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Abstract: Aberrant glycosylation, especially sialylation, on cell surface is often associ-
ated with cancer progression and immunosuppression. Over-sialylation of stage-specific
embryonic antigen-4 (SSEA-4) to generate disialylGb5 (DSGb5) was reported to trigger
Siglec-7 recognition and suppress NK-mediated target killing. In this study, efficient chemo-
enzymatic and programmable one-pot methods were explored for the synthesis of DSGb5
and related sialosides for assembly of glycan microarrays and evaluation of binding speci-
ficity toward Siglecs-7, 9, 10, and 15 associated with immune checkpoint inhibition. The
result showed weak binding of DSGb5 to these Siglecs; however, a truncated glycolyl
glycan was identified to bind Siglec-10 strongly with a dissociation constant of 50 nM and
exhibited a significant inhibition of Siglec-10 interacting with breast cancer cells.

Keywords: sialyl SSEA-4; programmable; chemoenzymatic synthesis; glycolyl sialic acid;
immune checkpoint

1. Introduction
Aberrant sialylation has been recognized as a hallmark of tumorigenesis. An example

of such a change is the differential expression of glycosyltransferases in cancer cells to
generate tumor-associated carbohydrate antigens (TACAs) [1]. Another example is the
over-sialylation of glycoproteins or glycolipids on cancer cells to enhance interaction with
specific sialic acid-binding immunoglobulin-type lectins (Siglecs) on immune cells, result-
ing in a suppression of immune response against cancer cells, a process called immune
checkpoint inhibition [2,3]. It has been demonstrated that certain sialylated glycolipids,
like stage-specific embryonic antigen (SSEA-4) [4,5], exclusively expressed on cancer cells
are associated with cancer progression [6–9] and the expression level correlates with poor
survival of cancer patients [10]. Interestingly, SSEA-4 could be further sialylated by the
enzyme ST6GalNAc6 to form disialylGb5 (DSGb5), which was first found and downreg-
ulated in renal cancer [11]. In addition, DSGb5 and ST6GalNAc6 were reported to be
downregulated in colon cancer [12], resulting in the decreased expression of disialyl LeA
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and increased expression of sialyl LeA and SSEA-4, which was linked to the signaling
pathway that maintained the survival of tyrosine kinase inhibitor (TKI)-resistant cancer
cells [13–20]. Moreover, recent development of anti-SSEA-4 antibodies [10], Globo-H cancer
vaccines [21–23], and studies of globo-series glycan biosynthesis [4,24] all point to SSEA-4
as a target for new cancer therapies. On the other hand, specific Siglecs on immune cells
may interact with specific sialylated glycans on cancer cells to trigger immune suppres-
sion [2,3]. A recent report showed that DSGb5 on renal cancer cells interacted with Siglec-7
on NK cells and downregulated their cytotoxicity [25]. This report prompted us to further
investigate the binding specificity of DSGb5 toward Siglecs and compared to that of other
tumor-associated carbohydrate antigens (TACAs). Since DSGb5 is not readily available [26],
we first explored methods for the synthesis of DSGb5, including the programmable one-pot
method and the enzymatic method using sialyltransferases that catalyzed the sialylation
of SSEA-4 to form DSGb5. We then combined the synthetic glycans and other sialylated
TACAs [21,27–31] and N-glycans to construct a sialylo–glycan array to profile the binding
specificity of Siglecs, especially Siglec-7, Siglec-9, Siglec-10, and Siglec-15, to assess their
role in immune checkpoint inhibition.

2. Results and Discussion
2.1. The mRNA Level of ST6GALNAC6 in Brain, Breast, Colon, Lung, Pancreas, and Prostate
Cancers Decreased Compared to Normal Cells

We previously showed that the elevated expression of SSEA-4 on cancer cells was
caused by increased expression of β3GalT5 and ST6Gal2 [10]. Here, we compare the
mRNA levels of globo-series glycotransferases in normal and cancer tissues with large-scale
RNA-Seq transcriptome analyses from The Cancer Genome Atlas (TCGA) TARGET and
GTEx (The Genotype-Tissue Expression) datasets. We observed a statistically significant
decrease in the mRNA level of ST6GalNAc6 (Figure 1) in all cancers examined, and the
decrease was significant at an early stage, while there was no obvious change in the mRNA
levels of β4GalT, β3GalNT1, β3GalT5, and ST3Gal2, suggesting that downregulation of
ST6GalNAc6 expression in the early stage of tumorigenesis correlated with increased
expression of SSEA-4 in cancers.

2.2. Synthesis of DSGb5 and Other Sialylated Derivatives

We first explored the programmable one-pot method [32] for the synthesis of DSGb5
glycan. We designed two sialylated disaccharide building blocks, one with α2,3- and the
other with α2,6-linkage, with distinct relative reactivity for the one-pot synthesis to give the
product in moderate yield (Scheme 1a. see details in Supporting Information). We then ex-
plored the enzymatic method to sialylate SSEA-4 using the enzyme N-acetylgalactosamine
α2,6-sialyltransferase VI from Photobacterium damsela (Pd2,6ST) [33,34]. However, Neu5Ac
was transferred to the C-6 position of terminal galactose (compound 2a) instead of the
internal GalNAc (Scheme 1b). We next tested the α2,6-sialyltransferase from Photobacterium
sp. (Psp2,6ST), and to our delight, DSGb5 glycan (compound 1a) was obtained in 46%
yield (Scheme 1b). We also designed a new enzymatic route to DSGb5 glycan that involves
α2,6-sialylation of SSEA-3, followed by α2,3-sialylation at terminal galactose using a recom-
binant Pasteurella multocida α2,3-sialyltransferase (PmST1) (Scheme 1c). After purification
with an ion-exchange column, the product was obtained in 10% yield, and the NMR spec-
trum was identical to compound 1, except differences in the linker moiety at the reducing
end. This result further confirmed that DSGb5 glycan can be obtained by α2,6-sialylation
of SSEA-4 with Psp2,6ST or by α2,3-sialylation of sialyl SSEA-3 with PmST1.
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Figure 1. (a) The RSEM gene expression values of ST6GalNAc6 mRNA in brain, breast, colon, lung,
pancreas, and prostate cancer cells (red box) and normal cells (white box). (b) Synthesis of DSGb5 by
ST6GalNAc6-catalyzed sialylation of SSEA-4.

To further optimize the yield of DSGb5 glycan, we overexpressed human ST6GalNAc6
from HEK 293 cells. DSGb5 (compound 1) was enzymatically synthesized via human
ST6GalNAc6 from SSEA-4 glycan (see Materials and Methods). The result showed that
human ST6GalNAc6 was more efficient and DSGb5 glycan was obtained in 82.1% yield
(Figure 1).

Due to the different specificities of Pd2,6ST and Psp2,6ST, we further explored the
sialylation of a range of globo-series glycan related acceptors to better understand their
acceptor specificity and to expand the structural repertoire of sialylated glycans for our
glycan array study of Siglecs. The obtained products and yields are summarized in Table S1.
We found that Pd2,6ST accepted Gb4, Gb5, and SSEA-4 glycans with terminal Gal/GalNAc
residues, whereas Gb3 and Globo-H glycans could not be sialylated by this enzyme. Previ-
ous studies also showed a lower catalytic efficiency of Pd2,6ST when the α-linked terminal
GalNAc of GalNAcαAA or GalNAcαSer was used as an acceptor [33,35–37]. Similar results
were found in the case of Gb3 and Globo-H glycans, in which the α-linked terminal Gal or
Fuc may have hindered the activity of Pd2,6ST. Similarly, Psp2,6ST exhibited no reactivity
towards Gb3 glycan, while its activity towards Gb5 glycan was lower than that of Pd2,6ST,
as the former not only transferred Neu5Ac to the terminal Gal residue to afford 5a but also
sialylated GalNAc to afford disialylated oligosaccharide 16, with 15% isolated yield. In
addition, a previous study showed that Pd2,6ST catalyzed the transfer of Neu5Ac to the
terminal Gal and/or GalNAc residues of the disaccharide acceptor Galβ1-3GalNAc [38].
However, only the terminal Gal was sialylated by the enzyme to afford hexasaccharide 5a
as the sole product. Interestingly, the presence of Fuc did not affect the Psp2,6ST-catalyzed
sialylation of Globo-H glycan at terminal Gal to form compound 17 in 33% isolated yield.
Moreover, Psp2,6ST was found to sialylate the GalNAc residue of Globo-H glycan to form



Molecules 2025, 30, 2264 4 of 14

compound 8 albeit in trace amounts, which was later characterized by MS/MS analysis.
The sialylation of SSEA-4 glycan by Psp2,6ST showed high regioselectivity, probably due
to the α2-3 linked Neu5Ac in the terminal Gal residue.

PmST1

CMP-sialic acid
OR2

β3α3
α6
β3 α4 β4 β

OR2
β3

α6
β3 α4 β4 β

Pd2,6ST

Psp2,6ST
OR1

β3α3
α6

β3 α4 β4 β

2a (66.5%)

3 1

OR1
β3α3 β3 α4 β4 β

SSEA4-OR

OR1
β3α3

α6
β3 α4 β4 β

1a (46.2%)

a

b

c

Neu5Ac Gal GalNAc Glc R1 = C5H10Cl R2 = C5H10NH2

Scheme 1. (a) Programmable one-pot synthesis of DSGb5 glycan (i) NIS, TfOH, MS 4 Å, CH2Cl2,
−78 ◦C, 2 h; (ii) NIS, TfOH, MS 4 Å, CH2Cl2, −40 ◦C, 2 h. (b) Enzymatic sialylation of SSEA-4
with Pd2,6ST and Psp2,6ST. (c) Synthesis of DSGb5 by enzymatic α2,3-sialylation of sialyl SSEA3.
NmCSS, CMP-sialic acid synthetase from Neisseria meningitidis; PmST1, α2,3-sialyltransferase from
Pasteurella multocida.

2.3. Glycan Array Analysis of Siglec-7, Siglec-9, Siglec-10, and Siglec-15 Binding to DSGb5
Glycan and Other Cancer-Associated Carbohydrate Antigens

With these glycans in hand, we then created a glycan array on NHS-activated glass
slides and investigated the binding specificity of several Siglecs. This array, including the
glycans associated with tumor-associated glycolipids, like globo-series and RM2-related
glycans, gangliosides [25], and other TACAs, was used to profile the binding specificities
of Siglec-7, -9, -10, and -15. The results showed that SSEA-4 glycan (compound GL-7) and
DSGb5 (compound 1) lack significant binding to these four Siglecs, while Siglec-15 showed
binding to the disialylated SSEA-3 glycan (Gb5), compound 2 (Figure 2d). The glycans of
gangliosides GD2 (compound GD-2) and GD3 (compound GD-1) showed interaction with
Siglec-7 [39–47]. We also detected a significant binding of Siglec-7 to the mono-sialylated
compound RM-2 (Figure 2a). However, Siglec-9 showed a stronger binding than Siglec-7 to
the DSGb5 and RM-4 glycans. On the other hand, Siglec-10 showed a significant binding
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to the unnatural GD-5 glycan with α2,9- sialylation, and Siglec-15 recognized the SSEA-3
derivative with two sialic acids linked to the terminal galactose, compound 2 (Figure 2d).
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Figure 2. Glycan array profiling of commercially available Siglecs with TACAs. (a) Siglec-7.
(b) Siglec-9. (c) Siglec-10. (d) Siglec-15. (e) TACAs used in this study. Siglec concentrations =
10 µg/mL.

2.4. Binding of Siglecs Toward Sialylated N-Glycans

Since the glycans of cancer-associated glycolipids did not show significant binding to
the Siglecs, we turned our attention to an array of sialylated N-glycans generated by us
previously [28,29]. None of the N-glycans in our library showed any significant binding
to Siglec-7 (Figure 3a). Interestingly, Siglec-9 recognized the glycans with terminal α2,3-
sialylation (N11, N14, N17, and N20). On the other hand, the same type of N-glycans
with α2,6-sialylaton (N10 vs. N11, N13 vs. N14, N16 vs. N17, N19 vs. N20) exhibited
lower binding affinities. We also found that increasing the number of sialic acid residues
in the α2,3-sialylated biantennary, triantennary, and tetraantennary N-glycans increased
the binding affinity to Siglec-9. In contrast, no such trend was found in the case of α2,6-
sialylated N-glycans (Figure 3b). The 2,4,2-triantennary N-glycan showed a stronger
binding to Siglec-9 than the 2,2,6-branched one, irrespective of terminal sialic acid with
α2,3- or α2,6- linkage (N17 vs. N16, N14 vs. N13). Interestingly, Siglec-9 did not show any
significant interaction with complex type N-glycans with LacNAc repeats terminated with
α2,3- or α2,6- siaylation. In addition, the core fucose did not affect binding to Siglec-9 as
shown in the case of N11 and N35. Contrary to what we observed in the case of Siglec-9,
Siglec-10 preferred N-glycans with terminal α2,6-sialylation instead of α2,3-sialylation
(N13 vs. N14, N16 vs. N17, and N19 vs. N20). Moreover, an increasing number of terminal
sialic acid groups led to a stronger binding (N10 vs. N11, N13 vs. N14, N16 vs. N17, and
N19 vs. N20 in Figure 3c). Siglec-15 exhibited a similar binding pattern to that of Siglec-9
toward N-glycans, favoring α2,3-sialosides, albeit with somewhat lower binding affinity
(Figure 3d).
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Figure 3. Profiling of (a) Siglec-7, (b) Siglec-9, (c) Siglec-10, and (d) Siglec-15 with N-glycan array.
Siglec-9 significantly interacted with terminal α2,3-linked sialic acids of complex-type glycans com-
pared to the α2,6-linked sialosides and the binding affinity increases with increase in antenna (N11 vs.
N10, N14 vs. N13, N17 vs. N16, N20 vs. N19). In addition, the core fucose does not have a significant
effect on binding (N11 vs. N35). On the other hand, Siglec-10 prefers the N-sialosides with terminal
α2,6-linked sialic acid. (e) N-glycans used in this study. Siglec concentrations = 10 µg/mL.

2.5. Inhibition of Siglec-10 Binding to CD24 on Breast Cancer Cells with Synthetic Glycans

A recent report suggested that CD24, a highly glycosylated glycosylphosphatidylinos-
itol (GPI)-anchored protein [48,49], is overexpressed on various tumor cells [50] and is a
ligand for Siglec-10. CD24 was also found to enhance the metastatic potential of malignant
cells [51]. Human Siglec-10 is widely expressed in hematopoietic cell types [52], such as B
and T cells, monocytes eosinophils, NK cells and macrophages [53,54]. The Siglec-10-CD24
interaction that led to immune suppression has been considered as a promising target for
cancer immunotherapy [53–57]. The interaction of tumor CD24 and macrophage Siglec-10
inhibits phagocytosis and increases tumor growth and cell survival [53]. Removal of α2,3-
and α2,6-linked sialic acids from CD24 by Vibrio cholerae neuraminidase significantly re-
duced binding to Siglec-10 [58]. Therefore, identification of Siglec-10 ligand may aid in the
discovery of potential cancer biomarkers and the development of possible cancer therapy.
Human Siglec-10 is a membrane-bound protein [59,60] that recognizes α2,6-linked sialo-
sides on cancer cells. In this study, we identified a strong ligand (SL-1) of Siglec-10 using
our array and the commercially available array from RayBiotech (Figure S1), a bi-antennary
glycan terminated with two α2,3-glycolylneuraminic acid with a dissociation constant
of 0.050 ± 0.011 µM (Figures 4a and S2). The binding affinity of Siglec-10 towards SL-1
was better than other glycans with terminal Neu5Ac and the number of Neu5Gc-modified
branches also influenced the binding affinity (SL-1 > SL-2).
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Figure 4. (a) Glycan candidates for Siglec-10 inhibition. (b) Siglec-10 binding signals of glycan
candidates on glycan array. Binding of Siglec-10 (2.5 µg/mL) towards glycans on total glycan array
(printed at 100 µM). Secondary antibody: Donkey anti-human IgG, Fcγ fragment specific, Alexa
Fluor® 647-conjugated. Error bars: standard deviation. (c) Inhibition of Siglec-10 binding to MCF-7 at
various concentrations of SL-1.

To test whether SL-1 could compete with human breast cancer cell line MCF-7 over
Siglec-10 binding, SL-1 at different concentrations was added to a mixture of Siglec-10
and MCF-7 cells, and Siglec-10 binding signals were observed using flow cytometry. As
shown in Figure 4c, binding of Siglec-10 to MCF-7 cells decreased as the concentration of
glycan SL-1 increased, suggesting that SL-1 is a competitive inhibitor of Siglec-10 binding
to MCF-7 cells. Competition analysis of Siglec-10 binding to glycans vs. MCF-7 cells was
also performed with glycans SL-2, SL-3, SL-4 and N11, respectively, at 100 µM. As shown
in Figure S2, SL-1 still had the strongest inhibition of Siglec-10 binding to MCF-7 cells and
decreased in the order SL-1 > SL-2 > SL-3 > N11 > SL-4.

With SL-2, which contained only one of the branches of SL-1, Siglec-10 had a dissocia-
tion constant of 0.110 ± 0.041 µM. For SL-3, SL-4, and N11, the dissociation constants were
similar (~0.176 µM); however, the fluorescent signals were very weak, and significantly
lower than SL-1 and SL-2. These results showed that Siglec-10 preferred glycolylneuraminic
acid (SL-1 and SL-2) over acetylneuraminic acid (SL-3, SL-4 and N11).

The binding affinity also increased as the number of sialic acids increased (SL-1 > SL-2).
The multivalent glycans displayed on the microarray can be viewed as a mimic of cell-
surface glycans confined in a small area. On the other hand, glycans used in the inhibition
experiment in flow cytometry were dispersed in the solution as monomers. The binding
affinity between glycans and Siglec-10 in solution should be lower than on microarrays.
Therefore, to achieve better inhibitory effects, the interaction of SL-1 to Siglec-10 should
be increased. Since Siglec-10 is expressed on immune cells as multivalent glycoproteins,
not as free form in solution, while MCF-7 cells are adherent cells, the interaction between
two cells is more complex than that based on glycan array profiling. Work is in progress to
identify better inhibitors of Siglec-10-mediated immune checkpoint suppression.
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3. Materials and Methods
3.1. General Chemical Synthesis

All chemicals were purchased as reagent grade and used without further purification.
Anhydrous dichloromethane (CH2Cl2) was purchased from a commercial source without
further distillation. Pulverized Molecular MS 4 Å (Sigma-Aldrich, St. Louis, MO, USA) for
glycosylation were activated by heating at 350 ◦C for 10 h. Reactions were monitored by
analytical thin-layer chromatography (TLC) in EM silica gel 60 F254 plates and visualized
under UV (254 nm) and/or by staining with acidic ceric ammonium molybdate or p-
anisaldehyde. Flash chromatography was performed on silica gel (Millipore, Burlington,
MA, USA) of 40–63 µm particle size. 1H NMR spectra were recorded on a Bruker AVANCE
600 (600 MHz) spectrometer at 25 ◦C. Chemical shift (in ppm) was assigned according
to CDCl3 (δ = 7.24 ppm) and D2O (δ = 4.80 ppm). C-13 NMR spectra were obtained
with Bruker AVANCE 600 spectrometer and were calibrated with CDCl3 (δ = 77.00 ppm).
Coupling constants (J) are reported in hertz (Hz). Chemical shifts measurements are
reported in delta (δ) units, and splitting patterns are described as singlet (s), doublet (d),
triplet (t), quartet (q), or multiplet (m). Coupling constants (J) are reported in Hertz (Hz).
High resolution ESI mass spectra were recorded on a Bruker Daltonics or Bruker Bio-TOF III
spectrometer (Bruker, Billerica, MA, USA). MALDI-TOF spectra were recorded on Bruker
Ultraflex II sepctrameter (Bruker).

3.2. Enzyme Preparations

Codon-optimized genes for pET-15b-Pd2,6ST, pET-22b-Psp2,6ST, and pET-23a-PmST1
were synthesized by GenScript™. To construct the expression plasmid for soluble
ST6GalNAc6, the pHEK293 Ultra Expression Vector I (TAKARA) was linearized with
XhoI and ligated with the gene encoding soluble ST6GalNAc6 (V67–T333) fused to a C-
terminal FLAG tag, using the NEBuilder® HiFi DNA Assembly Cloning Kit (NEB). The
resulting plasmid was sequence-verified.

For bacterial expression of recombinant Pd2,6ST, Psp2,6ST, and PmST1, an overnight
culture of BL21(DE3) was inoculated into 1 L Terrific Broth (Sigma-Aldrich) at a 1:50 (v/v)
ratio in a 2.5 L baffled flask (Thomson, Carlsbad, CA, USA). When the culture reached
an OD600 of 0.8–1.0, protein expression was induced with 1 mM IPTG and incubated at
16 ◦C for 24 h. The cells were harvested, lysed using Bugbuster Protein Extraction Reagent
(Millipore, Burlington, MA, USA), and the supernatant containing 6 × His-tagged proteins
was purified using IMAC (Cytiva, Marlborough, MA, USA). The column was washed and
eluted with eight column volumes of 50 mM MOPS, 300 mM NaCl, and either 20 mM
or 300 mM imidazole (pH 7.5). The fractions were analyzed by SDS-PAGE followed by
Coomassie Blue staining.

For mammalian expression of ST6GalNAc6, Expi293 cells were transfected according
to the manufacturer’s instructions, with a starting cell density of 1.5 million cells/mL. After
72 h, the culture supernatant was collected, filtered, and passed through anti-FLAG M2
agarose resin (Millipore). The resin was equilibrated with 10 column volumes of TBS buffer
and 20 mM HEPES buffer containing 300 mM NaCl (pH 7.0) before loading. After binding,
the resin was washed with 10 column volumes of the same buffer, and the protein was
eluted using 8 column volumes of 0.1 M Tris-glycine (pH 3.0). The elution was immediately
neutralized by adding 1/15 volume of 1 M Tris-HCl (pH 9.0). The enzyme was then buffer-
exchanged and concentrated using an Amicon Ultra centrifugal filter unit (Millipore) with
an appropriate molecular weight cutoff. Protein concentration was determined using the
PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA).
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3.3. Enzymatic Synthesis of DSGb5 via Human ST6GalNAc6

The enzymatic reaction was subsequently performed in a reaction mixture containing
100 mM sodium cacodylate (pH 6.0), 10 mM MgCl2, 1.6 mM CMP-sialic acid, 3 µg of
recombinant human ST6GalNAc6, and 0.08 mM SSEA-4 glycan as acceptor substrate. The
reaction mixture was incubated at 37 ◦C overnight with gentle shaking. The product was
then isolated by solid phase extraction with HyperSep™ Hypercarb™ SPE Cartridges
(Thermo Fisher Scientific) and analyzed by porous graphitic carbon liquid chromatogra-
phy/tandem mass spectrometry (PGC-LC-MS/MS) using a Hypercarb™ column (Thermo
Fisher Scientific).

3.4. Glycan Microarray

Glycan microarrays were fabricated by printing 100 µM amine-containing glycans in
printing buffer (300 mM sodium phosphate buffer (pH 8.5) with 0.01% Triton X-100) onto
NHS-activated glass slides (Nexterion® Slide H, SCHOTT, Mainz, Germany) as previously
described [61]. Recombinant human Siglec-hFc-fusion proteins (Siglec-7, 9, 10, 15) were
purchased from R&D Systems. The microarrays were blocked with SuperBlock Blocking
Buffer in PBS (Thermo Fisher Scientific) at RT for 1 h and washed with 1 × PBS buffer
containing 0.05% Tween-20 (PBST). Siglecs were diluted with PBST containing 30 mg/mL
BSA (PBST-BSA). The Siglec samples were added to the microarray and incubated at RT for
1 h. The microarrays were washed with PBST, then added with DyLight™ 649 modified
anti-human IgG antibody (donkey anti-human IgG, Fcγ fragment specific, DyLight™ 649,
Jackson ImmunoResearch, West Grove, PA, USA) for 1 h in the dark. Finally, the microarrays
were washed in PBST, milliQ, and dried. The microarrays were scanned at 635 nm using
a GenePix 4300A Microarray Scanner (Molecular Devices, San Jose, CA, USA), and the
fluorescence intensities were analyzed by the GenePix Pro 7.0 software (Molecular Devices).

The dissociation constants of Siglec-10 binding to glycans SL-1, SL-2, SL-3, SL-4 and
N11 were determined using glycan microarray. Concentrations of amine-modified glycans
ranging from 10 µM to 400 µM were printed onto NHS-modified glass slides [62], then
treated with various concentrations of Siglec-10 coupled with Alexa Fluor® 647 modified
anti-human IgG antibody (donkey anti-human IgG, Fcγ fragment specific, Alexa Fluor®

647, Jackson ImmunoResearch) at 4 ◦C overnight. After incubation, the microarray slides
were washed with PBST, milliQ, and then dried. The microarrays were excited with 635 nm
lasers and scanned using a GenePix 4300A Microarray Scanner, and the fluorescence
intensities were analyzed by the GenePix Pro 7.0 software. Data analysis and Langmuir
isotherms fitting was performed using PRISM (GraphPad, Boston, MA, USA) [61,62].
The microarrays were excited with 635 nm lasers and scanned using a GenePix 4300A
Microarray Scanner, where the fluorescence intensities were analyzed using the GenePix
Pro 7.0 software. Fluorescence intensities were plotted out against Siglec-10 concentrations
to give a set of curves which were analyzed as Langmuir isotherms, assuming the reaction
reached equilibrium,

Fmax[P]
[P] + KD

,

where Fmax is the maximum fluorescence intensity, [P] is the total Siglec-10 concentration,
and KD is the equilibrium dissociation constant for surface glycan and Siglec-10 binding.

3.5. Cell Culture

The human breast cancer cell line MCF-7 (HTB-22, the American Type Culture Collec-
tion, Manassas, VA, USA) was cultured in RPMI 1640 medium (Thermo Fisher Scientific)
supplemented with 10% fetal bovine serum, nonessential amino acids (Thermo Fisher
Scientific) and 1 × antibiotic-antimycotic (Thermo Fisher Scientific) [63]. The cells were
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incubated at 37 ◦C with 5% CO2 and humidified atmosphere control. The culture medium
was changed every 3 to 4 days.

3.6. Flow Cytometry

MCF-7 cells were detached from the dish surface through trypsinization, and washed
with ice-cold FACS buffer (1% FBS in 1 × DPBS with 0.1% Sodium Azide) before staining
with the following antibodies for respective experimental purposes: (1) For visualization of
CD24 on the cell surface, cells were stained with anti-CD24 antibody, CD24 Monoclonal
Antibody (eBioSN3 (SN3 A5-2H10)), PE (Invitrogen); Mouse IgG1 kappa Isotype Control
(P3.6.2.8.1), PE (Thermo Fisher Scientific) was used as isotype control. (2) In Siglec-10
binding/inhibitory experiments, 5 × 105 MCF-7 cells were incubated with 10 µg/mL
Siglec-10, along with different concentrations of SL-1 glycan (0, 0.01 to 1 mM) in FACS
buffer and incubated at 4 ◦C for 1 h. The cells were washed with FACS buffer before adding
Alexa Flour® 647-conjugated anti-hFc antibody for Siglec-10 staining. Flow cytometry was
performed on FACSCanto flow cytometer (BD Bioscience, Franklin Lakes, NJ, USA).

3.7. Commercial Glycan Array

Profiling of recombinant Siglec-10 was performed on commercial Glycan Array 300
(RayBiotech, Peachtree Corners, GA, USA) by the Academia Sinica Glycoscience Core
Facility. Siglec-10 samples were dialyzed and labeled with biotin according to the pro-
tocol provided by the manufacturer. The glycan array slide was blocked, washed, and
biotin-labeled proteins were added for incubation with the reagents provided in the kit.
Cy3 equivalent dye-conjugated streptavidin was used to visualize the binding signals.
The glycan arrays were excited at 532 nm laser and scanned using a GenePix 4300A
Microarray Scanner.

4. Conclusions
It is known that cancer cells utilize the Siglec interacting pathway to evade immune

cell-mediated cytotoxicity. In this study, we describe the development of facile and scalable
chemo-enzymatic strategies for the synthesis of DSGb5 and sialylated derivatives. These
sialylated glycans and the glycans of cancer-associated glycolipids were used to create
glycan microarrays to evaluate their binding towards recombinant human Siglecs, including
Siglec-7, Siglec-9, Siglec-10, and Siglec-15. It was found that SSEA-4 and DSGb5 glycans
had binding to Siglec-9 and the disialyl SSEA-3 glycan with disialylated terminal Gal
(compound 2) showed binding to Siglec-9 and Siglec-15. However, these Siglecs exhibited
better binding to sialylated N-glycans and the binding affinity and specificity were strongly
influenced by the α2,3- or α2,6-linkage of terminal sialic acid, with Siglec-9 in favor of
the α2,3-linkage and Siglec-10 the α2,6-linkage. Notably, the complex-type N-glycans are
better ligands for Siglec-9 and Siglec-10 and the binding increases with increasing number
of terminal sialic acids. We also found that the N-glycolylneuraminic acid derivatives
are better ligands for Siglec-10, especially the truncated biantennary glycan SL-1, which
exhibited a significant inhibition of macrophage-mediated phagocytosis.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules30112264/s1, detailed description of synthesis of DSGb5 and
related sialosides and their characterization, including NMR data; Scheme S1–S3, Table S1–S2,
Figure S1–S3, and References [1–12] are cited in the Supplementary Materials.
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