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Background: Markov decision process (MDP) models are
powerful tools. They enable the derivation of optimal
treatment policies but may incur long computational
times and generate decision rules that are challenging to
interpret by physicians. Methods: In an effort to improve
usability and interpretability, we examined whether
Poisson regression can approximate optimal hyperten-
sion treatment policies derived by an MDP for maximiz-
ing a patient’s expected discounted quality-adjusted life
years. Results: We found that our Poisson approximation
to the optimal treatment policy matched the optimal
policy in 99% of cases. This high accuracy translates to
nearly identical health outcomes for patients.
Furthermore, the Poisson approximation results in 104

additional quality-adjusted life years per 1000 patients
compared to the Seventh Joint National Committee’s
treatment guidelines for hypertension. The comparative
health performance of the Poisson approximation was
robust to the cardiovascular disease risk calculator used
and calculator calibration error. Limitations: Our results
are based on Markov chain modeling. Conclusions:
Poisson model approximation for blood pressure treat-
ment planning has high fidelity to optimal MDP treat-
ment policies, which can improve usability and enhance
transparency of more personalized treatment policies.
Key words: decision rules; provider decision making;
decision support techniques; Markov models. (MDM
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Optimal medical decision making is challenged
by uncertainty regarding both treatment effects

and patient risks in the absence of treatment.1,2

Such uncertainties create even greater problems
for situations in which decisions must be made
sequentially over time, such as making medication
recommendations for chronic conditions. Markov
decision processes (MDPs) are well-established
tools for aiding such sequential decision making.3–7

MDP models are frequently used in operations engi-
neering and have potential applications in medi-
cine, in which they can enable the decision maker
to develop personalized treatment plans to opti-
mize a patient’s health outcome based on the best
available information, with due consideration for
parameter uncertainty. However, using MDPs can
be difficult for real-world clinical practice. They
often require specialized software, such as
MATLAB or CPLEX,8 that are unavailable to most
clinicians and hospitals. Using an MDP model
often requires long computational times, especially
when the medical problem studied has high dimen-
sional state (many clinical variables) and action
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spaces (the possible decisions that could be made),
which make look-up tables infeasible.9 Moreover,
the decision rules obtained with an MDP may be
complex and not easily interpretable. Together,
these limitations also create a black box for clini-
cians, limiting acceptance and making communi-
cating the results of the MDP to patients difficult.
Therefore, a tool that harnesses the improved deci-
sion making capabilities of an MDP model (without
the burden of specialized software, long computa-
tion time, and complexity) would prove useful in
the management of patients with chronic disease
requiring serial decision-making.

One such chronic disease is hypertension, or
high blood pressure (BP), which is a major risk
factor for cardiovascular disease (CVD; consisting
of heart attack, angina, stroke, and other heart and
blood vessel diseases), the leading cause of death in
the United States and worldwide.10–12 We have cre-
ated and previously reported on hypertension treat-
ment policies using an MDP model with the goal
of maximizing a patient’s expected discounted
quality-adjusted life years (QALYs), and we found
that it saved significantly more QALYs than the
Seventh Joint National Committee’s (JNC7’s) pro-
posed treatment policy.13 This was accomplished by
combining the power of MDP operations research
modeling with a benefit-based tailored treatment strat-
egy,14–16 which simultaneously considers all known
factors that affect an individual’s untreated risk and
the treatment’s relative effects on those risks.

In this article, we develop a novel framework
that approximates the optimal hypertension dosage
decision from the MDP model using Poisson regres-
sion and generalized linear mixed effect modeling.
We then compare the performance and accuracy of
our approximation to the original MDP model.

METHODS

All methods are described in more depth in the
supplemental appendix.

Data Source and Study Design

We sampled 100,000 simulated patients from the
Third National Health and Nutrition Examination
Survey (NHANES III),17 a survey of U.S. patients, to
generate a representative sample of the U.S. popula-
tion. NHANES III was chosen because BP was
treated much less aggressively in the early 1990s,

allowing for easier estimation of untreated BPs. Our
data set included adults between the ages of 40 and
84 years that were examined over a 10-year horizon.
The QALY MDP for CVD was solved for all 100,000
patients over a 10-year planning horizon (assuming
a 0.001 disutility per prescribed medication) to
obtain the MDP treatment policy for each patient.
We also applied the current hypertension treatment
guidelines in the United States, known as JNC7,18

to each patient in the sample.

Markov Decision Process Formulation

We modeled the process of sequentially deter-
mining hypertension treatment medications over a
planning horizon as a discrete-time, finite horizon
MDP formulation.19 The objective of the MDP was
to determine the optimal treatment strategy p* for a
single patient that maximizes his/her expected dis-
counted QALYs over the planning horizon, t = 1, . .
. , T. We considered a 10-year planning horizon
with annual treatment decisions. The MDP formu-
lation was characterized by four features: state
space, action space, state transition probabilities,
and rewards. Table A1 summarizes the inputs and
data sources for the model.

State Space

The MDP utilizes a state-space representation of
a single patient to fully describe his/her characteris-
tics at each time period t = 1, . . . , T in the planning
horizon of length T. The state st consists of demo-
graphic information, clinical observations, and the
patient’s health state. The demographic information
includes the patient’s age, sex, smoking status, and
diabetes status. The clinical observations are mea-
surements of the patient’s untreated systolic blood
pressure (SBP), high-density lipoprotein (HDL),
total cholesterol (TC), and if the patient has left
ventricular hypertrophy as determined by electro-
cardiogram. Last, there are 10 mutually exclusive
patient health states: 1) healthy (no history of cor-
onary heart disease (CHD) or stroke); 2) history of
CHD but no CHD event this period; 3) history of
stroke but no stroke this period; 4) history of CHD
and stroke but no adverse event this period; 5) sur-
vived a CHD event this period; 6) survived a stroke
this period; 7) death from a non–CVD-related cause;
8) death from CHD event this period; 9) death from
stroke this period; and 10) dead.
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Action Space

The physician makes annual treatment decisions
ap
t stð Þ in accordance with policy p, which depends

on the patient’s state st at each decision period t.
We assumed the physician is able to prescribe
between 0 and 5 antihypertensive medications at
full dosage. These antihypertensive medications
may include thiazide diuretics, beta-blockers, cal-
cium channel blockers, angiotensin-converting
enzyme inhibitors, and angiotensin II receptor
antagonists. However, we constrain the set of possi-
ble actions by a minimum allowable SBP threshold
bmin stð Þ, which may depend on the patient’s state.
The minimum allowable SBP threshold prevents
the physician from prescribing medication that
would, in expectation, lower the patient’s SBP
below the threshold, so as to prevent treatment
harm from excessive medication. We used a thresh-
old of 120/90 mmHg. For example, a patient with
an untreated SBP of 130 mmHg taking one medica-
tion would expect a BP reduction of 6.7 mmHg and
a BP reduction of 12.73 mmHg if taking two medi-
cations.20 With a threshold of 120 mmHg SBP, the
patient could be prescribed one medication (result-
ing in a new SBP of 123.3 mmHg), but could not be
prescribed two medications (since the new SBP of
117.27 mmHg is below 120 mmHg).

Transition Probabilities

Before treatment decisions are made at the begin-
ning of each decision period, the patient’s state st is
mapped to a pretreatment, one-period likelihood of
CHD, rCHD stð Þ, and stroke, rStroke stð Þ, event using the
risk calculators found.21 After a treatment decision is
made at the beginning of each decision period, we
assume the antihypertensive medication has a near-
immediate effect on the patient’s SBP. The expected
change in SBP from treatment is calculated using the
equations published in previous studies.22 Given the
expected change in SBP, we compute the patient’s
posttreatment SBP (posttreatment SBP = pretreatment
SBP 2 expected changed in SBP). Using the patient’s
posttreatment SBP, we determine the post-state sp

t ,
which includes all the other elements of st.

We further utilize the expected change in SBP to
compute the relative risk reduction (RRR) for CHD,
RRRCHD

at
sp
t

� �
, and stroke, RRRStroke

at
sp
t

� �
, from treat-

ment using equations from previously published
studies.22 These equations utilize age- and event-
specific risk slopes (see Table A2) and the reduc-
tion in SBP from treatment relative to a 20 mmHg

reduction to determine the RRR. Multiplying the
patient’s pretreatment risk by the RRR, we com-
puted the posttreatment risk for CHD, rCHD

at
sp
t

� �
, and

stroke,rStroke
at

sp
t

� �
. If the patient has a history of CHD

and/or stroke, we multiply the patient’s CHD and
stroke odds by a scaling factor zCHD and/or
zStroke.23,24 We used a scaling factor of 3 for CHD
and stroke odds. With fatality likelihoods for CHD
events, rCHD sp

t

� �
, and strokes, rStroke sp

t

� �
,25–27 and

total mortality likelihood, f sp
t

� �
, we compute the

probability of transitioning from one health state
h51, . . . ,10 to another health state h051, . . . ,10: The
fatality likelihoods are presented in Table A3. We
assume only one type of event may happen in a
decision period, for example, a patient cannot have
both a CHD event and a stroke. In order to guaran-
tee valid probability distributions, we prioritize
death from stroke over other outcomes and adjust
the health state transition probabilities accordingly.

In addition to the computing health state transi-
tion probabilities, we model the dynamics of the
other elements of the patient’s state st over the plan-
ning horizon. To forecast the patient’s untreated
SBP, HDL, and TC, we utilized linear regression on
the NHANES III data. We considered the following
candidate predictors for each linear regression
model: intercept term, age, squared age, sex, smok-
ing status, diabetes status, race (white, black,
Hispanic), history of CHD, and history of stroke.
Using Akaike information criterion (AIC), the best
models for SBP, HDL, and TC were determined.
Table A4 presents the coefficients for each model.
We applied the linear regression model to each
patient to forecast that patient’s SBP, HDL, and TC
over the next 10 years. We adjusted the forecasts by
applying the difference between the linear regression
fitted value and the observed value in the NHANES
data to all forecasted values (effectively changing the
intercept term for each risk factor regression model).

The health state transition probabilities and
linear regression models jointly determine the state
transition probabilities P st11jst,ap

t stð Þ
� �

, which
depend on the treatment decision ap

t .

Rewards

Our objective is to maximize the patient’s
expected discounted QALYs, that is, find the
policy p�, which maximizes Z:

Z5 max
p

Ep
PT
t51

lt � Rp
t st,a

p
t stð Þ

� �� �
,
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where l 2 0,1ð � is the discount factor and
Rp
t st,a

p
t stð Þ

� �
is the reward resulting from treatment

ap
t stð Þ when the patient is in state st at decision t.

We used a discount factor of 0.97. The reward is
equal to the quality of life associated with the
patient’s state q stð Þ minus the burden from the treat-
ment dap

t
. We assume the quality of life weight for

each state st depends only on the patient’s health
state h51, . . . ,10: Quality of life weights come from
previously published literature.28–30 Table A5
reports the weights used.

Poisson Model Development

We split the full sample into a training set of
20,000 patients, a threshold set of 20,000 patients,
and a testing set of 60,000 patients. Using the train-
ing set, we parameterized a Poisson regression
model using linear mixed-effects modeling to
account for the correlation of the sequential mea-
surements taken to each patient during their annual
examination, such as BP and cholesterol readings.
The optimal medication count at each decision
period from the MDP policy was used as the
response variable, while demographic information
and risk factor data were used as predictor vari-
ables. Poisson regression is a regression model
where the outcome variable is a count variable (e.g.,
number of medications). By expressing the
expected value of the outcome variable as an expo-
nential function of a linear combination of predic-
tor variables, Poisson regression guarantees that the
predicted outcome is nonnegative—in contrast to
traditional regression that would allow for predic-
tions of negative medications. Linear mixed-effects
modeling combines fixed effects (e.g., SBP, age,
race) with random effects (e.g., patient). In biostatis-
tics, the fixed effects represent population averages
while the random effects represent patient-specific
effects. Since our data contain multiple readings
per patient, we require a random effect to control
for the within patient correlation of outcome
variables.

We considered two Poisson regression models: 1)
full model and 2) risk-only. The full Poisson model
used an initial candidate set of predictors of age,
sex, smoking status, diabetes status, pretreatment
SBP, diastolic blood pressure (DBP), HDL, TC, 5-
year CVD risk (heart attack plus stroke) as com-
puted by the Framingham risk calculator,21 and an
interaction term for each variable with CVD risk.
The risk-only Poisson model just considered 5-year

CVD risk, determined using the Framingham risk
calculator, as a predictor.21 The final set of predic-
tors and regression coefficients of the full Poisson
model were determined using the AIC.

Since the optimal medication count comes from
solving a finite-horizon discounted MDP, the opti-
mal policy is time-dependent. However, since age
is a state variable of the MDP, which increases at
the same rate as time, the optimal policy can be
viewed as approximately age-dependent. Therefore,
the time-dependence of the optimal policy is
approximately accounted for by including age as a
predictor in the Poisson regression models.

Number of Medications to Prescribe: The
Rounding Threshold

Within the models, we determined the number
of medications to prescribe under the Poisson poli-
cies examining a sequence of rounding thresholds
(0 to 1 by 0.1 increments). The sequence of thresh-
olds was first applied to each parameterized
Poisson regression function in the threshold set of
20,000 patients. If the Poisson regression fitted
value was less than or equal to the rounding thresh-
old, we rounded down to the nearest integer. For
each rounding threshold, we computed the
expected QALYs per 1000 patients. The rounding
threshold that maximized QALYs was set as the
preferred threshold.

Feasibility Adjustments

Because many believe hypertension is especially
dangerous at higher levels, we treated all patients
whose BP was .150/90 mmHg. Also, since there is
no evidence that BP treatment is beneficial at espe-
cially low levels, our models do not allow treatment
if the BP is below 120/90 mmHg.

Model Evaluation

Given the preferred threshold found in the
threshold set (n = 20,000), we evaluate the perfor-
mance of the Poisson policy model in the testing
set (n = 60,000). We computed the expected QALYs
saved and expected number of CVD events pre-
vented (when compared to no treatment) under the
two Poisson policies, the optimal MDP policy, and
the JNC7 guidelines. We also compared the number
of medications prescribed by the Poisson and MDP
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policies to determine the rate at which the policies
matched.

Sensitivity Analyses

To evaluate the robustness of the Poisson regres-
sion approach to approximating optimal MDP treat-
ment policies, we also investigated how the
Poisson policies performed when using a different
CVD risk calculator, the ASCVD calculator.31 This
analysis allowed us to determine if the Poisson
policy would be effective in other countries where
the risk calculators are calibrated to a different pop-
ulation. We also evaluated the treatment policies
under scenarios of CVD risk calculator miscalibra-
tion. Given the reliance on CVD risk as a predictor
variable in both Poisson policies and the optimal
MDP policy, it is important to evaluate the perfor-
mance of these treatment policies when the risk
computed by the calculator is 625% off from the
patient’s true CVD risk.

RESULTS

Comparison of Sample Populations

Table 1 summarizes the patient characteristics
of the training and testing set. We found that

randomization was successful (i.e., no clinically
significant differences between the populations).

Poisson Regression Analysis

We applied the Poisson policies to the testing set
and compared the number of medications pre-
scribed against the optimal MDP policy for each
patient. Table 2 provides the percentage of decision
periods where the Poisson policies exactly
matched, prescribed fewer medications, and pre-
scribed more medications than the optimal MDP
policy. We found that the full Poisson model has
99% accuracy and a very low mean squared error
(0.006), while the risk-only Poisson model (the
model just considering the 5-year CVD risk as com-
puted with the Framingham risk calculator) has
92% accuracy and a higher mean squared error
(0.859). Further evidence of the accuracy of the
Poisson policies is plotted in Figure 1, which
shows the distribution of the number of medica-
tions for both Poisson policies and the optimal
MDP policy. The frequency plotted is the number
of times a patient was prescribed that number of
medications for 1 year, based on the testing popula-
tion of 60,000 patients followed for 10 years. The
full Poisson policy and MDP policy do not have
substantively different distributions. On the other

Table 1 Summary Statistics of Population

Variable Training (n = 20,000) Testing (n = 60,000)

Age, median (IQR) 60.0 (22.0) 60.0 (22.0)
Male (%) 47.0% 47.1%
Diabetic (%) 8.7% 8.2%
Smoker (%) 23.6% 23.7%
SBP (mmHg), median (IQR) 133.0 (27.7) 133.1 (27.7)
DBP (mmHg), median (IQR) 77.1 (14.5) 77.3 (14.4)
HDL (mg/dL), median (IQR) 49.4 (20.2) 49.4 (20.0)
TC (mg/dL), median (IQR) 216.4 (58.7) 216.4 (57.8)
5-Year % CVD risk, median (IQR) 7.17% (11.03%) 7.23% (11.02%)

Note: IQR = interquartile range; SBP = systolic blood pressure; DBP = diastolic blood pressure; HDL = high-density lipoprotein; TC = total cholesterol.

Table 2 Comparison of MDP and Poisson Treatment Policies

Compared to MDP, Percentage of Decision Periods in Which Full Poisson Model Risk-Only Poisson Model

Equal meds prescribed (%) 99.6 91.6
Fewer meds prescribed (%) 0.0 8.1
More meds prescribed (%) 0.4 0.3

Note: MDP = Markov decision process.
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hand, the risk-only Poisson policy differs signifi-
cantly when the optimal number of medications to
prescribe is 4 or 5.

Results in Table 2 and Figure 1 only examine
discordant prescribing decisions, but a much more
important issue is how different prescribing deci-
sions, using the Poisson policies instead of the opti-
mal MDP policy, affects health outcomes for
patients. Table 3 provides a comparison of the
expected QALYs and expected number of CVD
events when prescribing decisions are based on the
two Poisson policies, the MDP policy and JNC7. We
found that using the full Poisson policy results in
nearly identical health performance for patients
compared to the optimal MDP policy. Furthermore,
the reduction in accuracy to 92% for the risk-only
Poisson policy only reduced CVD events prevented
by 1.0 and QALYs saved by 5.4 per 1000 patients
(10,000 patient-years), compared to the MDP
policy. In contrast, the full Poisson policy prevents
17.9 fewer events and saves 109.2 more QALYs per
1000 patients when compared to the JNC7 treat-
ment policy.

Table A7 in the supplemental appendix presents
the regression coefficients and P values of the full
and risk-only Poisson models. The regression coef-
ficients of the final set of predictor variables
included in the full Poisson model were obtained
using the AIC method. Based on these final regres-
sion models, we found that the optimal rounding
threshold is 0, that is, always round the fitted value
from the Poisson regression down to the nearest
integer.

Sensitivity Analyses

To determine if the Poisson policies perform
well when CVD risk is calculated based on a differ-
ent population, we evaluated the performance of
the four treatment policies when the ASCVD risk
calculator is used to estimate CVD risk instead of
the Framingham equations (see Table 4). We found
that the improvement over JNC7 remained substan-
tial for both CVD events prevented (17 fewer CVD
events per 1000 patients) and QALYs gained for the
full Poisson model and MDP policies when using
the ASCVD calculator. The risk-only Poisson model
continued to perform only slightly worse than the
optimal MDP policy.

We next examined the effects of risk calculator
miscalibration, that is, the calculated CVD risk sys-
tematically over- or underestimates the patient’s
true CVD risk. Table 4 reports the performance of
the treatment policies under overestimation of CVD
risk (+25% calibration error) and underestimation
of CVD risk (225% calibration error). For both over-
and underestimation of true CVD risk, the Poisson
policies yield higher expected CVD events prevented
(22.2 and 13.5 fewer events per 1000 patients, respec-
tively) and QALYs gained (136.2 and 81.4 more
QALYs per 1000 patients, respectively) than JNC7.

Figure 1 Number of medications prescribed for MDP and

Poisson treatment policies

Table 3 Health Performance of Treatment Policies

Treatment Policy

Expected Number of CVD Events

Prevented per 1000 Patientsa

Expected Discounted QALYs

Saved per 1000 Patientsb

Total Reduction Compared to MDP Total Reduction Compared to MDP

MDP 47.4 Ref 271.9 Ref
Full Poisson model 47.4 \0.1 271.9 \0.1
Risk-only Poisson model 46.4 1.0 266.5 5.4
JNC7 29.5 17.9 162.7 109.2

Note: CVD = cardiovascular disease; QALY = quality-adjusted life year; MDP = Markov decision process; JNC7 = Seventh Joint National Committee.
a. CVD events prevented when compared to no treatment.
b. QALYs saved when compared to no treatment.
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The differences between MDP and the full Poisson
model remain negligible and the differences between
MDP and the risk-only Poisson model remain small.

DISCUSSION

Our analyses point the way for how decision
analysis can become much more practical for daily
clinical use, by finding that Poisson regression can
be used effectively to approximate a fully optimized
MDP model for the prescription of BP medications.
The full Poisson model, which includes interac-
tions effects, resulted in negligible differences in
the treatment decisions and health outcomes com-
pared to the optimal MDP treatment policy. The
risk-only Poisson model (including only 5-year
CVD risk as a factor) reduced CVD complications
almost as much as the full Poisson model.
Furthermore, both Poisson models dominated JNC7
treatment guidelines in QALYs and CVD events.
We also found that the performance of the MDP
and Poisson models was robust to the CVD risk cal-
culator used (Framingham or ASCVD) and to calcu-
lator miscalibration (625%). While not directly
studied here, our QALY maximizing decisions
likely lead to more cost-effective decisions than
JNC7 given the high medical cost of CHD events
and strokes and the low cost of BP medications.

More broadly, our study revealed that policy
approximation can offer very comparable perfor-
mance to MDP optimized treatment policies with-
out the drawbacks of MDP models. MDP models
generally require specialized software and lengthy
computational times that would prohibit their use
in many clinical settings. In this study, computa-
tional times were short (within seconds) but we
required software capable of implementing recur-
sive algorithms in order to solve the MDP.
Approximations to these complex models limit
these drawbacks by generating simple equations
that can be solved nearly instantly using standard
software or a calculator. With the advent of big
data, decision support tools can develop approxi-
mations to the optimal treatment policy by training
statistical models on very large data sets of patients.
By doing so, the computational burden is removed
from the end-user (i.e., the clinician or facility) and
frontloaded to the decision support developer who
has greater computational capabilities and access to
the required software.

Furthermore, policy approximation improves the
interpretability of the optimal treatment decision
rules for clinicians. For Poisson regression, the
coefficients of the predictors provide insight into
how sensitive the optimal number of medications is
to changes in patient risk factors. This insight may

Table 4 Health Performance of Treatment Policies Under ASCVD and Framingham Risk
Calculator Miscalibration

Risk Calculator Treatment Policy

Expected Number of CVD Events

Prevented per 1000 Patients

Expected Discounted QALYs

Saved per 1000 Patients

Total

Reduction

Compared to MDP Total

Reduction

Compared to MDP

ASCVD MDP 47.8 Ref 185.3 Ref
Full Poisson 47.7 0.1 185.1 0.2
Risk-only Poisson 46.8 1.0 181.3 4.0
JNC7 30.6 17.2 115.7 69.6

+25% (Framingham calculator
overestimates true CVD risk)

MDP 58.5 Ref 336.0 Ref

Full Poisson 58.5 \0.1 336.0 \0.1
Risk-only Poisson 57.7 0.8 331.3 4.7
JNC7 36.3 22.2 199.8 136.2

225% (Framingham calculator
overestimates true CVD risk)

MDP 35.9 Ref 204.8 Ref

Full Poisson 35.9 \0.1 204.8 \0.1
Risk-only Poisson 34.8 1.1 199.3 5.5
JNC7 22.4 13.5 123.4 81.4

Note: CVD = cardiovascular disease; QALY = quality-adjusted life year; MDP = Markov decision process; JNC7 = Seventh Joint National Committee.
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translate to improved trust of the decision support
tool and increase its utilization and acceptance in
clinical practice. This is particularly true for the
risk-only Poisson model since there is only one
regression coefficient to interpret, whereas the full
Poisson model may have multicollinearity, which
prevents direct interpretation of the sign and mag-
nitude of the coefficients. For the risk-only Poisson
model, the intercept coefficient is 1.167 and the
coefficient for 5-year CV risk is 1.006. The positive
sign of the risk coefficient implies that increases in
CV risk lead to increases in the number of medica-
tion prescribed. This matches physician intuition
and guidelines, which bolsters the trustworthiness
of the Poisson regression. The intercept coefficient
can be interpreted to mean the risk-only Poisson
model would prescribe at least 3 medications to
patients (before applying the minimum SBP thresh-
old constraint). The risk coefficient implies that the
patient’s pretreatment 5-year CV risk would need to
be at least 22% (44%) to recommend 4 (5) BP medi-
cations. The full list of the Poisson models’ coeffi-
cients is available in the supplemental appendix.

In general, our policy approximation methodology
could be applied to any MDP formulation developed
with a large structured dataset. For instance, the opti-
mal prescription planning derived with MDP formu-
lations for patients with type 2 diabetes20 or for
patients with heart disease7 could be approximated
using Poisson regression, as long as there is enough
data to fit the model. Our methodology can also be
applied to other objective functions, including maxi-
mizing cost-effectiveness and minimizing the number
of CVD events, and application domains.

Our study’s limitations derive mainly from ques-
tions about the inputs in our models. Most notably,
the precise details of who benefits from BP lower-
ing are debatable. Our modeling choices, however,
are based on the best available clinical trial data
from an individual-level meta-analysis32 and fit the
SPRINT Trial well, which found treatment benefit to
120 mmHg when using 3 to 4 BP medications in
very high CVD risk patients.15 We chose to base our
comparison on the JNC7,18 because American practi-
tioners often know it well, and JNC8 was not a con-
sensus guideline and is unlikely to be relevant for
much longer. Efforts are already underway to update
these guidelines, and our results suggest that our
benefit-based tailored treatment approach should at
least be strongly considered in deliberations of how
to update BP guidelines post-SPRINT.14

Critics of using CVD risk in clinical decision
making have pointed to risk prediction tools’

well-known susceptibility to calibration problems
when developed in one population and applied
to different populations.33 Our results, however,
demonstrate that a benefit-based treatment approach
remains superior to traditional treatment target–
based approaches, such as JNC7, even in the pres-
ence of substantial calibration problems. Of course,
it is always preferable to use a risk prediction tool
that is well calibrated to the patient population
being treated, and in the era of the modern elec-
tronic medical records, it is becoming much more
feasible for integrated health systems to develop or
recalibrate risk tools to be optimally fitted to their
own population.34 Furthermore, critics have pointed
out that risk prediction tools with similar discrimi-
nation, as measured by the area under the receiver
operating curve, often given substantively different
risk estimates for individual patients. Our study
demonstrates that whether the Framingham and
ASCVD tool was used,21,31 the Poisson models pre-
vented many more CVD events and saved many
more QALYs compared to the JNC7 approach.

CONCLUSION

We developed a Poisson regression model to
approximate the optimal treatment decisions from
an MDP model. We found that our policy approxi-
mation enables fast, easily interpretable, and com-
parable decision support without a need for
specialized software. Our application to hyperten-
sion treatment planning for patients at risk for CVD
indicates high fidelity to optimal treatment policies
and high performance. Treatment policy approxi-
mation resulted in more QALYs and fewer CVD
events than current clinical practice. Furthermore,
the improvement in health outcomes over JNC7
was robust to which risk calculator was used, as
well as to systematic calculator error. While this
study specifically addressed hypertension treat-
ment, we believe the methodology of using Poisson
regression to approximate fully optimized MDP pol-
icies has the potential to reduce computational
time, improve acceptability by clinicians, and
maintain health-optimization performance for treat-
ment decisions for chronic diseases more generally.
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