-1 could induce apoptosis in goat peripheral blood
mononuclear cells and the Madin Darby bovine kidney (MDBK)cell line [14,15]. Emerging
evidence has indicated that CpHV-1 could infect varied human cell lines and provide a
potential candidate for oncolytic virotherapy [16]. Moreover, it was reported that CpHV-1
replicated efficiently in experimentally infected calves during acute infection and estab-
lished latent infection, which supports the ability of the virus to cross-infect the respective
heterologous hosts [17,18]. However, the extent and relevance of CpHV-1-mediated host
responses and the relationship between this responses and viral pathogenicity remain
poorly studied.

Recently, large-scale screening has been recognized to be very effective for identifying
host genes and proteins of interest upon viral infection, many of which are unexpected and
may lead to new discoveries regarding the host–virus interactions after additional func-
tional validation. Transcriptome and proteomic analysis provide a thorough understanding
of the host defense mechanisms and immune evasion strategies of viral infection. Both
high-throughput RNA-Sequencing (RNA-Seq) technologies and isobaric tags for relative
and absolute quantitation (iTRAQ), in combination with liquid chromatography tandem
mass spectrometry (LC-MS/MS) analysis, have become powerful methods to explore
pathogen–host interactions. In this study, Illumina sequencing method was used to identify
the transcriptome changes in CpHV-1 infected MDBK cells. For the first time, the differ-
entially expressed transcriptome profile in the MDBK cells was obtained during CpHV-1
infection. At the same time, iTRAQ was used to identify the differentially expressed pro-
teins (DEPs) in MDBK cells infected with CpHV-1. These data provide clues to further
understanding the replication and pathogenesis of CpHV-1 and virus–host interactions.

2. Materials and Methods
2.1. Cell Culture, Virus Infection and Sample Preparation

Madin Darby bovine kidney (MDBK) cells were purchased from the China Institute of
Veterinary Drug Control. The cells were grown in Dulbecco’s Modified Eagle Media (DMEM,
Hyclone, Logan, UT, USA), supplemented with 10% fetal bovine serum (FBS, Transgen,
Beijing, China) at 37 ◦C with 5% CO2. MDBK cells were suspended in 1 × 106 cells/mL with
DMEM containing 10% FBS and seeded in six-well plates (n = 4, 6 wells/sample). Two plates
were inoculated with the CpHV-1 strain JSHA1405, with the GenBank accession number
MG989243 (108 TCID50/mL) [8], at a multiplicity of infection (MOI) of 1. The other two plates
were used as mock-infected control. The CpHV-1-infected and mock-infected cells were
harvested at 12 h and 24 h post-infection (hpi) through scraping, followed by centrifugation
at 5000× g for 10 min at 4 ◦C. Each cell sample (pooled of the cells in one plate) was
washed twice with ice-cold phosphate buffered saline (PBS) and subjected to the following
experiment. Samples harvested at 12 hours post infection (hpi) were mixed and pelleted for
RNA-Seq, and samples harvested at 24 hpi were mixed and pelleted for iTRAQ technology.

2.2. RNA Extraction, Library Preparation and RNA-Seq

As previously described [19], total RNA was extracted from the CpHV-1-infected
(C-1) and mock-infected (N) MDBK cells using TRIzol® Reagent (Invitrogen, Carlsbad,
CA, USA) according the manufacturer’s instructions, and genomic DNA was removed
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using DNase I (TaKara, Dalian, Liaoning, China). Then, RNA quality was determined
using 2100 Bioanalyser (Agilent, Santa Clara, CA, USA) and quantified using the ND-
2000 (NanoDrop Technologies, Wilmington, DE, USA). A high-quality RNA sample
(OD260/280 = 1.8~2.2, OD260/230 ≥ 2.0, RIN ≥ 6.5, 28S:18S ≥ 1.0, >10 µg) was used
to construct the sequencing library.

RNA-seq transcriptome libraries were prepared using the TruSeq RNA Library Prepa-
ration Kit (Cat No. RS-122-2001, Illumina, San Diego, CA, USA) and 5µg of total RNA.
Messenger RNA was isolated with polyA selection by oligo(dT) beads and fragmented
using fragmentation buffer. cDNA synthesis, end repair, A-base addition and ligation of
the Illumina-indexed adaptors were performed according to Illumina’s protocol. Libraries
were then size-selected for cDNA target fragments of 200–300 bp on 2% Low Range Ultra
Agarose followed by PCR amplified using Phusion DNA polymerase (NEB, Ipswich, MA,
USA) for 15 PCR cycles. After being quantified by TBS380, paired-end libraries prepared
for both the CpHV-1-infected and mock-infected samples (C-1 and N) were sequenced by
Illumina NovaSeq 6000 sequencing (Illumina, San Diego, CA, USA, 2 × 150 bp read length,
Shanghai BIOZERON Co., Ltd.).

2.3. Read Quality Control and Mapping

The raw paired-end reads were trimmed and quality controlled by Trimmomatic with
parameters (SLIDINGWINDOW:4:15 MINLEN:75) (version 0.36 http://www.usadellab.
org/cms/uploads/supplementary/Trimmomatic, accessed on 7 March 2019). Clean reads
were then separately aligned to the reference bovine genome (https://www.ncbi.nlm.nih.
gov/assembly/GCF_002263795.1, accessed on 21 February 2019), with orientation mode
using hisat2 (https://ccb.jhu.edu/software/hisat2/index.shtml, accessed on 25 February
2019) software, which was used to map with default parameters. The quality assessment
of these data was conducted using qualimap_v2.2.1(http://qualimap.bioinfo.cipf.es/,
accessed on 11 December 2018) and htseq (https://htseq.readthedocs.io/en/release_0.11.1
/, accessed on 4 February 2019) to count each gene read.

2.4. Differential Expression Genes (DEGs) Analysis, Functional Enrichment, and Protein–Protein
Interaction (PPI) Analysis of DEGs

To identify the DEGs between the two different samples, the expression levels for each
gene were calculated using the fragments per kilobase of exon per million mapped reads
(FRKM) method. R statistical package edgeR (Empirical analysis of Digital Gene Expression
in R, http://www.bioconductor.org/packages/release/bioc/html/edgeR.html/, accessed
on 12 March 2019) was used for differential expression analysis. The DEGs between the
two samples were selected using the following criteria: the logarithmic of fold change was
greater than 2, and the false discovery rate (FDR) was less than 0.05. To understand the
functions of differentially expressed genes, Gene Ontology (GO) functional enrichment
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried
out by Goatools (https://github.com/tanghaibao/Goatools, accessed on 15 March 2019)
and KOBAS (http://kobas.cbi.pku.edu.cn/kobas3, accessed on 15 March 2019). DEGs
were significantly enriched in GO terms and metabolic pathways when their Bonferroni-
corrected p-value was less than 0.05. The PPI network among the DEGs was analyzed
using the STRING (http://string-db.org/, accessed on 2 March 2019) database, which
included direct and indirect associations of proteins. After analyzing the result from
STRING analysis and expression change information for each DEG, the network figure
was drawn for the selected DEGs (connected with one or more DEGs) using Cytoscape
software (https://cytoscape.org/, accessed on 23 January 2019) [19].

2.5. Quantitative Real-Time RT-PCR (qRT-PCR)

To validate the DEGs revealed by the transcriptome data, leaves of CpHV-1-infected (C-
1) and mock-infected (N) MDBK cells were collected. Total RNA was extracted from C-1 and
N using TRIzol® Reagent (Invitrogen, Carlsbad, CA, USA) according the manufacturer’s
instructions. The qRT-PCR amplification was carried out with TransScript one-step qRT-
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PCR Supermix (Transgen, Beijing, China) in a 20 µL reaction mixture containing 10 µL of 2
× Supermix, 20 pM of each primer (Table 1), 0.5 µL of E-Mix, 0.4 µL of passive reference
Dye and 2 µL of extracted RNA. The reaction was run on a StepOnePlus Real-Time PCR
System (Applied Biosystems, Carlsbad, CA, USA) with the following procedure: samples
were incubated at 45 ◦C for 5 min before being heated at 94 ◦C for 30 s, and a two-step
cycle (5 s at 94 ◦C, 30 s at 60 ◦C) was repeated for 40 cycles. β-actin was used as the internal
control, and relative quantification of target gene expression was used to compare the
target transcript in the infected group to that of mock-infected group; the data analysis was
based on 2-∆∆Ct method.

Table 1. Primers used for quantitative real-time RT-PCR (qRT-PCR).

Gene Accession No. Primer Target
Position

Product Length
(bp)

IRF7 NM_001105040.1 F: 5′-GCTCCACTACACCGAGAAGC-3′ 1367-1386 196
R: 5′-GAAGTCAAAGATGGGCGTGT-3′ 1562-1543

IRF9 NM_001024506.1 F: 5′-AAGGCCTGGGCGATATACAA-3′ 694-713 125
R: 5′-CCGATCTCAGGAACCTCCTC-3′ 818-799

IFIT1 XM_015469501.1 F: 5′-GGAACGTGCTGTGCAACTAA-3′ 1305-1324 134
R: 5′-TGTCGAGTGCTTTCATGCAG-3′ 1438-1419

IFIT2 XM_001787823.5 F: 5′-GGCAGCAAAGCTGTATCGAA-3′ 975-994 137
R: 5′-CTTCCAGGACTTTGGCCCTA-3′ 1111-1092

IFIT5 NM_001075698.1 F: 5′-CGTGGAGCGAGACTCTATGT-3′ 1160-1179 162
R: 5′-CGGCCATAGTGGTAGTGGAT-3′ 1321-1302

IFIH1 XM_010802053.1 F: 5′-ATTCTGAGGCAGACGGGAAA-3′ 896-915 74
R: 5′-TCTGTACTGCCTTCACAGCA-3′ 969-950

IFITM3 NM_001078141.2 F: 5′-TGGTCCCTGTTCAACACCAT-3′ 231-250 91
R: 5′-CCATCTTCCGGTCCCTAGAC-3′ 321-302

OAS1X NM_178108.2 F: 5′-AGCACTGGTACCAACTGTGT-3′ 671-690 132
R: 5′-GAAATCCCTGAGCTGTGCTG-3′ 802-783

OASIY NM_001040606.1 F: 5′-CTCAGCTTTGTGCTGAGGTC-3′ 453-472 131
R: 5′-TGGATGAGCCGGACATAGAC-3′ 583-564

MX1 JQ766265.1 F: 5′-TTTTTCAACCTCCACCGAAC-3′ 1450-1469 132
R: 5′-GTACACCTGGTCCTGGCAGT-3′ 1581-1562

RSAD2 NM_001045941.1 F: 5′-TTCAACGTGGACGAGGATATG-3′ 734-754 98
R: 5′-CCAGAGTTCTCACCCTCAATTAT-3′ 831-809

β-actin AY141970.1 F: 5′-ACATCCGCAAGGACCTCTA-3′ 902-920 89
R: 5′-GATCTCTTTCTGCATCCTGTCC-3′ 990-969

2.6. Total Protein Extraction

The sample was ground individually in liquid nitrogen and lysed with lysis buffer
containing 100 mM NH4HCO3 (pH 8.0), 8 M Urea and 0.2% SDS, followed by 5 min of
ultrasonication on ice. The lysate was centrifuged at 12,000× g for 15 min at 4 ◦C, and the
supernatant was transferred to a clean tube. Extracts from each sample were reduced with
10 mM Dithiothreitol (DTT) for 1 h at 56 ◦C and subsequently alkylated with sufficient
iodoacetamide for 1 h at room temperature in the dark. Then, samples were completely
mixed with 4 times the volume of precooled acetone by vortexing and incubated at −20 ◦C
for at least 2 h. Samples were then centrifuged, and the precipitation was collected. After
washing twice with cold acetone, the pellet was dissolved by dissolution buffer, which
contained 0.1 M triethylammonium bicarbonate (TEAB, pH 8.5) and 6 M Urea.

2.7. Protein Quality Test

Bovine serum albumin (BSA) standard protein solution was prepared according to the
instructions of the Bradford protein quantitative kit, with gradient concentration ranging
from 0 to 0.5 g/L. BSA standard protein solutions and sample solutions with different
dilution multiples were added into 96-well plate to fill up the volume to 20 µL. Each
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gradient was repeated three times. To the plate was added 180 µL G250 dye solution
quickly, and it was placed at room temperature for 5 min; the absorbance at 595 nm was
detected. The standard curve was drawn with the absorbance of standard protein solution,
and the protein concentration of the sample was calculated. A total of 20 µg of the protein
sample was loaded to 12% SDS-PAGE gel electrophoresis, wherein the concentrated gel
was performed at 80 V for 20 min, and the separation gel was performed at 120 V for 90 min.
The gel was stained by coomassie brilliant blue R-250 and decolored until the bands were
visualized clearly.

2.8. iTRAQ Labeling of Peptides

Each sample of about 100 µg was labeled using the iTRAQ Reagent-8Plex Multiplex kit
(Cat No. 4390812, AB Sciex, Framingham, MA, USA) in accordance with the manufacturer’s
instructions. After, in order to check the iTRAQ labeling efficiency, one third of samples
mentioned were mixed and prepared for Liquid chromatography-electrospray ionization
tandem MS (LC-MS/MS) mass spectrometry detection.

2.9. Separation of Fractions

Mobile phase A (2% acetonitrile, adjusted pH to 10.0 using ammonium hydroxide)
and B (98% acetonitrile) were used to develop a gradient elution. The lyophilized powder
was dissolved in solution A and centrifuged at 14,000× g for 20 min at 4 ◦C. The sample
was fractionated using a C18 column (Waters BEH C18 4.6 × 250 mm, 5 µm) on an HPLC
system, and the column oven was set as 50 ◦C. The eluates were monitored at UV 214 nm,
collected for a tube per minute and combined into 10 fractions finally. All fractions were
dried under vacuum and then reconstituted in 0.1% (v/v) formic acid (FA) in water.

2.10. LC-MS/MS Analysis

For transition library construction, shotgun proteomics analyses were performed
using an EASY-nLCTM1200 UHPLC system (Thermo Fisher, Rockford, IL, USA) coupled
with an Q Exactive HF (X) mass spectrometer (Thermo Fisher, Rockford, IL, USA) operating
in the data-dependent acquisition (DDA) mode. The sample was injected into a homemade
C18 Nano-Trap column (2 cm × 100 µm, 3 µm).

Peptides were separated in a homemade analytical column (12 cm × 150 µm, 1.9 µm).
The separated peptides were analyzed by Q Exactive HF (X) mass spectrometer (Thermo
Fisher, Rockford, IL, USA), with ion source of Nanospray Flex™ (ESI), spray voltage
of 2.5 kV and ion transport capillary temperature of 320 ◦C. The full scan range was
from m/z 407 to 1500 with resolution of 60,000 (at m/z 200), the automatic gain control
(AGC) target value was 3 × 106 and the maximum ion injection time was 20 ms. The
top 40 precursors of the highest abundance in the full scan were selected and fragmented
by higher energy collisional dissociation (HCD) and analyzed in MS/MS [20], where the
resolution was 15,000 (at m/z 200), the automatic gain control (AGC) target value was
5 × 104, the maximum ion injection time was 45 ms, the normalized collision energy was
set as 32%, the intensity threshold was 2.2 × 104 and the dynamic exclusion parameter
was 20 s.

2.11. The Identification and Quantitation of Protein

The resulting spectra from each run were searched separately against Enzyme database
by the search engine Proteome Discoverer 2.2 (PD 2.2, Thermo Fisher, Rockford, IL, USA).
The searched parameters were set as follows: mass tolerance for precursor ion was 10 ppm
and mass tolerance for product ion was 0.02 Da. Carbamidomethyl was specified as fixed
modifications, Oxidation of methionine (M) and iTRAQ plex were specified as dynamic
modification, acetylation and iTRAQ plex were specified as N-Terminal modification in PD
2.2. A maximum of 2 miscleavage sites were allowed.

In order to improve the quality of the analysis results, the software PD 2.2 further
filtered the retrieval results; Peptide Spectrum Matches (PSMs) with a credibility of more
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than 99% were identified as PSMs. The identified protein contained at least 1 unique
peptide. The identified PSMs and protein were retained and performed with an FDR of no
more than 1.0%. The protein quantitation results were statistically analyzed by T-test. The
proteins whose quantitation significantly different between the CpHV-1-infected group
(C-1) and mock-infected control groups were defined as differentially expressed proteins
(DEPs) (fold change (FC) ≥ 1.2 or ≤ 0.83).

2.12. The Functional Analysis of Protein

Clusters of Orthologous Groups (COG), GO and KEGG [21] were used to analyze the
protein family and pathway. DEPs were used for Volcanic map analysis, cluster heat map
analysis and enrichment analysis of GO and KEGG.

2.13. Western Blot

Cell lysates samples were separated by 12% SDS-PAGE and transferred onto PVDF
membrane (Millipore, Darmstadt, Germany) using a semi-dry transfer cell (Bio-Rad, Her-
cules, CA, USA) at 1 V/cm2 for 40 min. The membrane was treated sequentially with
5% skimmed milk in TBS containing 0.5% Tween 20 (TBST) at 37 ◦C for 2 h, with differ-
ent primary antibodies (1/200 diluted rabbit anti-Viperin polyclonal antibody (Abcam,
Cambridge, UK), 1/200 diluted mouse anti-ISG15 antibody (Santa Cruz, Dallas, TX, USA,
provided by Pfo. Bin Zhou, Nanjing agricultural university), 1/200 diluted mouse anti-MX1
antibody (Santa Cruz, Dallas, TX, USA, provided by Pfo. Bin Zhou, Nanjing agricultural
university), 1/5000 diluted anti-β-actin monoclonal antibody (Transgen, Bio, Inc., Beijing,
China) at 37 ◦C for 2 h, and with different secondary antibodies (1/1000 diluted rabbit
anti-mouse or goat anti-rabbit IgG antibody conjugated to HRP (Transgen, Bio, Inc., Beijing,
China). After three washes with TBST, the color development was performed using en-
hanced chemiluminescence luminal reagent (Thermo Scientific Pierce, Rockford, IL, USA).

2.14. Statistical Analysis

All experiments were reproducible and carried out in triplicate. The integrated density
of every group performed by western blotting was compared with that of internal loading
control β-actin, before the relative integrated density values between every infected group
and its corresponding control group were calculated. Paired t test was used to determine
statistical significance. The differences in relative integrated density of viperin, ISG15 and
Mx1 between virus-infected cell and control cell groups were assessed by GraphPad Prism
6 software. Differences were considered statistically significant at a p value of 0.05, and
p < 0.01 was extremely significant.

3. Results
3.1. Transcriptome Quantification

After RNA-seq, a total of 56,289,348 raw reads (C-1: 30,065,892; N: 26,223,456) were
obtained. After removing low-quality reads and reads with adaptor sequences, 48,255,018
clean reads (C-1: 25,480,936; N: 22,774,082) were obtained (Table 2). We then queried the
clean reads against the latest reference genome (ARS-UCD1.2, https://www.ncbi.nlm.nih.
gov/assembly/GCF_002263795.1, accessed on 15 January 2019) and mapped using TopHat
(http://tophat.cbcb.umd.edu/, accessed on 15 January 2019). For C-1 and N samples,
19,704,426 and 17,675,904 reads were mapped to the reference genome, with a mapped rate
of 77.33% and 77.61%, respectively. Among the matched 13,345 target genes for C-1, 10,888
had reads per kilobase million (RPKM (FPKM)) values > 1; For N, 13,153 target genes were
matched, and 10,864 had RPKM > 1 (Table 2).

https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1
http://tophat.cbcb.umd.edu/
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Table 2. Summary of read quality and mapping results of RNA-Sequencing (RNA-Seq).

Sample Total_Raw
Reads

Total_Clean
Reads Mapped_Reads Mapped_Rate FPKM a > 0 FPKM > 1 FPKM > 5 FPKM > 10

C-1 30,065,892 25,480,936 19,704,426 77.33% 13,345 10,888 8437 6426
N 26,223,456 22,774,082 17,675,904 77.61% 13,153 10,864 8426 6431

a: FPKM: Fragments Per Kilobase of exon model per Million mapped reads.

3.2. DEG Analysis and Functional Annotation

After the gene mapping and the Cuffdiff analyses in terms of FPKM, a total of 100 genes
were identified as significantly differentially expressed for the CpHV-1-infected group (C-1),
when compared with the mock-infected control group (N, fold change (FC) ≥ ± 2, p < 0.05).
Among the 100 genes, 81 were up-regulated and 19 were down-regulated (Figure 1 and
Table S1). DEGs related to innate immunity, such as IFIH1(MDA5), IRF7, IRF9, IFIT1/2, Mx1,
RSAD2, OAS, etc., were found to be significantly up-regulated (Table 3 and Table S1).

Figure 1. Summary of the differentially expressed genes between Caprine herpesvirus 1 (CpHV-1)-infected and mock-
infected samples at 12 hours post infection (hpi). A is a scatter-plot. The abscissa and ordinate coordinates represent the
expression of genes or transcripts in two samples, respectively. Pearson correlation refers to the correlation index of gene
expression levels of two samples. Red points represent up-regulated genes, blue points represent down-regulated genes,
and black circles represent genes showing no significant differences in expression. B is a volcano-plot. The abscissa means
the logarithm of the multiple difference of the expression of genes in the two samples; the larger the absolute value, the
greater the difference in gene expression. The ordinate means the negative logarithm of the statistical significance of the
expression of gene; the larger the value, the more significant the differential expression and the more reliable the differential
gene. Red points represent up-regulated genes, blue points represent down-regulated genes, and black circles represent
genes showing no significant differences in expression.
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Table 3. Up-regulated targets in this study.

Gene/Protein
Name

Fold Change (FC)
(CpHV-1-Infected/Mock-Infected)

RNA-Seq (log2) qRT-PCR (12 hpi, log2) qRT-PCR (24 hpi, log2) iTRAQ

MX1 3.93 6.86 6.6 4.20
MX2 / a / / 2.35

RSAD2 (Viperin) inf b 10.59 13.06 2.42
IFIT1 5.3 4.85 7.67 3.80
IFIT2 4.71 5.34 5.16 1.76
IFIT3 / / / 2.78
IFIT5 1.09 1.35 2.42 1.5

IFITM3 1.008 0.61 1.6 /
IFI44 / / / 2.43

OAS1X inf 8.87 8.93 1.76
OAS1Y 6.81 3.21 4.39 2.86

IRF7 1.63 0.48 0.36 1.41
IRF9 2.91 3 2.76 /

IFIH1 (MDA5) 1.77 4.1 3.11 2.34
DDX58 (RIG-I) / / / 1.83

TRIM5 / / / 1.31
TRIM21 / / / 1.60
TRIM25 / / / 1.32
ISG15 / / / 3.81
ISG20 / / / 2.05

a: no significant difference was found or not tested by qRT-PCR; b: infinity.

The 100 DEGs were annotated to 38 different GO terms. The up-regulated DEGs were
annotated to 38 GO terms, and the down-regulated DEGs were annotated to 22 GO terms
(Figure 2). The most annotated GO terms were cellular process (biological process, BP),
biological regulation (BP), response to stimulus (BP), cell (cellular component, CC), cell
part (CC), organelle (CC) and binding (molecular function, MF) (Figure 2).
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Figure 2. Gene Ontology (GO) annotation for the differentially expression genes (DEGs) between CpHV-1-infected and
mock-infected Madin Darby bovine kidney (MDBK) cells. DEGs were annotated in three categories: biological processes,
cellular components and molecular functions. The upper abscissa represents the proportion of the percentage of the number
of genes corresponding to the function, and the lower abscissa represents the number of genes corresponding to the function.
Red columns represent up-regulated genes, blue columns represent down-regulated genes.

3.3. Functional and PPI Analysis of DEGs

DEGs were enriched into different GO terms according to GO enrichment analysis. For
innate immune response related DEGs, significant enrichment was observed in response to
virus, response to other organisms, defense response to virus, response to biotic stimulus
and regulation of defense response to virus (Figure 3 and Table S2).
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Figure 3. GO enrichment analysis for the DEGs between CpHV-1-infected and mock-infected MDBK
cells. The abscissa represents the enrichment factor, and the ordinate represents the GO function
classification. Circles indicate numbers of enriched genes, and colors depict the p-value. The
enrichment factor was calculated using the number of enriched DEGs divided by the total number
of background genes in the corresponding pathway. The size of each circle represents the number
of significant DEGs enriched in the corresponding pathway. The chromatogram from blue to red
represents the uncorrected p-value. A detailed representation of the data is provided in Table S2.

To further define DEG function, KEGG pathway/enrichment analysis was performed.
Among the ten significantly enriched pathways, viral carcinogenesis, the RIG-I-like receptor
signaling pathway, the cytosolic DNA-sensing pathway and pathways associated with
several viral infections (measles, influenza A, Herpes simplex infection, Hepatitis B and C)
were found to be enriched to canonical pathways (Figure 4 and Table S3).
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Figure 4. Top 30 pathways enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) database
for the DEGs between CpHV-1-infected and mock-infected MDBK cells. The abscissa represents the
enrichment factor, and the ordinate represents the classification of the KEGG metabolic pathway.
Circles indicate numbers of enriched genes, and colors depict the p-value. The size of each circle
represents the number of significant DEGs enriched in the corresponding pathway. The enrichment
factor was calculated using the number of enriched DEGs divided by the total number of background
genes in the corresponding pathway. The chromatogram from blue to red represents the uncorrected
p-value. A pathway with a p-value < 0.05 is considered to be significantly enriched. A detailed
representation of the data is provided in Table S3.

The potential interaction network of the DEGs was examined with STRING analysis.
As shown in Figure 5, most of the DEGs related to innate immune response. Among the
up-regulated genes, IFIH1(MDA5), IRF7, IRF9, Mx1, RSAD2, IFIT1, IFIT2, OAS1X and
OAS1Y were located in the core of the network and linked to many other DGEs. In addition,
not all DEGs showed connection with others because their functions were either unrelated
or have not yet been clarified. A detailed representation of DEGs is provided in Table S1.
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The up-regulated genes are shown in red, and the down-regulated genes are shown in blue, with the
gradient showing the extent of expression. The size of the node indicates connectivity. A detailed
representation of DEGs is provided in Table S1.

3.4. Protein Profiling of MDBK Cells

After processing the LC-MS/MS spectra using Mascot software, 20,401 unique pep-
tides were mapped to 4501 proteins from MDBK cells, which were assigned to 25 different
GO categories. The most abundantly populated GO category, with 588 proteins, was
general function (Figure 6 and Table S4). Other frequently assigned categories included
signal transduction mechanisms (526 proteins), post-translational modification, protein
turnover, chaperones (473 proteins), intracellular trafficking, secretion, and vesicular trans-
port (357 proteins).

Figure 6. Clusters of Orthologous Groups (COG) annotations of the proteome of MDBK cells infected
with CpHV-1. The abscissa represents the function code of the COG database. The description
information of the function code is shown on the right side of figure. The ordinate represents the
abundance value of each function code. A detailed representation of the data is provided in Table S4.

3.5. Functional Analysis of Protein Responses to CpHV-1 Infection in MDBK Cells

Based on a cut-off of a fold change (FC)≥ 1.2 or≤ 0.83 and a p < 0.05, 327 proteins were
found to be significantly changed in MDBK cells in response to CpHV-1 infection (Table S5).
This included 147 up-regulated proteins and 180 down-regulated proteins. Among the
up-regulated DEPs, ISGs account for 15.65% (23/147). All these ISGs were in the top 85.
Among the 23 ISGs, 12 (52.17%) were compatible with the result of RNA-Seq. In addition,
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the expression of IFIH1 (MDA), DDX58 (RIG-I), IRF7, TRIM5/21/25 and ISG15/20 were
also increased. The top five up-regulated DEPs were identified as leucine zipper tumor
suppressor 1 (LZTS1), interferon-induced GTP-binding protein Mx1 (Mx1), ubiquitin-like
protein ISG15 (ISG15), interferon-induced protein with tetratricopeptide repeats 1 (IFIT1)
and OTU deubiquitinase 7A (OTUD7A). The top five down-regulated DEPs were found to
be Geranylgeranyl transferase type-1 subunit beta (PGGT1B), PAN2-PAN3 deadenylation
complex subunit PAN3 (PAN3), pumilio RNA binding family member 1 (PUM1), CSTF2
protein (CSTF2) and PCNA-associated factor (PCLAF). Taken together, these results indicate
that CpHV-1 invasion induced a distinct proteomic profile in MDBK cells, and in turn host
cells sharply altered the related proteins in response to CpHV-1 infection.

All DEPs were categorized using GO analysis, based on the international standardized
gene functional classification system. They were found to be involved in cellular process
(20.08%), biological regulation (14.44%), metabolic process (13.6%) and response to stimulus
(11.92%) (Figure 7A). Additionally, some of these proteins were predicted to be associated
with cell (18.68%), cell part (18.68%), organelle (16.1%), organelle part (9.66%), membrane
(9.18%) and membrane part (6.28%) (Figure 7B). Moreover, proteins were involved in
binding (50.79%), catalytic activity (32.46%), transcription regulator activity (4.71%), and
molecular function regulator (4.19%) and assigned to transporter activity (3.66%) and
structural molecule activity (1.57%) (Figure 7C).

Figure 7. Gene ontology analysis of 327 proteins differentially expressed in MDBK cells infected with CpHV-1. Proteins
were annotated by biological process (A), cellular component (B), and molecular function (C). Each color represents a
different GO term, and the percentages of protein numbers in each category are shown after the name of the GO term. A
detailed representation of the data is provided in Table S6.

Likewise, the significantly up- and down-regulated DEPs were also annotated with GO
analysis. Interestingly, the proteins assigned to biological process (BP), cellular component
(CC) and molecular function (MF) for the up-regulated proteins were similar to those
assigned to the down-regulated DEPs. The three main BP groups to which proteins
identified were assigned were cellular process, biological regulation and metabolic process.
Additionally, the CC groups assigned to both the up- and down-regulated proteins were
cell, cell part and organelle. However, there are some differences in the MF groups between
the up-regulated and down-regulated proteins. The up-regulated proteins were found
to be mainly involved in binding, catalytic activity and transcription regulator activity,
while down-regulated proteins were found to be related to binding, catalytic activity
and molecular function regulators (Figure 8 and Table S6). GO analysis also showed the
differently expressed proteins were enriched in both defense response, response to virus,
innate immune response, etc.
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Figure 8. Gene ontology classification of up- and down- regulated proteins in MDBK cells infected
with CpHV-1. The differentially expressed proteins (DEPs) were annotated in three categories:
biological processes, cellular components and molecular functions. The abscissa represents the GO
function classification, and the ordinate represents the number of proteins corresponding to the
function. Red bars indicate upregulated proteins, and green bars indicate down-regulated proteins.
A detailed representation of the data is provided in Table S6.

Furthermore, the KEGG pathway analysis for the DEPs (Table S7) showed that they
were involved in the metabolic pathways, Herpes simplex infection, endocytosis, human
papillomavirus infection, influenza A, viral carcinogenesis and measles (Figure 9A), which
was similar to the results from RNA-Seq. However, a significant difference in the KEGG
pathways identified was found between the up-regulated and down-regulated proteins;
most of the up-regulated DEPs were associated with the Herpes simplex infection (8.24%,
Figure 9B), and the down-regulated DEPs were mainly associated with the metabolic
pathways (11.97%, Figure 9C). The pathways associated with viral infection (especially
Herpes simplex infection) were enriched under KEGG analysis (Table S8).

Figure 9. KEGG pathway classification of DEPs in MDBK cells infected with CpHV-1 (A), including up-regulated proteins
(B) and down-regulated proteins (C). Each color represents a different KEGG pathway, and the percentages of enriched
target protein numbers in each category are displayed in brackets. A detailed representation of the data is provided
in Table S7.

STRING analysis was used to explore the potential interaction network of the DEPs.
As shown in Figure 10, most of the DEPs related to innate immune responses. Among
the up-regulated genes, DDX58 (RIG-I), IFIH1 (MDA5), Mx1, ISG15, IFIT1, OAS1Y and
RASD2 were located in the core of the network and linked to many other DEPs, which was
consistent with the RNA-Seq result.
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3.6. Partial Validation of RNA-Seq and iTRAQ Data

To further validate the RNA-Seq data, eleven selected DEGs (Mx1, RSAD2, IFIT1,
IFIT2, IFIT5, IFIH1, IFITM3, IRF7, IRF9, OAS1X and OAS1Y) associated with immune
responses from RNA-Seq were selected for qRT-PCR analysis, and they exhibited a high
correlation coefficient (R2 = 0.87; Figure S1) between RNA-Seq and qRT-PCR results. In
addition, qRT-PCR was also performed for samples collected at 24 hpi, and the results also
exhibited a high correlation between 12 hpi and 24 hpi (Table 3). Some of the DEGs (DEPs)
were further determined by Western blot, as shown in Figure 11; the expression of RSAD2,
ISG15 and MX1 were increased significantly, which was consistent with the RNA-Seq or
iTRAQ results. These results confirmed that the differential expression genes identified by
RNA-Seq and iTRAQ are reliable.
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Figure 11. Partial validation of RNA-Sequencing (RNA-Seq) and isobaric tags for relative and
absolute quantitation (iTRAQ) data by Western blot. (A) The expression of RSAD2 (Viperin) in the
samples was determined by Western blot. The molecular weight of Viperin was 42 kDa. Lane M,
prestained protein mass markers; Lane 1, CpHV-1-infected MDBK cell sample; Lane 2, mock-infected
MDBK cell sample. β-actin was the internal control; molecular weight was 42 kDa. (B) ISG15 western
blot analysis of MDBK cells. The molecular weight of ISG15 was 15 kDa. Lane M, prestained protein
mass markers; Lane 1, CpHV-1-infected MDBK cell sample; Lane 2, mock-infected MDBK cell sample.
β-actin was the internal control. (C) MX1 western blot analysis of MDBK cells. The molecular weight
of MX1 was 74.8 kDa. Lane M, prestained protein mass markers; Lane 1, CpHV-1-infected MDBK cell
sample; Lane 2, mock-infected MDBK cell sample. β-actin was the internal control. The integrated
density of every group was compared with that of internal loading control β-actin before the relative
integrated density values between every infected group and its corresponding control group were
calculated. Western strips were performed by grayscale analysis using the ImageJ software, and
error bars represent relative integrated density mean standard deviations among three independent
replicates. * p < 0.05 and ** p < 0.01.

4. Discussion

All alpha herpesviruses have some common features, including large double-stranded
DNA genome, virion size and structure (icosahedral capsid, tegument and glycosylated
lipid envelope), and the latency-reactivation cycle [22]. These viruses are pantropic and
neuroinvasive pathogens that establish a persistent or latent infection in the nervous sys-
tems of the natural hosts [23]. Upon reactivation, alpha herpesviruses cause diverse effects,
which vary from mild epithelial lesions to life-threatening necrotizing brain infections
and death [24,25]. For the last 20 years, alpha herpesvirus species, represented by Her-
pes simplex virus-1 (HSV-1), varicella zoster virus (VZV), pseudorabies virus (PRV) and
bovine herpes virus (BHV-1), have been studied to understand the complicated life cycle
and pathogenesis [24,26–28]. However, current academic research on CpHV-1 focuses
on aspects of epidemiological investigation [5–7,29] and antiviral treatment [30–32]; the
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pathogenic mechanism of CpHV-1 has been long neglected. The complex and dynamic
interplay between virus and host components is an active area of research. The interactions
between viral–viral and viral–cell proteins are constantly modified during productive
and latent infection. Moreover, the function and localization of viral and cell proteins are
regulated at transcriptional, translational and post-translational levels.

As a revolutionary tool, RNA-Seq technology gives the opportunity to produce large
numbers of sequence data in non-model organisms [33,34]. The transcriptional and pro-
teomics landscape in the host upon virus infection facilitates the understanding of host
immune responses and defense mechanisms based on the pathogenic microorganism in-
fection at the whole mRNA and protein level and provides new approaches to control the
viral infections. It has been reported that CpHV-1 replicated efficiently in experimentally
infected calves during acute infection and established latent infection, which supports the
ability of these viruses to cross-infect the respective heterologous hosts [18]. Moreover, pre-
vious studies demonstrated that CpHV-1 could infect goat peripheral blood mononuclear
cells, the MDBK cell line and varied human cell lines [14–16]. The MDBK cell line used in
this study has been widely used in CpHV-1 studies [8,15,30]. A commercial goat cell line
was not available until now, and only primary goat testicular/kidney cells were used in
our lab. Thus, in the present study, the MDBK cell was selected as a model. It is preferable
to study or confirm the cellular responses upon CpHV-1 infection both in bovine and goat
cells; we will perform this study in our next-step investigations.

In our study, the transcriptome of CpHV-1-infected MDBK cells were first evaluated at
12 hpi to understand and delineate the mechanism of the early cellular responses induced by
virus infection. Transcriptional changes of the DEGs involved in immunological processes
were analyzed specially. The results from GO, KEGG and PPI analyses indicated that
various numbers of DEGs were involved in different biological processes of host immune
responses, especially the innate immunity. iTRAQ in combination with LC-MS/MS analysis
has become an important quantitative proteomic method, with certain advantages over
traditional proteomic techniques. These advantages include higher throughput, increased
sensitivity, and greater accuracy. This technique has been used successfully to explore
pathogen–host interactions for both viruses and bacteria. To further validate the RNA-Seq
data, CpHV-1-induced modulation of the host cell proteome at 24 hpi (12 h later than
RNA-Seq for full translation of different proteins) was analyzed by iTRAQ coupled with
LC-MS/MS. The results showed that a total of 327 proteins were significantly changed in
MDBK cells after being infected with CpHV-1 for 24 hpi. The appearance of up-regulated
DEPs associated with innate immunity (RLRs, ISGs and IRFs) was consistent with those in
RNA-Seq. In this study, six well plates were used for virus infection and sample preparation.
For each sample used for sequencing, cells from six wells were collected together.

Viral infection constitutes a significant portion of mammalian morbidity and mortality,
which has led to extensive investigation into the countermeasures employed by the host to
combat such infection. The immune system of organisms acts to eradicate viral infection
through disrupting pathways and functions imperative to the pathogen’s life cycle [35].
Innate immunity is the host’s first line of antiviral defense response. The innate immune
system has evolved a range of receptors to detect viral pathogens, termed pattern recog-
nition receptors (PRRs), which recognize viral proteins and nucleic acid in the process of
non-self-recognition [36]. PRRs (TLRs, RLRs) and associated signaling pathways make up
a large part of the innate immune system. Once activated, PRRs initiate a series of signaling
cascades that results in the production of the well-known antiviral cytokine, interferon
(IFN). IFN is able to act in both an autocrine and paracrine manner to activate the Janus
kinase signal transducer and activator of the transcription signaling pathway, resulting
in the subsequent downstream expression of hundreds of antiviral host effector proteins,
called IFN-stimulated genes (ISGs), which control viral infection in the infected cell and
help neighboring cells resist infection [37]. Previous research has elucidated the function of
these ISGs and has revealed a broad scope of very specific antiviral mechanisms able to
target viruses at varying stages of their life cycle. Some ISGs have a broader spectrum of
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viral targets, such as radical S-adenosyl methionine domain containing 2 (RSAD2/viperin),
MX dynamin like GTPases (Mx1/2), interferon-induced protein with tetratricopeptide
repeats (IFITs) and the IFN-induced transmembrane (IFITM) proteins [35].

Miettienen et al. have characterized the secretome of HSV-1-infected human primary
macrophages using high-throughput quantitative proteomics. Proteins related to immune
and inflammatory responses, IFN-induced proteins, and endogenous danger signal pro-
teins (such as IFIT2, IFIT3, STAT1 and Mx1) were efficiently secreted upon IFN-β priming
and HSV-1 infection [26]. In this study, a total of 81 genes were identified as significantly
up-regulated, expressed upon CpHV-1-infection. Most of them were mainly involved
in the innate immune response, especially the ISGs. These included Mx1, RSAD2, IFITs
(IFIT1, IFIT2, IFIT5) and 2’,5’-oligoadenylate synthetase1 (OAS1X and OAS1Y). In pro-
teome analysis, the above genes’ expression was found to be significantly up-regulated.
In particular, the expression of ISGs is induced through direct activation of the Toll-like
receptor (TLR) or RIG-I receptors by viruses and triggering of the downstream IFN-I
signaling pathway [38,39]. In the present study, two RIG-I-like receptors (DDX58 (RIG-I)
and IFIH1(MDA5)) and IRF7/9 were found to be significantly up-regulated upon CpHV-1
infection, indicating the activation of associated pathways by CpHV-1.

Mx1 is broadly inhibitory and acts prior to genome replication at an early post-entry
step of the virus life cycle. Evidence suggests that Mx1 traps incoming viral components,
such as nucleocapsids, and prevents them from reaching their cellular destination [40].
Viperin is an ISG product that plays an important and multifaceted role in the innate
immune response to many DNA and RNA viruses [41]. Viperin is expressed at low basal
levels in most cell types but is strongly induced by numerous viruses (such as HSV-1, HIV-1,
hepatitis C virus and influenza A virus) [42–45]. Viperin expression is also induced by a
wide range of extracellular macromolecules that trigger the innate immune response by
engaging various cell-surface receptors; these include type I, II and III interferons, dsDNA
and RNA, and lipopolysaccharides [46].

IFIT genes encode a family of proteins that is induced after IFN treatment, viral
infection, or pathogen-activated molecular pattern (PAMPS) recognition. IFIT proteins are
poised to confer inhibitory effects after infection, and they have been found to be increased
in abundance in target cells infected with various viruses, such as infectious bursal disease
virus (IBDV) [47], Japanese encephalitis virus (JEV) [48], and porcine reproductive and
respiratory syndrome virus (PRRSV) [49]. Recently, progress was made in identifying
how IFIT proteins inhibit through distinct mechanisms of action and the replication of
multiple families of viruses [50], such as vesicular stomatitis virus [51] and hepatitis C
virus [52]. IFIT5 is involved in antiviral responses through enhancing innate immune
signaling pathways. Here, IFIT5 was revealed to be increased in abundance during CpHV-
1 infection (both transcriptome and proteomic analysis). Therefore, it is conceivable that
IFIT5 may be an important modulator in the antiviral innate immune response during
CpHV-1 infection.

Furthermore, different from RNA-Seq, protein members in the TRIM (TRIM5, TRIM21
and TRIM25) and ISG (ISG15, ISG20) family were also found to be increased in CpHV-
1-infected cells by iTRAQ analysis. The TRIM protein is a novel class of single-protein
RING finger E3 ubiquitin ligases [53], characterized by their N-terminal zinc-binding RING
and B-box and coiled-coil domain motif, which mediates homomeric and heteromeric
interactions among TRIM family members and other proteins [35]. Around one-third of
these family members are also ISGs, with many known to be involved in the foundation of
an innate antiviral state [54]. TRIM5α, TRIM19, TRIM79α, TRIM56, TRIM21 and TRIM22
have all been demonstrated to specifically inhibit multiple viruses, including a number of
flaviviruses, retroviruses, and the hepatitis B virus [55,56]. Many TRIM family members are
known to play a role in innate signaling pathways, with a recent screening assay suggesting
that as many as half of the family members have a positive role in augmenting innate
immune signaling events [35]. The differences of the levels of TRIM and ISG members
between RNA-Seq and iTRAQ might result from the different sampling time point and need
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further examination. Moreover, all sequencing results were based in one biological replicate.
In the next step, more replicates will be analyzed, and primary goat testicular/kidney cells
will also be inoculated with CpHV-1, and the expression profile of innate immune-related
genes will be examined.

Apart from the immune-related DEGs, the expression of Enolase (ENO), was found to
be down-regulated. ENO is a multifunctional protein and is involved in many different
physiological and pathophysiological processes. The three isoforms of ENOs in mammalian
cells include α or non-neuronal enolase (NNE), γ or neuron-specific enolase (NSE) and β or
muscle-specific enolase (MSE) [57]. ENO is a key enzyme that catalyzes the interconversion
of 2-phosphoglycerate to phosphoenolpyruvate in the glycolytic pathway and gluconeoge-
nesis [58]. It is also responsible for non-glycolytic functions such as contributing regulation
of the cytoskeletal filaments [59,60]. Cytoskeletal components are closely connected with
viral transport mechanisms within cells, subcellular localization of associated transport
systems and maintenance of the viral replication status [59]. Furthermore, viral replication
can be effectively suppressed following interference with cytoskeletal components [61,62].
In addition, ENO can regulate virus replication through suppression of the IFN signaling
pathway [63]. Notably the proteomic data further revealed that the key glycolytic enzymes,
including ENO, were extensively decreased in abundance. Based on these proteomic
analyses, we speculate that CpHV-1 replication may extensively inhibit the host cellular
metabolic pathways involved in glycolysis and energy metabolism.

To further validate the RNA-Seq data, eleven selected DEGs (Mx1, RSAD2, IFIT1,
IFIT2, IFIT5, IFIH1, IFITM3, IRF7, IRF9, OAS1X and OAS1Y) associated with immune
responses from RNA-Seq were selected for qRT-PCR analysis, and they exhibited a high
correlation coefficient between RNA-Seq and qRT-PCR results. In addition, the selected
DEGs also exhibited a high correlation between 12 hpi and 24 hpi. Some of the DEGs
(DEPs) were further determined by Western blot. As is shown in Figure 11, the expression
of RSAD2, ISG15 and MX1 were increased significantly, which was consistent with the
RNA-Seq or iTRAQ results. These results confirmed that the differential expression genes
identified by RNA-Seq and iTRAQ are reliable.

Taken together, all the results obtained here indicate that CpHV-1 infection induced the
transcription and expression alterations of a series of genes related to host innate immune
response and other pathways. These will be useful and helpful for deeply understanding
the host–CpHV-1 interaction in the future.
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