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Abstract Intracellular transport is predominantly heterogeneous in both time and space,

exhibiting varying non-Brownian behavior. Characterization of this movement through averaging

methods over an ensemble of trajectories or over the course of a single trajectory often fails to

capture this heterogeneity. Here, we developed a deep learning feedforward neural network

trained on fractional Brownian motion, providing a novel, accurate and efficient method for

resolving heterogeneous behavior of intracellular transport in space and time. The neural network

requires significantly fewer data points compared to established methods. This enables robust

estimation of Hurst exponents for very short time series data, making possible direct, dynamic

segmentation and analysis of experimental tracks of rapidly moving cellular structures such as

endosomes and lysosomes. By using this analysis, fractional Brownian motion with a stochastic

Hurst exponent was used to interpret, for the first time, anomalous intracellular dynamics,

revealing unexpected differences in behavior between closely related endocytic organelles.

Introduction
The majority of transport inside cells on the mesoscale (nm-100mm) is now known to exhibit non-

Brownian anomalous behavior (Metzler and Klafter, 2004; Barkai et al., 2012; Waigh, 2014). This

has wide ranging implications for most of the biochemical reactions inside cells and thus cellular

physiology. It is vitally important to be able to quantitatively characterize the dynamics of organelles

and cellular responses to different biological conditions (van Bergeijk et al., 2015;

Patwardhan et al., 2017; Moutaux et al., 2018). Classification of different non-Brownian dynamic

behaviors at various time scales has been crucial to the analysis of intracellular dynamics

(Fedotov et al., 2018; Bressloff and Newby, 2013), protein crowding in the cell (Banks and Fradin,

2005; Weiss et al., 2004), microrheology (Waigh, 2005; Waigh, 2016), entangled actin networks

(Amblard et al., 1996), and the movement of lysosomes (Ba et al., 2018) and endosomes (Flores-

Rodriguez et al., 2011). Anomalous transport is currently analyzed by statistical averaging methods

and this has been a barrier to understanding the nature of its heterogeneity.

Spatiotemporal analysis of intracellular dynamics is often performed by acquiring and tracking

microscopy movies of fluorescing membrane-bound organelles in a cell (Rogers et al., 2007; Flores-

Rodriguez et al., 2011; Chenouard et al., 2014; Zajac et al., 2013). These tracks are then com-

monly interpreted using statistical tools such as the mean square displacement (MSD) averaged over

the ensemble of tracks, hDr2ðtÞi. The MSD is a measure that is widely used in physics, chemistry and
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biology. In particular, MSDs serve to distinguish between anomalous and normal diffusion at differ-

ent temporal scales by determining the anomalous exponent a through hDr2ðtÞi ~ ta (Metzler and

Klafter, 2000). Diffusion is defined as a ¼ 1, sub-diffusion 0<a<1 and super-diffusion

1<a<2 (Klafter and Sokolov, 2011). To improve the statistics of MSDs, they are often averaged

over different temporal scales, forming the time-averaged MSD (TAMSD), �
Dr2ðt Þ~ t a, where t is

the lag time (Sokolov, 2012).

For stochastic processes with long-range time dependence such as fractional Brownian motion

(fBm), other statistical averaging methods exist. For fBm, the MSD is hB2

HðtÞi ~ t2H with the Hurst

exponent, H varying between 0 and 1. One can use rescaled and sequential range analysis (Samor-

odnitsky, 2016; Peters, 1994) to estimate H. The advantage of modeling intracellular transport

with fBm is that both sub-diffusion (0<H<1=2) and super-diffusion (1=2<H<1) can be explained in a

unified manner using only the Hurst exponent. The essence of fBm is that long-range correlations

result in random trajectories that are anti-persistent (0<H<1=2) or persistent (1=2<H<1). How can we

understand persistence in the context of intracellular transport? The term persistence can be under-

stood as the processive motor-protein transport of cargo in one direction, whether it be retrograde

or anterograde. From a probabilistic viewpoint, persistence can be interpreted as the cargo being

more likely to keep the same direction given it had been moving in this fashion before. Conversely,

anti-persistence is interpreted as cargo being more likely to change its direction given it had been

moving in that direction before. Anti-persistence can arise if cargo is confined to a local volume in

the cytoplasm simply due to crowding or tethering biochemical interactions (Harrison et al., 2013),

which in effect leads to sub-diffusion (Weiss et al., 2004; Ernst et al., 2012). By interpreting intra-

cellular cargo transport as fBm, there are two main advantages: we can describe movement with the

intuitive biological concepts of persistence and anti-persistence; and we can provide an immediate

link to anomalous diffusion since a = 2H for constant H.

Cargo movement in vivo often exhibits random switching between persistent and anti-persistent

movement, even in a single trajectory (Chen et al., 2015). Therefore, we can model this by a sto-

chastic local Hurst exponent, HðtÞ, which jumps between persistent (1=2<HðtÞ<1) and anti-persistent

(0<HðtÞ<1=2) states. Still, a major challenge exists: how can we estimate a local stochastic Hurst

exponent from a trajectory?

Whilst exponent estimation using neural networks is an emerging field (Bondarenko et al.,

2016), segmentation of single trajectories into persistent and anti-persistent sections based on

instantaneous dynamic behavior has not been studied. Instead, hidden Markov

models (Monnier et al., 2015; Persson et al., 2013) and windowed analyses (Getz and Saltz, 2008)

are commonly used to segment local behavior along single trajectories (see Appendix A for compari-

sons). Even so, most methods neglect the microscopic processes which are often a feature of intra-

cellular transport (e.g. alternation between ‘runs’ and ‘rests’) (Weiss et al., 2004; Chen et al., 2015;

Fedotov et al., 2018) and the non-Markovian nature of their motion (Fuliński, 2017). fBm was cho-

sen due to its self-similar properties that allow direct analysis at short time scales given by experi-

mental systems; and the experimental evidence for fBm in the crowded cytoplasm (Weiss et al.,

2004; Szymanski and Weiss, 2009; Krapf et al., 2019). Moreover, other anomalous diffusion mod-

els, such as scaled Brownian motion (Lim and Muniandy, 2002), subdiffusive continuous time ran-

dom walks (Sokolov, 2012) and superdiffusive Lévy walks (Fedotov et al., 2018) are not suitable to

interpret anomalous trajectories on the microscopic level.

Here, we present a new method for characterizing anomalous transport inside cells based on a

Deep Learning Feedforward Neural Network (DLFNN) that is trained on fBm. Neural networks are

becoming a general tool in a wide range of fields, such as single-cell transcriptomics (Deng et al.,

2019) and protein folding (Evans et al., 2018). We find the neural network is a much more sensitive

method to characterise fBm than previous statistical tools, since it is an intrinsically non-linear regres-

sion method that accounts for correlated time series. In addition, it can estimate the Hurst exponent

using as few as seven consecutive time points with good accuracy.

To test the ability of the DLFNN to segment real-world biological motility, we focused on organ-

elles in the endocytic pathway. This pathway is essential for cell homeostasis, allowing nutrient

uptake, the turnover of plasma membrane components, and uptake of growth factor receptors

bound to their ligands. Early endosomes then sort components destined for degradation from mate-

rial that needs to be recycled back to the cell surface or to the Trans-Golgi Network (TGN)
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Figure 1. Tests of exponent estimation for the DLFNN using N = 104 simulated fBm trajectories. (a) Plots showing the Hurst exponent estimates of fBm

trajectories with n ¼ 10
2 data points by a triangular DLFNN with three hidden layers compared with conventional methods. Plots are vertically grouped

by Hurst exponent estimation method: (left to right) rescaled range, MSD, sequential range and DLFNN. sH values are shown in the title. Top row:

Scatter plots of estimated Hurst exponents Hest and the true value of Hurst exponents from simulation Hsim. The red line shows perfect estimation.

Second row: Due to the density of points, a Gaussian kernel density estimation was made of the plots in the top row (see Materials and methods). Third

row: Scatter plots of the difference between the true value of Hurst exponents from simulation and estimated Hurst exponent DH ¼ Hsim � Hest . Last

row: Gaussian kernel density estimation of the plots in the third row. (b) sH as a function of the number of consecutive fBm trajectory data points n for

different methods of exponent estimation. Example structures for two hidden layers and n ¼ 5 time series input points of the anti-triangular, rectangular

and triangular DLFNN are shown in (c, d and e), respectively. (f) sH as a function of the number of hidden layers in the DLFNN for triangular,

rectangular and anti-triangular structures. (g) sH as a function of the number of randomly sampled fBm trajectory data points nrand with different number

of hidden layers in the DLFNN shown in the legend. (h) sH as a function of the noise-to-signal ratio (Noise
Signal

) (NSR) from Gaussian random numbers added

to all n ¼ 10
2 data points in simulated fBm trajectories. (i) Plots of bias bðHsimÞ, variance VarðHsimÞ and mean square error (MSE) as functions of Hsim. For

each value of Hsim, fBm trajectories with n ¼ 100 points were simulated and estimated by a triangular DLFNN.
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(Naslavsky and Caplan, 2018). Many aspects of endosome function are regulated by Rab5, a small

GTPase that is localized to the cytosolic face of early endosomes (Stenmark and Olkkonen, 2001).

Sorting nexin 1 (SNX1) also localises to early endosomes, where it works with the retromer complex

to retrieve and recycle cargoes from early endosomes to the TGN (Simonetti and Cullen, 2019).

SNX1 achieves this through regulating tubular membrane elements on early endosomes by associat-

ing with regions of high membrane curvature (Carlton et al., 2004). Early endosomes mature into

late endosomes, which then fuse with lysosomes, delivering their contents for degradation

(Huotari and Helenius, 2011). Endocytic pathway components are highly dynamic, with microtubule

motors driving long-distance movement while short-range dynamics involve actin-based motility

(Granger et al., 2014; Cabukusta and Neefjes, 2018), making them ideal test cases for DLFNN

analysis. The new method enables the interpretation of experimental trajectories of lysosomes and

endosomes as fBm with stochastic local Hurst exponent, H (t). This in turn allows us to unambigu-

ously and directly classify endosomes and lysosomes to be in anti-persistent or persistent states of

motion at different times. From experiments, we observe that the time spent within these two states

both exhibit truncated heavy-tailed distributions.

To our knowledge, this is the first method which is capable of resolving heterogeneous behavior

of anomalous transport in both time and space. We anticipate that this method will be useful in char-

acterizing a wide range of systems that exhibit anomalous heterogeneous transport. We have there-

fore created a GUI computer application in which the DLFNN is implemented, so that the wider

community can conveniently access this analysis method.

Figure 2. DLFNN analysis of a simulated trajectory. Top: Plot of displacement as a function of time from a simulated fBm trajectory (blue) with multiple

exponent values. Bottom: Hurst exponent values used for simulation (magenta), and the DLFNN exponent predictions of the neural network using a 15

point moving window (black).

Han et al. eLife 2020;9:e52224. DOI: https://doi.org/10.7554/eLife.52224 4 of 28

Research article Cell Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.52224


Results and discussion

The DLFNN is more accurate than established methods
We tested a DLFNN trained on fBm with three hidden layers of densely connected nodes on

N = 104 computer-generated fBm trajectories each with n = 102 evenly spaced time points and con-

stant Hurst exponent Hsim, randomly chosen between 0 and 1. The DLFNN estimated the Hurst

exponents Hest based on the trajectories, and these were compared with those estimated from

TAMSD, rescaled range, and sequential range methods (Figure 1a). The difference between the sim-

ulated and estimated values DH ¼ Hsim � Hest was much smaller for the DLFNN than for the other

methods (Figure 1a), and the DLFNN was ~ 3 times more accurate at estimating Hurst exponents

with a mean absolute error (sH ) ~ 0:05. Also, the errors in estimation of the DLFNN are more stable

across values of Hsim.

Tracking of intracellular motion usually generates trajectories with a variable number of data

points. We therefore compared the performance of the different exponent estimation methods

when the number of evenly spaced, consecutive fBm time points in a trajectory varied over

n ¼ 5; 6; :::; 102 points. The DLFNN maintained an accuracy of sH ~ 0:05 across n, whereas sH of other

methods increase as n decreases (Figure 1b), and was always substantially worse than that of the

DLFNN estimation. Different DLFNN structures (see Figure 1c,d and e) performed similarly, and

introducing more hidden layers did not affect the accuracy of estimation (Figure 1f and g). Given

that the structure of DLFNN does not significantly affect the accuracy of exponent estimation, a tri-

angular densely connected DLFNN was used for all subsequent analyses.

The structure of a triangular DLFNN means that the input layer consists of n nodes, which are

densely connected to n� 1 nodes in the first hidden layer, such that at the lth hidden layer, there

would be n� l densely connected nodes. Then to estimate the Hurst exponent these nodes are con-

nected to a single node using a Rectified Linear Unit (ReLU) activation function, which returns the

exponent estimate. A triangular DLFNN therefore uses only
PL

l¼0
ðn� lÞ þ 1 nodes for L hidden layers

and n input points, whereas the rectangular structure uses nLþ 1 nodes and the anti-triangular struc-

ture uses
PL

l¼0
ðnþ lÞ þ 1. The triangular structure results in a significant decrease in training parame-

ters, and hence computational requirements, while maintaining good levels of accuracy. This

demonstrates that a computationally inexpensive neural network can accurately estimate exponents.

The DLFNN’s estimation capabilities were tested further by inputting nrand randomly sampled

time points from the original fBm trajectories. Surprisingly, sH ~ 0:05 is regained even with just 40

out of 100 data points randomly sampled from the time series for any triangular DLFNN with more

than one hidden layer (Figure 1g). For this method to work with experimental systems, it must esti-

mate Hurst exponents even when the trajectories are noisy. Figure 1h shows how the exponent esti-

mation error increases when Gaussian noise with varying strength compared to the original signal is

added to the fBm trajectories. Importantly, the DLFNN accuracy sH at 20% NSR is as good as the

accuracy of other methods with no noise (compare 1a and h).

To characterize the accuracy of Hsim estimation by the DLFNN, we calculated the bias,

bðHsimÞ ¼ E Hest½ � � Hsim; variance, VarðHsimÞ ¼ E Hest � E Hest½ �2
h i

; and mean square error,

MSE ¼ VarðHsimÞ þ bðHsimÞ2 (Figure 1i). To quantify the efficiency of the estimator the Fisher informa-

tion of the neural network’s estimation needs to be found and the Cramer-Rao lower bound calcu-

lated. The values of bias, variance and MSE were very low (Figure 1i), which taken together with the

simplicity of calculation and the accuracy of estimation even with small number of data points, dem-

onstrates the strength of the DLFNN method. Furthermore, once trained, the model can be saved

and reloaded at any time. Saved DLFNN models, code and the DLFNN Exponent Estimator GUI are

available to download (see Software and Code).

DLFNN allows analysis of simulated trajectories with local stochastic
Hurst exponents
Estimating local Hurst exponents is fundamentally important because much research has focused on

inferring active and passive states of transport within living cells using position-derived quantities

such as windowed MSDs, directionality and velocity (Arcizet et al., 2008; Monnier et al., 2015).

The trajectories are then segmented and Hurst exponents measured in an effort to characterize the
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behavior of different cargo when they are actively transported by motor proteins (Chen et al., 2015;

Fedotov et al., 2018) or sub-diffusing in the cytoplasm (Jeon et al., 2011). However, conventional

methods such as the MSD and TAMSD need trajectories with many time points (n~ 102 � 10
3) to cal-

culate a single Hurst exponent value with high fidelity. In contrast, the DLFNN enables the Hurst

exponent to be estimated, directly from positional data, for a small number of points. Furthermore,

the DLFNN measures local Hurst exponents without averaging over time points and is able to char-

acterize particle trajectories that may exhibit multi-fractional, heterogeneous dynamics.

To provide a synthetic data set that mimics particle motion in cells, we simulated fBm trajectories

with Hurst exponents that varied in time, and applied a symmetric moving window to estimate the

Hurst exponent using a small number of data points before and after each time point (Figure 2).

The DLFNN was able to identify segments with different exponents, and provided a good running

estimation of the Hurst exponent values. The DLFNN could also handle trajectories with different dif-

fusion coefficients, and generally performed better than MSD analysis when a sliding window was

used (see Appendix B).

DLFNN analysis reveals differences in motile behavior of organelles in
the endocytic pathway
Early endosomes labeled with green fluorescent protein (GFP)-Rab5 undergo bursts of rapid cyto-

plasmic dynein-driven motility interspersed with periods of rest (Flores-Rodriguez et al., 2011;

Zajac et al., 2013). We therefore applied the DLFNN method to experimental trajectories obtained

from automated tracking (Newby et al., 2018) data of GFP-Rab5-labeled endosomes in an MRC-5

cell line that stably expressed GFP-Rab5 at low levels (Figure 3). A moving window of 15 points

identified persistent (green) and anti-persistent (magenta) segments, which corresponded well to

Figure 3. DLFNN analysis of a GFP-Rab5 endosome trajectory. Top: Plot of displacement from a single trajectory in an MRC-5 cell (blue). Shaded areas

show persistent (0.55 < H < 1 in green) and anti-persistent (0 < H < 0.45 in magenta) behaviour. Middle: A 15 point moving window DLFNN exponent

estimate for the trajectory (black) with a line (dashed) marking diffusion H = 0.5 and two lines (dotted) marking confidence bounds for estimation

marking H = 0.45 and 0.55. Bottom: Plot of instantaneous and moving (15 point) window velocity. Right: Plot of the trajectory with start and finish

positions. Persistent (green) and anti-persistent (magenta) segments are shown. For sections that were 0.45 < H < 0.55 were not classified as persistent

or anti-persistent and are depicted in blue.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. DLFNN analysis of a GFP-SNX1-labeled endosome trajectory, depicted as in Figure 3.

Figure supplement 2. DLFNN analysis of a lysosome trajectory, depicted as in Figure 3.
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the moving window velocity plots (Figure 3, lower panel), confirming that the neural network is

indeed distinguishing passive states from active transport states with non-zero average velocity. We

then used it to analyze the motility of two other endocytic compartments: SNX1-positive endosomes

(Allison et al., 2017; Hunt et al., 2013) and lysosomes (Cabukusta and Neefjes, 2018;

Hendricks et al., 2010). It successfully segmented tracks of GFP-SNX1 endosomes (Figure 3—fig-

ure supplement 1) in a stable MRC-5 cell line (Allison et al., 2017) and lysosomes visualized using

lysobrite dye (Figure 3—figure supplement 2). A total of 63–71 MRC-5 cells were analyzed, giving

40,800 (GFP-Rab5 endosome), 11,273 (GFP-SNX1 endosome) and 38,039 (lysosome) tracks that

were segmented into 277,926 (GFP-Rab5), 215,087 (GFP-SNX1) and 474,473 (lysosome) persistent

or anti-persistent sections, each yielding a displacement, duration and average H.

These data revealed intriguing similarities and differences in behavior between the three endo-

cytic components. Analysis of the duration and displacement of segments (Appendix C) revealed

that all organelles spent longer in anti-persistent than persistent states (Figure 4) but moved much

further when persistent (Appendix 3—figure 1), as expected. However, GFP-SNX1 endosomes

spent much less time than GFP-Rab5 endosomes or lysosomes in an anti-persistent state (Figure 4).

This difference in behavior was also seen when histograms of the Hurst exponents were plotted (Fig-

ure 5), as SNX1 endosomes were much less likely to exhibit anti-persistent behavior, particularly with

H<0:3, than Rab5 endosomes or lysosomes. This was confirmed by fitting the histograms of the

Hurst exponent with a six component Gaussian mixture model (Figure 5b–d; Appendix D). In con-

trast, all three organelle classes exhibited a similar range of Hurst exponents when they underwent

directionally persistent motion.

To understand organelle motility in the context of cell behavior, an additional layer of complexity

needs to be considered - the location of the moving structure within the cell itself. Such information

would reveal zones that favor anti-persistent or persistent movement (Bálint et al., 2013). Using the

neural network, trajectories of GFP-Rab5, GFP-SNX1 endosomes and lysosomes from MRC-5 cells

were plotted with colors depicting the changing Hurst exponent at different points in each trajectory

(Figure 6). For Rab5- and SNX1-positive endosomes, anti-persistent organelles were enriched in the

cell periphery, but occasionally underwent long-range persistent movement towards the

nucleus (Figure 6—video 1; Figure 6—video 2), as expected (Flores-Rodriguez et al., 2011;

Zajac et al., 2013; Hunt et al., 2013; Allison et al., 2017). Lysosomes displayed completely differ-

ent behavior, with most trajectories being anti-persistent, while the persistent trajectories were not

obviously organized spatially (Figure 6; Figure 6—video 3). The location information together with

classification of anti-persistent and persistent trajectories qualitatively shows the regions of high

motor-driven activity within the cell for different endocytic organelles.

Many cargos that move along microtubules can switch their direction of motility, between dynein-

driven inward (retrograde) motion toward the microtubule minus ends at the cell centre and plus-

end-directed outward (anterograde) movement driven by kinesin family members (Hancock, 2014).

To investigate the characteristics of anterograde and retrograde motility of endocytic organelles, we

adapted our method to subdivide persistent segments according to whether the movement

occurred towards or away from the user-defined centrosomal region (see Materials and methods).

Only tracks with displacement of >0.5mm from their start point were selected, which yielded 2369

Rab5, 2099 SNX1 and 7645 lysosome persistent segments that were then analyzed to give the dura-

tion, displacement and velocity of anterograde and retrograde excursions (Figure 7; Table 1). The

anti-persistent segments contained within these tracks were also analyzed.

These statistics revealed that each endocytic organelle moved with different characteristics. GFP-

Rab5 endosomes moved much faster than GFP-SNX1 endosomes or lysosomes, particularly in the

retrograde direction (Figure 7, upper panel). Strikingly, although the GFP-SNX1 endosomes were

slowest in both directions, they moved furthest and for longest in each segment, in keeping with the

longer duration of persistent segments seen in the global analysis of tracks (Figure 4) and higher H

values (Figure 5). The differences in behavior between Rab5 and SNX1 endosomes is intriguing,

since both are recruited to the early endosome by the lipid phosphoinositol-3-phosphate

(Christoforidis et al., 1999; Carlton et al., 2004; Behnia and Munro, 2005; Huotari and Helenius,

2011). However, SNX1 also senses membrane curvature (Carlton et al., 2004), and immunofluores-

cence labeling of MRC-5 cells with antibodies to Rab5 and SNX1 demonstrated that they reside on

distinct domains of larger early endosomes (Figure 6—figure supplement 1), as expected

van Weering et al. (2012). In addition, while SNX1 endosomes were usually Rab5-positive, there
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and lysosomes with the power-law fits. Fit parameters can be found in Appendix 3—table 1.
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was a significant population of Rab5 endosomes that lacked SNX1, especially smaller early endo-

somes that were often located in the cell periphery. It is likely that this population of Rab5-positive,

SNX1-negative endosomes is particularly motile. The high retrograde velocity of these endosomes

might be explained by the recruitment of dynein to Rab5 endosomes via Hook family members

(Bielska et al., 2014; Zhang et al., 2014; Schroeder and Vale, 2016; Guo et al., 2016). These

dynein adaptors have the intriguing property of recruiting two dyneins per dynactin

(Urnavicius et al., 2018; Grotjahn et al., 2018), leading to faster rates of movement in motility

assays using purified protein than adaptors that only recruit one dynein per dynactin. Perhaps, SNX1

endosomes move more slowly than Rab5 endosomes because they use a ‘single-dynein’ adaptor. An

alternative explanation could be that SNX1 endosomes are slowed down by interactions with the

actin cytoskeleton, since SNX1 domains are enriched in the WASH complex, which in turn controls

localized actin assembly (Gomez and Billadeau, 2009; Simonetti and Cullen, 2019). Actin might

also contribute to the slow, steady motion of SNX1 endosomes via myosin motors or the formation

of actin comets (Simonetti and Cullen, 2019). These interesting possibilities remain to be tested

experimentally.

The analysis of anterograde and retrograde segments revealed that lysosomes moved at moder-

ate speed, and were equally fast in both directions, but each burst of movement was short (Figure 7,

upper panels). In addition, pauses were � 4 times longer for lysosomes than either early endosome

type (Figure 7, lower panels). Lysosomes also often changed direction of movement (e.g. Figure 3—

figure supplement 2), as previously reported (Hendricks et al., 2010). So far, no activating dynein

adaptor has been identified on lysosomes (Reck-Peterson et al., 2018), although several potential
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Figure 5. Comparison of Hurst exponent distributions for GFP-Rab5, GFP-SNX1 and lysosomes. (a) Histograms of Hurst exponents for GFP-Rab5

(black), GFP-SNX1 (magenta) endosomes and lysosomes (green) plot on the same axes for comparison. The individual histograms of Hurst exponents

(black solid) for GFP-Rab5-tagged endosomes, GFP-SNX1-tagged endosomes and lysosomes are shown in (b, c and d) respectively. For each

histogram, the Gaussian mixture model fit for six components (red dashed) and individual Gaussian distribution components are shown on the same

plot. The number of components were chosen through the Bayes information criterion shown in Appendix 4—figure 1.
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dynein interactors have been identified, such as RILP (Rab7 interacting lysosomal protein

(Cabukusta and Neefjes, 2018). Whether this underlies the difference in motile behavior between

lysosomes and early endosomes remains to be tested: however, a less active dynein could well con-

tribute to frequent reversals in direction (Hancock, 2014).

fBm with a stochastic Hurst exponent is a new possible intracellular
transport model
fBm is a Gaussian process BHðtÞ with zero mean and covariance hBHðtÞBHðsÞi ~ t2H þ s2H � ðt � sÞ2H ,
where the Hurst exponent, H is a constant between 0 and 1. With the DLFNN providing local esti-

mates of the Hurst exponent, the motion of endosomes and lysosomes can be described as fBm

with a stochastic Hurst exponent, HðtÞ. This is different to multifractional Brownian motion

(Peltier and Lévy Véhel, 1995) where HðtÞ is a function of time. In our case, HðtÞ is itself a stochastic

process and such a process has been considered theoretically (Ayache and Taqqu, 2005). This is the

first application of such a theory to intracellular transport and opens a new method for characterizing

vesicular movement. Furthermore, Figure 3 shows that the motion of a vesicle, BHðtÞ, exhibits

regime switching behavior between persistent and anti-persistent states.

We found that the times that lysosomes and endosomes spend in a persistent and anti-persistent

state are heavy-tailed (Figure 4). These times are characterized by the probability densities

 ðtÞ~ t���1, where anti-persistent states have 0 < m < 1 and persistent states have 1 < m < 2. Exten-

sive plots and fittings are shown in Figure 4 and Appendix C. In fact, the residence time probability

density has an infinite mean to remain in an anti-persistent state (0<HðtÞ<1=2) but in persistent states

(1=2<HðtÞ<1) the mean of the residence time probability density is finite and the second moment is

infinite. This implies that the vesicles may have a biological mechanism to prioritize certain interac-

tions within the complex cytoplasm, similar to ecological searching patterns (Reynolds and Rhodes,

2009), mRNPs (Song et al., 2018), swarming bacteria (Ariel et al., 2015) and how human dynamics

are often heavy tailed and bursty (Barabási, 2005).

Conclusions
We developed a Deep Learning Feedforward Neural Network trained on fBm that estimates accu-

rately the Hurst exponent for heterogeneous trajectories. Estimating the Hurst exponent using a

DLFNN is not only more accurate than conventional methods but also enables direct trajectory

Figure 6. MRC-5 cells stably expressing GFP-Rab5, GFP-SNX1 or stained with Lysobrite with tracking data overlaid. The colours show the value of H

estimated by the neural network using a 15 point window. The scalebar is 10 mm.

The online version of this article includes the following video and figure supplement(s) for figure 6:

Figure supplement 1. Distribution of endogenous Rab5 and SNX1.

Figure 6—video 1. Video of MRC-5 cell stably expressing GFP-Rab5.

https://elifesciences.org/articles/52224#fig6video1

Figure 6—video 2. Video of MRC-5 cell stably expressing GFP-SNX1.

https://elifesciences.org/articles/52224#fig6video2

Figure 6—video 3. Video of MRC-5 cell stained with Lysobrite.

https://elifesciences.org/articles/52224#fig6video3
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segmentation without a drastic increase in computational cost. We package this DLFNN analysis

code into a user-friendly application, which can predict the Hurst exponent with consistent accuracy

for as few as seven consecutive data points. This is useful to biologists since major limitations to tra-

jectory analysis are: the brevity of tracks due to the fact that particles may rapidly switch between

motile states or move out of the plane of focus; the rapid nature of some biochemical reactions; and

the bleaching of fluorescent probes (with non-bleaching probes often being bulky or cytotoxic). This

method can be used to detect persistent and anti-persistent states of motion purely from the posi-

tional data of trajectories and removes the prerequisite of time or ensemble averaging for effective

heterogeneous transport characterization.

The DLFNN enabled us to discover regime switching in lysosome and endosome movement that

can be modeled by fBm with a stochastic Hurst exponent. This interpretation is a unified approach

to describe motion with anti-persistence and persistence varying over time. Furthermore, the resi-

dence time of vesicles in a persistent or anti-persistent state is found to be heavy tailed, which

implies that endosomes and lysosomes possess biological mechanisms to prioritize varying biological

processes similar to ecological searching patterns (Reynolds and Rhodes, 2009), mRNPs

(Song et al., 2018), swarming bacteria (Ariel et al., 2015) and even human dynamics (Bara-

bási, 2005). Importantly, applying this method to identify and analyze the anterograde and retro-

grade motility reveals unexpected differences in behavior between closely-related organelles.

Finally, in addition to providing a new segmentation method of active and passive transport, this

new technique distinguishes the difference in motility between lysosomes, Rab5-positive endosomes

and SNX1 positive endosomes. The results suggest that the manner in which these vesicles move is

dependent on their identity within the endocytic pathway, especially when the motion is anti-persis-

tent. This implies that directionality and the correlation between consecutive steps is important to

measure in addition to the displacement, velocity and duration of movement. There is considerable

scope for using these methods to identify changes in motility of different organelles caused by dis-

ease. We hope that this type of analysis will allow discoveries in particle motility of a more refined

nature and make applying anomalous transport theory more accessible to researchers in a wide vari-

ety of disciplines.

Figure 7. Box and whisker plots of displacements, times and velocities of persistent retrograde, persistent anterograde and anti-persistent segments in

experimental trajectories. Any segment with H>0:55 was classed as persistent and H<0:45 as anti-persistent. These H values were chosen as a

precaution against the mean error of the neural network estimation. Each data point within the box and whisker plots are averages of all trajectory

segments in a single cell. A total of 65 MRC-5 cells for GFP-Rab5-tagged endosomes, 63 MRC-5 cells for SNX1-GFP-tagged endosomes and 71 MRC-5

cells for lysosomes were analysed with at least 5 to 500 (average 54) anterograde or retrograde segments for each cell.
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Materials and methods

Key resources table

Reagent type or resource Designation Source Identifiers Additional information

Cell line
(Homo sapiens)

Lung fibroblast line Allison et al., 2017
https://doi.org/
10.1083/
jcb.201609033

GFP-SNX1-MRC5 MRC5 cell line stably expressing
GFP-SNX1. Mycoplasma free.

Cell line
(H. sapiens)

Lung fibroblast line Other GFP-Rab5-MRC5 MRC5 cell line stably expressing
GFP-Rab5 generated by retroviral
transduction by G. Pearson and
E. Reid, University of Cambridge.
Mycoplasma free.

Cell line
(H. sapiens)

MRC-5 SV1 TG1
Lung fibroblast line

ECACC MRC-5 SV1 TG1 cells,
cat no. 85042501

Mycoplasma free.

Antibody Anti-human Rab5A
Rabbit monoclonal

Cell Signalling
Technology

3547S IF(1/200)

Antibody Anti-human sorting
nexin 1
(mouse monoclonal)

BD Biosciences 611482 IF(1/200)

Antibody Alexa594-conjugated
anti-mouse IgG
(donkey polyclonal)

Jackson
ImmunoResearch

715-585-150 IF(1/400)

Antibody A488-conjugated donkey
anti-rabbit IgG

Jackson
Immunoresearch

711-545-152 IF(1/400)

Recombinant
DNA reagent

pLXIN-GFP-
Rab5C-I-NeoR

Other Used by G. Pearson and
E. Reid, University of Cambridge
to generate retrovirus
containing GFP-Rab5C

Sequence-
based reagent

Hpa1 GFP Forward Other PCR primer Used by G. Pearson and
E. Reid, University of Cambridge
to generate retrovirus
containing GFP-Rab5C.
TAGGGAGTTAACATGGTGAG
CAAGGGCGAGGA

Sequence-
based reagent

Not1 Rab5C Reverse Other PCR primer Used by G. Pearson and
E. Reid, University of
Cambridge to generate
retrovirus containing
GFP-Rab5C .
ATCCCTGCGGCCGCTCAGTT
GCTGCAGCACTGGC

Chemical
compound, drug

DAPI Biolegend 422801 IF (1 mg/mL)

Chemical
compound, drug

Prolong Gold ThermoFisher P36930

Chemical
compound, drug

Lysobrite Red AAT Bioquest 22645 (1/2500)

Chemical
compound, drug

Geneticin (G418) Sigma-Aldrich G1397 200 mg/mL to maintain
GFP-Rab5-MRC5 and
GFP-SNX1-MRC5 cells
in culture.

Chemical
compound, drug

Formaldehyde
solution, 37% (wt/v)

Sigma-Aldrich 252549

Chemical
compound, drug

Triton X-100 Anatrace T1001

Software, algorithm NNT (aitracker.net) Newby et al., 2018 AITracker Web-based automated
tracking service

Software, algorithm Metamorph Molecular
Devices LLC

Metamorph Metamorph Microscopy
Automation and Image
Analysis Software

Continued on next page
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Continued

Reagent type or resource Designation Source Identifiers Additional information

Software, algorithm FIJI Schindelin, J.; Arganda-
Carreras,
I. and Frise, E. et al. (2012) ,
‘Fiji: an open-source
platform for biological-
image analysis’, Nature
methods 9 (7): 676–682,
PMID22743772,
DOI: 10.1038/nmeth.2019

FIJI/ImageJ

Software, algorithm DLFNN Exponent
Estimator

Han, Daniel. (2020,
January 20).
DLFNN Exponent
Estimator (Version 0).
http://doi.org/
10.1101/777615

DLFNN/DLFNN Exponent Estimator Hurst exponent estimator with
Deep Learning Feed-forward
Neural Network application for
Windows 10. Documentation
included.

Software, algorithm Python3 Python Software
Foundation.Python
Language Reference 3.7.
Available at
www.python.org

Python/Python3

Software, algorithm SciPy Virtanen et al. (2020)
SciPy 1.0: Fundamental
Algorithms for Scientific
Computing in Python.
Nature Methods,
in press.

SciPy/scipy

Software, algorithm Tensorflow Abadi et al., 2016 Tensorflow

Software, algorithm Keras Chollet, François and
others. ‘Keras.’ (2015).
Available from
https://keras.io

Keras

Software, algorithm fbm Flynn, Christopher,
fbm 0.3.0 available
for download at
https://pypi.org/
project/fbm/
or
https://github.com/
crflynn/fbm

FBM package in Python Exact methods for simulating
fractional Brownian motion
(fBm) or fractional Gaussian
noise (fGn) in python.
Approximate simulation of
multifractional Brownian motion
(mBm) or multifractional
Gaussian noise (mGn).

Other 35 mm glass-
bottomed dishes
(m-Dish)

Ibidi Cat. No. 81150

Hurst exponent estimation methods
Time averaged MSDs were calculated using

hx2ðndtÞi ¼ 1

N� n

X

N�n

m¼0

x ðmþ nÞdtð Þ� xðmdtÞ½ �2 (1)

where xðndtÞ is the track displacement at time ndt and a track contains N coordinates spaced at regu-

lar time intervals of dt. From now on, hxi will denote the time average of x unless explicitly specified

otherwise. The total time is T ¼ ðN� 1Þdt and n¼ 1;2; :::;N� 1. Lag-times are the set of possible ndt

within the data set and hx2ðndtÞi was then fit to a power-law ~ t2H using the ‘scipy.optimize’ package

in Python3 to estimate the exponent H.

Rescaled ranges were calculated by creating a mean adjusted cumulative deviate series

zðndtÞ ¼ Pn
m¼0

xðmdtÞ � hxi from original displacements xðndtÞ and mean displacement hxi. Then the

rescaled range is calculated by

R=S½ �ðndtÞ ¼ max zf gn
� �

�min zf gn
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ndt

Pn
m¼0

xðmdtÞ� hxðndtÞið Þ2
q (2)
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where zf gn¼ zð0Þ; zðdtÞ; zð2dtÞ; :::;zðndtÞ. The rescaled range is then fitted to a power law

R=S½ �ðndtÞ~ ðndtÞH where H is the Hurst (1951). The ‘compute_Hc’ function in the ‘hurst’ package in

Python3 estimates the Hurst exponent in this way.

Sequential ranges are defined as

MðndtÞ ¼ sup
0�s�ndt

ðxðsÞ� xð0ÞÞ� inf
0�s�ndt

ðxðsÞ� xð0ÞÞ (3)

where supðxÞ is the supremum and infðxÞ is the infimum for the set x of real numbers. Then

MðndtÞ ¼ ðndtÞHMðdtÞ Feller (1951).

Table 1. Statistics of experimental trajectory segments.

The persistent and anti-persistent segments in this table are: from trajectories that travelled over 0.5 mm at any point from their initial

starting positions; contained more points than the window size; and switched behavior more than twice in the trajectory. Note that

these conditions are much stricter than those to generate Figures 4 and 5. Each persistent segment was then further subdivided into

retrograde and anterograde segments (see Materials and methods).

Rab5 SNX1 Lyso

Number of persistent segments 2369 2099 7645

Number of anti-persistent segments 6983 3947 19,320

Number of retrograde segments 2925 2343 5882

Number of anterograde segments 2303 1609 6827

Anti-persistent displacement (mm) Mean 0.05 0.05 0.03

Median 0.04 0.05 0.03

St. Dev 0.02 0.01 0.004

Anti-persistent speed (mms-1) Mean 0.82 0.75 0.10

Median 0.70 0.73 0.09

St. Dev 0.31 0.19 0.02

Anti-persistent time (s) Mean 0.23 0.20 0.93

Median 0.23 0.19 0.92

St. Dev 0.05 0.03 0.11

Retrograde displacement (mm) Mean 0.53 0.74 0.29

Median 0.49 0.69 0.29

St. Dev 0.19 0.28 0.08

Retrograde speed (mms-1) Mean 2.29 1.35 1.49

Median 2.21 1.29 1.46

St. Dev 0.87 0.39 0.25

Retrograde time (s) Mean 0.22 0.46 0.17

Median 0.21 0.45 0.17

St. Dev 0.09 0.09 0.03

Anterograde displacement (mm) Mean 0.35 0.43 0.31

Median 0.33 0.37 0.32

St. Dev 0.17 0.20 0.08

Anterograde speed (mms-1) Mean 2.06 1.10 1.51

Median 1.71 1.08 1.48

St. Dev 0.95 0.30 0.27

Anterograde time (s) Mean 0.18 0.34 0.18

Median 0.15 0.33 0.18

St. Dev 0.08 0.08 0.03
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DLFNN structure and training
The fractional Brownian trajectories were generated using the Hosking method within the ‘FBM’

function available from the ‘fbm’ package in Python3. The DLFNN was built using Tensorflow

Abadi et al. (2016) and Keras Chollet (2015) in Python3 and trained by using the simulated frac-

tional Brownian trajectories. The training and testing of the neural network were performed on a

workstation PC equipped with 2 CPUs with 32 cores (Intel(R) Xeon CPU E5-2640 v3) and 1 GPU (NVI-

DIA Tesla V100 with 16 GB memory). The structure of the neural network was a multilayer, feedfor-

ward neural network where all nodes of the previous layer were densely connected to nodes of the

next layer. Each node had a ReLU activation function and the parameters were optimized using the

RMSprop optimizer (see Keras documentation Chollet, 2015). Three separate structures were

explored and examples of these structures for two hidden layers and five time point inputs are

shown in Figure 1g,h and i. The triangular structure was predominantly used since this was the least

computationally expensive and accuracy between different structures were similar. To compare the

accuracy of different methods, the mean absolute error (sH ) of N trajectories,

sH ¼
PN

m¼1
Hsim

n � Hest
n

� �

=N, was used. Before inputting values into the neural network, the time series

was differenced to make it stationary. The input values of a fBm trajectory xf g ¼ x0; x1; :::; xn were dif-

ferenced and normalized so that

xinput
� 	

¼ ðx1 � x0Þ=rangeðxÞ; ðx2 � x1Þ=rangeðxÞ; :::; ðxn � xn�1Þ=rangeðxÞ. Since the model requires dif-

ferenced and normalized input values, in theory it should be applicable to a wide range of datasets.

However, further testing must be done in order to confirm this expectation.

Gaussian kernel density estimation
Kernel density estimation (KDE) is a non-parametric method to estimate the probability density func-

tion (PDF) of random variables. If N random variables xn are distributed by an unknown density func-

tion PðxÞ, then the kernel density estimate PðxÞ is

P̂ðxÞ ¼ 1

N

X

N

n¼1

K
x� xn

l

� �

(4)

where Kð�Þ is the kernel function and l is the bandwidth. In this paper, we have used a Gaussian

KDE, KðyÞ ¼ 1
ffiffiffiffi

2p
p e�y2=2, to estimate the two dimensional PDFs of the second and bottom row in

Figure 1a. This was performed in Python3 using ‘scipy.stats.gaussian_kde’ and Scott’s rule of thumb

for bandwidth selection.

Segmenting trajectories into persistent and anti-persistent segments
From the estimates of Hurst exponent from the DLFNN, trajectories were segmented into persistent

and anti-persistent segments. Given an experimental trajectory x ¼ x0; x1; :::; xn and window of length

Nw (an odd number) starting at xi, we obtain the H estimate for the position at xj, where

j ¼ iþ ðNw � 1Þ=2. This will give us a series of Ht values, HðNw�1Þ=2;HðNw�1Þ=2þ1; :::;Hn�ðNw�1Þ=2, which cor-

respond to the positions, xðNw�1Þ=2; xðNw�1Þ=2þ1; :::; xn�ðNw�1Þ=2. Then, the values Ht can be segmented

into consecutive points of persistence Ht>0:55 and anti-persistence Ht<0:45. The bounding values,

0.55 and 0.45, were used since the mean error of the DLFNN estimation method was sH ~ 0:05. Any

segment less than the length of Nw was discarded as a precaution against spurious detection.

Directional segmentation of persistent segments
Once segments of persistence and anti-persistence were defined, we measured the displacement,

time and velocity of these segments, shown in the bottom row of Figure 7 and Table 1. The persis-

tent segments were filtered to be only from trajectories that travelled over 0.5 mm; contained more

points than the window size; and switched behaviour more than twice in the trajectory. In addition,

we assessed if persistent segments were anterograde or retrograde in direction. In order to do this,

the centrosomal region was defined by the user as the point where the lysosomes, Rab5 and SNX1

organelles were the largest, brightest, or the most clustered. Image contrast enhancements, such as

histogram equalization, were used to locate the centrosomes. By locating the centrosomal region

and the cell boundary from user input, the persistent segments can then be classified as anterograde

or retrograde. This was done by finding the cosine of the angles, cosð�Þ, between the vector, ~r0;i,
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from the centrosome to the current particle position xi and the vector,~ri;iþ1, from the current particle

position to the next particle position xiþ1. The exact formula is cosð�Þ ¼~r0;i �~ri;iþ1=j~r0;ijj~ri;iþ1j. Using
windows in a similar fashion as determining persistent and anti-persistent segments, cosð�iÞ corre-

sponding to position xi was found for the points within a persistent segment. If cosð�iÞ>scosð�Þ, then

the motion was deemed to be anterograde and if cosð�iÞ<� scosð�Þ, retrograde. Sweeping through

the points of xi, consecutive retrograde or anterograde points formed segments from the persistent

segments. A threshold of scosð�Þ ¼ 0:3 was used.

Cell lines
The MRC-5 SV1 TG1 Lung fibroblast cell line was purchased from ECACC. MRC-5 cell lines stably

expressing GFP-Rab5C and GFP-SNX1 were kindly provided by Drs. Guy Pearson and Evan Reid

(Cambridge Institute for Medical Research, University of Cambridge). The GFP-SNX1 cell line has

been previously described in Allison et al. (2017). Cell lines were routinely tested for mycoplasma

infection. To generate the MRC-5 GFP-Rab5C stable cell line, GFP-Rab5C was PCRed from pIRES

GFP-Rab5C Seaman (2004) using ‘Hpa1 GFP Forward’ (TAGGGAGTTAACATGGTGAGCAAGGGC-

GAGGA) and ‘Not1 Rab5C Reverse’ (ATCCCTGCGGCCGCTCAGTTGCTGCAGCACTGGC) oligonu-

cleotide primers. The GFP-Rab5C PCR product and a pLXIN-I-NeoR plasmid were digested using

Hpa1 (New England Biolabs - R0105) and Not1 (New England Biolabs - R3189) restriction enzymes.

The GFP-Rab5C PCR product was then ligated into the digested pLXIN-I-NeoR using T4 DNA Ligase

(New England Biolabs - M0202). The ligated plasmid was amplified in bacteria selected with ampicil-

lin and verified using Sanger Sequencing. To generate the GFP-Rab5C MRC-5 cell line, Phoenix ret-

rovirus producer HEK293T cells were transfected with the pLXIN-GFP-Rab5C-I-NeoR plasmid to

generate retrovirus containing GFP-Rab5C. MRC-5 cells were inoculated with the virus, and success-

fully transduced cells were selected using 200 mg/mL Geneticin (G418 - Sigma-Aldrich G1397). Cells

used for imaging were not clonally selected.

Live-imaging and tracking
Stably expressing MRC-5 cells were co-stained with LysoBrite Red (AAT Bioquest), imaged live using

fluorescence microscopy and tracked with NNT aitracker.net; Newby et al. (2018). The cells were

grown in MEM (Sigma Life Science) and 10% FBS (HyClone) and incubated for 48 hr at 37 in 5% CO2

on 35 mm glass-bottomed dishes (m-Dish, Ibidi, Cat. No. 81150). For LysoBrite staining, LysoBrite

was diluted 1 in 500 with Hank’s Balanced Salt solution (Sigma Life Science). Then 0.5 mL of this solu-

tion was added to cells on a 35 mm dish containing 2 mL of growing media and incubated at 37 for

at least 1 hr. Cells were then washed with sterile PBS and the media replaced with growing media.

After at least 6 hr incubation, the growing media was replaced with live-imaging media com-

posed of Hank’s Balanced Salt solution (Sigma Life Science, Cat. No. H8264) with added essential

and non-essential amino acids, glutamine, penicillin/streptomycin, 25 mM HEPES (pH 7.0) and 10%

FBS (HyClone). Live-cell imaging was performed on an inverted Olympus IX71 microscope with an

Olympus 100 � 1.35 oil PH3 objective. Samples were illuminated using an OptoLED (Cairn Research)

light source with 470 nm and white LEDs. For GFP, a 470 nm LED and Chroma ET470/40 excitation

filter was used in combination with a Semrock FITC-3540C filter set. For Lysobrite-Red, a white light

LED, Chroma ET573/35 was used with a dualband GFP/mCherry dichroic and an mCherry emission

filter (ET632/60). GFP-Rab5-labeled endosomes were imaged in a total of 65 cells, from three inde-

pendent experiments. GFP-SNX1-labeled endosomes were imaged in a total of 63 cells from four

independent experiments. Lysosomes were imaged in separate experiments, with 71 cells imaged

from three independent repeats. A stream of 20 ms exposures was collected with a Prime 95B

sCMOS Camera (Photometrics) for 17 s using Metamorph software while the cells were kept at 37

(in atmospheric CO2 levels). The endosomes and lysosomes in the videos were then tracked using

an automated tracking software (AITracker) Newby et al. (2018).

Confocal imaging
To compare the localization of SNX1 and Rab5, GFP-Rab5-MRC-5 cells were grown on #1.5 cover-

slips and then fixed in 3% (w/v) formaldehyde in PBS for 20 min at room temperature (RT). Coverslips

were washed twice in PBS, quenched in PBS with glycine, then permeabilized by incubation for

5 min in 0.1% Triton X-100. After another wash in PBS, coverslips were labeled with antibodies to
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SNX1 and Rab5 for 1 h at RT, washed three times in PBS, then labeled with Alexa488-donkey anti-

rabbit and Alexa594-donkey anti-mouse antibodies in 1 mg/mL DAPI in PBS for 30 min. After three

PBS washes, coverslips were dipped in deionized water, air-dried and mounted on slides using Pro-

long Gold.

Images were collected on a Leica TCS SP8 AOBS inverted confocal using a 100x/1.40 NA PL apo

objective. The confocal settings were as follows: pinhole, one airy unit; scan speed 400 Hz unidirec-

tional; format 2048 � 2048. Images were collected using hybrid detectors (A488 and A594) or a

PMT (DAPI) with these detection mirror settings; [Alexa488, 498 nm-577 nm; Alexa594, 602 nm-

667 nm; DAPI, 420 nm-466 nm] using the SuperK Extreme supercontinuum white light laser for

488 nm (10.5%) and 594 nm (5%) excitation, and a 405 nm laser (5%) for DAPI. Images were col-

lected sequentially to eliminate cross-talk between channels. When acquiring 3D optical stacks the

confocal software was used to determine the optimal number of Z sections. The data were decon-

volved using Huygens software before generating maximum intensity projections of 3D stacks using

FIJI.

Software and code
The code and documentation for determining the Hurst exponent can be found in https://github.

com/dadanhan/hurst-exp (copy archived at https://github.com/elifesciences-publications/hurst-

exp; Han, 2019) and a GUI is available on https://zenodo.org/record/3613843#.XkPf2Wj7SUl.
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Appendix 1

Comparison of HMM model against fBm model
segmentation of experimental trajectories
In order to compare the effectiveness of the neural network and hidden Markov models

(HMM), qualitative plots were made of real trajectories and their respective comparisions. The

models in the HMM analysis approach had a maximum of three different motion states. It is

clear from comparing the endosome track segmented using DLFNN (Figure 3) with

Appendix 1—figures 1–3, that segmentation using hidden Markov models is not suitable for

endosome trajectories. Perhaps, by increasing the number of states within models, the hidden

Markov models can achieve similar results of the neural network, but this analysis becomes

computationally expensive.

Appendix 1—figure 1. The same single trajectory as in Figure 3 but processed using the

HMM-Bayes package described in Monnier et al. (2015). The plot shows: the original trajectory

(top left); the inferred state sequence of the most likely model (top right); the model

probabilities given a maximum of three possible states (bottom left); the average lifetime of

each state and estimated parameters of the most likely model (bottom center left), which in

this case is two different diffusive states; individual increment displacements (bottom center

right); and the step size distribution of those increments classed into the two different states.

Han et al. eLife 2020;9:e52224. DOI: https://doi.org/10.7554/eLife.52224 22 of 28

Research article Cell Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.52224


Appendix 1—figure 2. Top: Plot of displacement from a single GFP-SNX1 endosome trajectory

in an MRC-5 cell (blue). Shaded areas show persistent (0:55<H<1 in green) and anti-persistent

(0<H<0:45 in magenta) behaviour. Middle: A 15 point moving window DLFNN exponent

estimate for the trajectory (black) with a line (dashed) marking diffusion H ¼ 0:5 and lines

(dotted) marking the confidence bounds H ¼ 0:55 and 0.45. Bottom: Plot of instantaneous and

moving (15 point) window velocity. Right: Plot of the trajectory of a GFP-SNX1 endosome in

an MRC-5 cell with start and finish positions, and persistent (green) and anti-persistent

(magenta) segments indicated.
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Appendix 1—figure 3. The same HMM-Bayes analysis as shown in Appendix 1—figure 1

applied to the trajectory in Appendix 1—figure 2.
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Appendix 2

Testing DLFNN accuracy for different diffusion
coefficients
The DLFNN was compared to the MSD estimation method for simulated trajectories with

different diffusion coefficients to ensure that the DLFNN estimation was not scale dependent.

Appendix 2—figure 1. Top: MSD (points) and power-law fits (dashed) for two different Brow-

nian trajectories containing 1000 data points with diffusion coefficient 2.5 (red) and 0.025 (blue).

The Hurst exponent should be a ¼ 2H ¼ 1 for both trajectories. Second Row: Simulation of the

two Brownian trajectories with diffusion co-efficient 2.5 (red) and 0.025 (blue). Third Row:

Local Hurst exponent estimates given by the DLFNN for the two different trajectories using a

90 point window. The averages of DLFNN Hurst exponent estimates are a ¼ 2H ¼ 1:110 (red)

and a ¼ 2H ¼ 1:114 (blue). Bottom: Local Hurst exponent estimates of the D ¼ 2:5 track given

by DLFNN and MSDs using a 90 point window. The average of DLFNN Hurst exponent

estimates is a ¼ 2H ¼ 1:110 and the average of MSD estimates is a ¼ 2H ¼ 0:937.
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Appendix 3

Measuring the residence time and flight length
probability density functions of persistent and anti-
persistent states
Classifying persistent and anti-persistent states by Hurst exponent values 1=2<H<1 and

0<H<1=2 respectively, individual lysosome and endosome trajectories were segmented with a

moving window of 15 points. Data was extracted from microscopy movies from three

independent experiments. GFP-Rab5 endosomes from 65 cells, GFP-SNX1 endosomes from

63 cells and lysosomes from 71 different cells were tracked using AITracker Newby et al.

(2018). Then the trajectories were segmented into anti-persistent (0<H<1=2) and persistent

(1=2<H<1) using the Hurst exponent estimates by DLFNN. The time duration and particle

displacement of these segments were measured and then fitted to distributions. In this way,

we could measure the stochastic switching between active and passive transport and the

statistics of vesicle movement within these states.

Figure 4 shows the survival time probabilities 	ðtÞ of different states of motion (persistent

and anti-persistent) in vesicle trajectories. 	ðtÞ is the probability that the vesicle will still be in

the same state of motion after time t has elapsed. Figure 4 shows that the persistent and anti-

persistent states follow 	ðtÞ ¼ e�lt t 0

t 0þt

� ��
. The survival time probabilities show that lysosomes

and endosomes are far more likely to remain trapped in a anti-persistent state than be

persistently transported by motor proteins. While this is intuitively obvious in the context of

cell biology, this analysis provides quantitative characterization of endosomal and lysosomal

motility. Appendix 3—table 1 shows the parameters of fitting for Figure 4. Appendix 3—

figure 1 shows the empirical probability density functions (PDF) of the particle displacements

for different states of motion. Displacements of segments are fitted to Burr Type XII

distributions,

PðxÞ ¼ kcðx=x0Þc�1

x0ð1þðx=x0ÞcÞkþ1

where x, x0, c and k>0.

As expected, this analysis demonstrates that both endosomes and lysosomes are far more

likely to move large distances when they are in the persistent state. This reconciles how

vesicles are able to move large distances even though they are more likely to stay in a anti-

persistent state for long periods of time. The large displacements in the persistent state

compete with long durations spent in the anti-persistent state.
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Appendix 3—figure 1. Normalized histograms (blue) and corresponding maximum likelihood

estimation for Burr distributions (line) of segment displacements from lysosome and endosome

experimental trajectories segmented using DLFNN. Parameter estimates are shown the legend.

Appendix 3—table 1. Results for the fits of survival time probabilities shown in Figure 4. The

parameters and the analytical survival functions used to fit the Kaplan-Meier estimator survival

curves.

Rab5 data Survival function 	ðtÞ Fit parameters for Figure 4

Anti-persistent e�lt t 0

t 0þt

� ��
� ¼ 0:518� 0:004, t 0 ¼ 0:140� 0:002s, l ¼ 0:352� 0:002s�1

Persistent e�lt t 0

t 0þt

� ��
� ¼ 1:352� 0:102, t 0 ¼ 0:045� 0:006s, l ¼ 1:286� 0:142s�1

SNX1 data Survival function 	ðtÞ Fit parameters for Figure 4

Anti-persistent e�lt t 0

t 0þt

� ��
� ¼ 0:757� 0:023, t 0 ¼ 0:118� 0:006s, l ¼ 1:004� 0:016s�1

Persistent e�lt t 0

t 0þt

� ��
� ¼ 2:034� 0:205, t 0 ¼ 0:185� 0:026s, l ¼ 0:659� 0:137s�1

Lysosome data Survival function 	ðtÞ Fit parameters for Figure 4

Anti-persistent e�lt t 0

t 0þt

� ��
� ¼ 1:113� 0:009, t 0 ¼ 0:208� 0:003s,
l ¼ 0:5s�1 (fixed)

Persistent e�lt t 0

t 0þt

� ��
� ¼ 1:748� 0:065, t 0 ¼ 0:041� 0:003s, l ¼ 1:216� 0:139s�1
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Appendix 4

Calculating information criteria for GMM fittings
In order to determine the minimum amount of components necessary to model the

histograms of Hurst exponent in Figure 5, the Akaike and Bayes Information Criterion were

computed.
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Appendix 4—figure 1. The Akaike and Bayes information criterion against number of compo-

nents in the Gaussian mixture model shown in Figure 5 for GFP-Rab5 tagged endosomes (top),

SNX1-GFP tagged endosomes (middle) and lysosomes (bottom).
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